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Abstract 1	
 2	
In T cells, T cell receptor (TCR) signalling initiates downstream transcriptional 3	

mechanisms for T cell activation and differentiation. Foxp3-expressing 4	

regulatory T cells (Treg) require TCR signals for their suppressive function 5	

and maintenance in the periphery. It is, however, unclear how TCR signalling 6	

controls the transcriptional programme of Treg. Since most of studies 7	

identified the transcriptional features of Treg in comparison to naïve T cells, 8	

the relationship between Treg and non-naïve T cells including memory-9	

phenotype T cells (Tmem) and effector T cells (Teff) is not well understood. 10	

Here we dissect the transcriptomes of various T cell subsets from 11	

independent datasets using the multidimensional analysis method Canonical 12	

Correspondence Analysis (CCA). We show that resting Treg share gene 13	

modules for activation with Tmem and Teff. Importantly, Tmem activate the 14	

distinct transcriptional modules for T cell activation, which are uniquely 15	

repressed in Treg. The activation signature of Treg is dependent on TCR 16	

signals, and is more actively operating in activated Treg. Furthermore, by 17	

analysing single cell RNA-seq data from tumour-infiltrating T cells, we 18	

revealed that FOXP3 expression occurs predominantly in activated T cells. 19	

Moreover, we identified FOXP3-driven and T follicular helper (Tfh)-like 20	

differentiation pathways in tumour microenvironments, and their bifurcation 21	

point, which is enriched with recently activated T cells. Collectively, our study 22	

reveals the activation mechanisms downstream of TCR signals for the 23	

bifurcation of Treg and Teff differentiation and their maturation processes.   24	
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Introduction 1	

T cell receptor (TCR) signalling activates NFAT, AP-1, and NF-kB	(1), which 2	

induces the transcription of Interleukin (IL)-2 and IL-2 receptor (R) a-chain 3	

(Il2ra, CD25). IL-2 signalling induces further T cell activation, proliferation and 4	

differentiation	(2). In addition, IL-2 signalling has key roles in immunological 5	

tolerance (2). This is partly mediated through CD25-expressing regulatory T 6	

cells (Treg), which suppress the activities of other T cells (3). Intriguingly, TCR 7	

signalling also induces the transient expression of FoxP3, the lineage-specific 8	

transcription factor of Treg (4), in any T cells in humans (5), and in mice in the 9	

presence of IL-2 and TGF-b (6). These suggest that FoxP3 can be actively 10	

induced as a negative feedback mechanism for the T cell activation process, 11	

especially in inflammatory conditions in tissues (7). Thus, the T cell activation 12	

processes may dynamically control Treg phenotype and function during 13	

immune response and homeostasis.  14	

In fact, TCR signalling plays a critical role in Treg. Studies using TCR 15	

transgenic mice showed that Treg require TCR activation for in vitro 16	

suppression (8). The binding of Foxp3 protein to chromatin occurs mainly in 17	

the enhancer regions that have been opened by TCR signals (9). In fact, 18	

continuous TCR signals are required for Treg function, because the 19	

conditional deletion of the TCR-a chain in Treg abrogates the suppressive 20	

activity of Treg and eliminates their activated or effector-Treg (eTreg) 21	

phenotype (10, 11). It is, however, unclear how TCR signals contribute to the 22	

Treg-type transcriptional programme, and whether TCR signals are operating 23	
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in all Treg cells or whether these are required only when Treg suppress the 1	

activity of other T cells.   2	

Heterogeneity of Treg has been previously addressed through classifying 3	

Treg into subpopulations, according to the origin (thymic Treg, peripheral 4	

Treg, visceral adipose tissue Treg	(12)), the transcription factor expression 5	

and ability to control inflammation (Th1-Treg	(13) and Th2-Treg	(14), and T 6	

follicular regulatory T cells	(15)), and their activation status (activated 7	

Treg/eTreg, resting Treg, and memory-type Treg	(16)). Among these Treg 8	

subpopulations, of interest is eTreg, which are activated and functionally 9	

mature Treg. Murine eTreg can be identified by memory/activation markers 10	

such as CD44, CD62L, and GITR	(16, 17), and their differentiation is 11	

controlled by the transcription factors Blimp-1, IRF4 and Myb	(18, 19). Human 12	

Treg can be classified into naïve Treg (CD25+CD45RA+Foxp3+) and eTreg 13	

(CD25+CD45RA-Foxp3+) (20). However, our recent computational study 14	

showed that classical gating approach is not effective for understanding 15	

multidimensional data, and that marker expression data may be rather 16	

effectively analysed by the computational clustering approaches that aim to 17	

understand the dynamics of marker expressions in Treg	(21). Furthermore, 18	

the recent advancement of single cell technologies has opened the door to 19	

address the heterogeneity of Treg by their gene profiles at the single cell 20	

level.  21	

When addressing the single cell level heterogeneity, it is critical to analyse 22	

activated effector T cells (Teff) and memory-like T cells (memory-phenotype T 23	

cells; Tmem) together with Treg. The surface phenotype of Tmem is 24	
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CD44highCD45RBlowCD25− (22), which is similar to CD25- Treg, apart from 1	

Foxp3 expression and suppressive activity (23, 24). In addition, Teff express 2	

CD25 and CTLA-4	(25), the latter of which is also known as a Treg marker 3	

(26). Tmem may include both antigen-experienced memory T cells (27) and 4	

self-reactive T cells (28). In fact, CD44highCD45RBlow Tmem do not develop in 5	

TCR transgenic mice with the Rag deficient background, indicating that they 6	

require agonistic TCR signals in the thymus (29). In addition, a study using a 7	

fate-mapping approach showed that a minority of Treg naturally lose Foxp3 8	

expression and join the Tmem fraction (30). These suggest that, upon 9	

encountering cognate self-antigens, self-reactive T cells, which include Tmem 10	

and Treg, express and sustain Foxp3 expression as a negative feedback 11	

mechanism for strong TCR signals (7). Thus, Treg have a close relationship 12	

with Tmem and Teff. However, since most studies used naïve T cells (Tnaïve) 13	

as the control for Treg, many of known Treg-associated features may be in 14	

fact shared with Tmem and Teff.  15	

Multidimensional analysis is an effective approach to address this problem, 16	

allowing to systematically investigate the relationships between more than two 17	

cell populations (e.g. based on transcriptional similarities)	(31). The prototype 18	

methods include Principal Component Analysis (PCA), Correspondence 19	

Analysis (CA) (32) and Multidimensional Scaling	(33). In the application to 20	

genomic data, these methods measure distances (i.e. similarities) between 21	

samples and/or genes using different metrics, and thereby visualise the 22	

relationships between samples and/or genes in a reduced dimension, typically 23	

either in two-dimensional (2D) or three-dimensional (3D) space, providing 24	

means to explore and investigate data	(31). However, these multidimensional 25	
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methods are often not sufficiently powerful for hypothesis-driven research, 1	

and our previous studies developed a transcriptome analysis method using a 2	

variant of CA, Canonical Correspondence Analysis (CCA) for microarray data 3	

(31) and RNA-seq data	(34). In this approach, two transcriptome datasets are 4	

canonically analysed: the correlations between cell samples in one dataset 5	

(main dataset) and the immunological processes (explanatory variables) in 6	

another dataset (explanatory dataset) are analysed based on their 7	

correlations to individual genes. Briefly, CCA uses a linear regression to 8	

identify the interpretable part (constrained space) of main data by explanatory 9	

variables, and visualises similarities between genes, cells, and explanatory 10	

variables using a singular value decomposition (SVD) solution within the 11	

interpretable space (34). Thus, CCA enables to investigate and identify the 12	

unique features of each T cell population, visualising the relationships 13	

between T cell populations.  14	

In this study, we investigate the multidimensional features of Treg in 15	

comparison to other CD4+ T cells including Teff, Tmem, and naïve T cells 16	

under normal or pathological conditions. Here we aim to identify the 17	

differential regulation of transcriptional modules for T cell activation and 18	

differentiation in these populations, and to reveal systems and molecular 19	

mechanisms behind the differential regulation. Furthermore, using our new 20	

single cell combinatorial CCA (SC4A) approach, we investigate the single-cell 21	

level heterogeneity of CD4+ T cells including Treg and effector T cells, 22	

identifying the differentially regulated gene modules and the bifurcation point 23	

for T cell fates. 24	

 25	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 19, 2018. ; https://doi.org/10.1101/280818doi: bioRxiv preprint 

https://doi.org/10.1101/280818
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 7	

Materials and Methods 1	

 2	
Conventional CCA (Gene-oriented analysis) 3	

CCA canonically analyses two independent microarray or RNA-seq datasets	4	

(34). Briefly, gene expression data of the standardised main dataset (S) is 5	

linearly regressed onto the explanatory variable(s) (D), which identifies the 6	

interpretable part of the main dataset (“Constrained data”, S*). When only one 7	

explanatory variable is used, the CA algorithm of CCA assigns numerical 8	

values to cell samples and genes so that the dispersion of samples is 9	

maximised (uncorrelated information components), providing a one-10	

dimensional solution (34). The correlation analysis of explanatory data and 11	

gene scores in the CA solution generates a biplot value, which, in the one-12	

dimensional solution, represents the explanatory variable score. In the one-13	

dimensional CCA solution, the single biplot value can either be +1 or -1, 14	

indicating the direction (increasing/decreasing) of correlated genes in the 15	

explanatory variable against that in the main dataset. In order to use the one-16	

dimensional solution as a scoring system, the CCA score (i.e. Axis 1 score) is 17	

multiplied by the single biplot value, which indicates positive or negative 18	

correlation to Axis 1, ensuring that cells and genes with high scores have high 19	

positive correlations to the explanatory variable. When two or more 20	

explanatory variables are used, the CA algorithm then performs SVD on S*, 21	

creating new matrices (i.e. sample and gene score matrices). These scores 22	

are sorted into new uncorrelated axes αk, along which the entire set of scores 23	

generated by SVD is distributed. The first axis has the largest variation 24	

(inertia) and thereby explains the greatest amount of information extracted by 25	
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the analysis. The map approach enables the comparison of two or more 1	

explanatory variables, while the regression process in CCA allows the 2	

analysis across two different experiments	(34). Biplot values of the CCA result 3	

are shown by arrows on the CCA map. CCA provides a map that shows the 4	

correlations between samples of interest, explanatory variables, and genes. 5	

Highly correlated components are closely positioned on the map. 6	

 7	

Note that the same genes must be used in both transcriptome dataset 8	

matrices. The main dataset is projected onto the explanatory variable dataset, 9	

thus the genes in common to both datasets comprise the interpretable part 10	

(intersect) of the main data. Mathematical operation implemented in the CCA 11	

algorithm produces immunological process (explanatory variable), gene and 12	

cell sample scores. The results are visualized as the 3-dimensional CCA 13	

solution on the CCA map (i.e. CCA triplot) that shows the relationships 14	

between cell subsets, genes and immunological processes. For example, in 15	

the application of CCA to population-level (bulk) data, transcriptome datasets 16	

of peripheral CD4+ T cells (including Treg, naïve, memory, draining LN and 17	

non-dLN and tissue effector CD4+ T cells) were processed by CCA using 18	

indicated explanatory variables (e.g. T cell activation) and the cross-level 19	

relationships between components at three different levels (immunological 20	

process, gene and cell) were analysed.  21	

 22	

Single cell data pre-processing and single cell CCA (single-cell oriented 23	

analysis) 24	
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RNA-seq expression data of GSE72056 was obtained from single-cell 1	

suspension of tumour cells with unknown activation and differentiation 2	

statuses (35). Genes with low variances and low maximal values were 3	

excluded. In order to identify CD4+ T cells, single cell data were filtered by the 4	

expression of CD4 and CD3E to obtain only the CD4+CD3E+ single cells, and 5	

also by k-means clustering of PCA gene plot to exclude outlier cells (21) for 6	

subsequent analysis.   7	

In the application of CCA to single cell data, importantly, the same single cells 8	

are used in both main data and the explanatory variables (i.e. selected 9	

genes). The main dataset is projected onto the explanatory variables, 10	

visualising the relationships between single cells, genes and explanatory 11	

variables, which represent major activation/differentiation processes in the 12	

dataset. 13	

 14	

Explanatory variables for conventional CCA 15	

Explanatory variables for CCA were prepared as follows. Differentially-16	

expressed genes were selected by a moderated t-test result using the 17	

Bioconductor package, limma. The top-ranked differentially expressed genes 18	

(according to their p-values) were used for making the explanatory variables. 19	

The T cell activation explanatory variable (Tact) was defined by the difference 20	

in gene expression between anti-CD3/CD28-stimulated (17 h) CD4+ T cells 21	

and untreated naïve CD4+ T cells from GSE42276	(36). Precisely, genes were 22	

selected by FDR < 0.01 and log2 fold change (> 1 or < -1) in the comparison 23	

of the gene expression profile of the activated and resting T cells. For the one-24	
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dimensional CCA of T cell populations (Figure 1B), the expression data of 1	

GSE15907 (37) was regressed onto gene values in Tact representing the 2	

change in gene expression following T cell activation, and CA was performed 3	

for the regressed data and the correlation analysis was done between the 4	

new axis and the explanatory variable. For the two-dimensional CCA of T cell 5	

populations (Figure 2A and 2B), the expression data of GSE15907 (37) was 6	

regressed onto Tact, in combination with Foxp3 and Runx1 explanatory 7	

variables representing the effects of Foxp3 and Runx1 expression on CD4+ T 8	

cells (GSE6939 (38)). Foxp3 explanatory variable is the log2 fold change of 9	

Foxp3-transduced naïve CD4+ T cells and empty vector-transduced CD4+T 10	

cells. Runx1 explanatory variable is the log2 fold change of Runx1-transduced 11	

naïve CD4+ T cells and empty vector-transduced CD4+T cells. Subsequently, 12	

CA was applied to the regressed data and the correlation analysis was 13	

performed between the new axes and the explanatory variables.  14	

 15	

SC4A 16	

SC4A is a composite approach to understand non-annotated single cell data 17	

by identifying distinct populations of cells and the differentiation processes 18	

that are correlated with these populations. Since T cell population is usually 19	

identified by a single lineage specification factor, in the application of SC4A, 20	

such a factor will represent the cell population and their differentiation process 21	

(Supplementary Figure 1A). The advantage of this approach is that SC4A 22	

uses the gene expression data of a part of the dataset analysed, and thus the 23	

regression analysis of CCA becomes more efficient because of the absence 24	
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of between-experimental variation, which is usually significant in cross-dataset 1	

analysis	(34).  2	

SC4A is performed by the following three steps: (1) identification of putative 3	

cell populations and candidate genes for explanatory variables by standard 4	

CCA; (2) combinatorial CCA to identify the top-ranked genes to be used as 5	

explanatory variables; and (3) the final CCA solution using the selected genes 6	

as explanatory variables. 7	

1. Preliminary analysis 8	

The aim of the preliminary analysis is to identify the putative cell populations 9	

and candidate genes for explanatory variables, and standard CCA is a useful 10	

method to do this, because candidate genes can be identified by their 11	

correlation to each putative cell population. Considering that the final output is 12	

most effectively understood by visualisation using 2-dimensional (showing 13	

correlation between explanatory variable, samples and genes) or 3-14	

dimensional (showing correlation between explanatory variable and 15	

samples/genes) plot, up to 4 cell populations will be identified, and up to 5- 10 16	

genes for each population will be identified by their correlation to the 17	

population (Supplementary Figure 1B). 18	

2. Combinatorial CCA 19	

Here SC4A aims to identify a set of genes that make the dispersion of cell 20	

populations maximum in the CCA solution. To achieve this, all the 21	

combinations of genes will be used as explanatory variables and tested for 22	

discriminating each two populations using CCA. During each combinatorial 23	
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cycle, two genes are chosen from the total selected genes for all defined 1	

single-cell populations in the main dataset and tested for their correlations to 2	

one defined cell population vs all other T cells. 3	

Correlation can be visualised as the degree angle measured between the 4	

explanatory variable (gene) and the centroid of the defined cell population. 5	

Out of the two genes, the gene with the smallest angle to the defined cell 6	

population is the most correlated. All selected genes are tested in this 7	

pairwise manner against all defined cell populations vs all other T cells to 8	

identify the gene that is most highly and uniquely correlated to each defined 9	

cell population. At each combinatorial CCA, the most correlated gene to each 10	

cell population is identified using vector multiplication (Supplementary Figure 11	

1C). The top-ranked genes are determined by F1 score (the harmonic mean 12	

of precision and sensitivity) and the correlation to the population of interest. 13	

When the top-ranked gene is different between F1 score and the correlation, 14	

the most immunologically-meaningful gene can be chosen. 15	

3. SC4A 16	

Finally, CCA is performed using the genes that are selected by the 17	

combinatorial CCA to be used as explanatory variables. Thus, the single cell 18	

dataset will be explained by the expression of the set of chosen genes, each 19	

of which uniquely correlates with a cell population and represents the 20	

differentiation process of the cell population (Supplementary Figure 1D). 21	

Algebraically, SC4A is defined as follows. Single cell RNA-seq data X � Rp × 22	
m is the measurement of m genes from p single cells. The j-th column xj = (x1j 23	
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x2j ... xpj)T is the expression data of the j-th gene from p single cells, where T 1	

indicates transposed vector. In SC4A, by choosing a set of k genes for 2	

explanatory variable, X’ � Rp × (m - k) will be analysed by CCA using Z � Rp × k 3	

as explanatory variables. As in the algorithm for CCA, X’ is standardised by 4	

column sums (c) and row sums (r), i.e. S = Dr
-1/2 (1/n X– rcT) Dc

-1/2, where n 5	

is the grand total of gene expression data, Dr and Dc are the diagonal 6	

matrices of r and c, respectively. Meanwhile, Z is scaled and standardised 7	

(i.e. mean = 0 and variance = 1). S is linearly regressed onto Z by the 8	

projection matrix Q = Dr
1/2 Z (ZT Dr Z)−1 ZT Dr

1/2, and the constrained space S* 9	

= Q S. Next, CCA performs singular value decomposition (SVD) of S* = U Dα 10	

VT, where UT U = VT V = I, and Dα is the diagonal matrix of singular values in 11	

descending order (α1 ≥ α2 ≥ ...). Thus, SVD analyses the constrained space 12	

and provides new axes where the dispersion of samples and that of genes are 13	

maximised in the first axes. Gene scores are defined as Dr
-1/2 U Dα or Dr

-1/2 U, 14	

and sample scores for single cells are defined by weighted average scores 15	

(WA scores) S V Dα, or S V.  16	

4. Choice of explanatory variables by SC4A 17	

SC4A aims to identify a set of genes that make the dispersion of cell 18	

populations maximum in the CCA solution. To achieve this, all the 19	

combinations of genes will be used as explanatory variables and tested for 20	

discriminating each two populations using CCA. During each combinatorial 21	

cycle, two genes are chosen from the total selected genes for all defined 22	

single-cell populations in the main dataset and tested for their correlations to 23	

one defined cell population vs all other T cells. In the analysis of Figure 8, the 24	
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following two cell populations were analysed by the combinatorial CCA: (1) 1	

Activated T cells vs Resting T cells; (2) FOXP3+ cells vs FOXP3- cells; (3) 2	

BCL6+ cells (as Tfh-like T cells) vs BCL6- cells. The most correlated gene to 3	

each population (Activated T cells, Resting T cells, FOXP3+ cells, or BCL6+ 4	

cells) was identified, and these 4 genes were used as explanatory variables in 5	

the final output of SC4A in Figure 8. 6	

 7	

Data pre-processing and other statistical methods 8	

All microarray datasets were downloaded from GEO site, and normalized, 9	

where appropriate using the Bioconductor package Affy. Data were arranged 10	

into an expression matrix where each row corresponds with gene expression 11	

for each gene and each column corresponds with cell phonotype (sample). 12	

Data were log2-transformed and values above log2(10) were used for 13	

analysis. Differentially expressed genes (DEG) the TCR KO dataset and the 14	

aTreg dataset were identified by a moderated t-statistics. DEG for activated 15	

CD44hi and resting CD44lo Treg were combined. The CRAN package vegan 16	

was used for the computation of CCA. Gene scores used the wa scores of the 17	

CCA output by vegan. The Bioconductor package limma was used to perform 18	

a moderated t-test. RNA-seq data were preprocessed, normalised, and log-19	

transformed using standard techniques (34). 20	

Heatmaps were generated the CRAN package gplots. Venn diagram was 21	

generated using the R code, overLapper.R, which was downloaded from the 22	

Girke lab at Institute for Integrative Genome Biology 23	

(http://faculty.ucr.edu/~tgirke/Documents/R_BioCond/My_R_Scripts/overLapp24	
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er.R). Gene lists were compared for enriched pathways in the REACTOME 1	

pathway database using the Bioconductor packages ReactomePA and 2	

clusterProfiler. Violin plots shows kernel density plots (outside) and the 3	

median and interquartile range (inside) of the original gene expression data, 4	

and were generated by the Bioconductor package ggplot2. The lineage curve 5	

was constructed by clustering SC4A/CCA sample scores using an 6	

expectation–maximization (EM) algorithm (39), and the nodes of these 7	

clusters were identified by constructing a minimum spanning tree using the 8	

Bioconductor package Slingshot	(40).  9	

 10	

  11	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 19, 2018. ; https://doi.org/10.1101/280818doi: bioRxiv preprint 

https://doi.org/10.1101/280818
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 16	

 1	
Results 2	

Identification of the Foxp3-independent activation signature in Treg and 3	

memory-phenotype T cells 4	

Firstly, we investigated how T cell activation-related genes are differentially 5	

regulated in resting Treg and other CD4+ T cell populations including Tmem 6	

and Teff. To address this multidimensional problem, we applied CCA to the 7	

microarray dataset of various CD4+ T cells using the explanatory variable for 8	

the T cell activation process, which was obtained from the microarray dataset 9	

that analysed resting and activated conventional T cells (“T cell subset data” 10	

and “T cell activation data” in Table 1). Thus, we aimed to visualise the cross-11	

level relationships between genes, the T cell populations, and the T cell 12	

activation process (Figure 1A). Using the single explanatory variable, the T 13	

cell activation process, the solution of CCA is one-dimensional and the cell 14	

sample scores of CCA (represented by Axis 1) provides “T cell activation 15	

score” (see Methods), indicating the level of activation in each cell population 16	

relative to the prototype signature of T cell activation, as defined by the 17	

explanatory variable Tact. All the naïve T cell populations had low Axis 1 18	

values (i.e. Foxp3- T naïve cells (Tnaive); Tnaive, and non-draining lymph 19	

node (dLN) T cells from BDC TCR transgenic (Tg) mice, which develop type I 20	

diabetes). In contrast, Foxp3+ Treg, Tmem, and tissue-infiltrating Teff in the 21	

pancreas from BDC Tg (i.e. with inflammation in the islets) had high scores 22	

(Figure 1B). These results indicate that Treg are as “activated” as Tmem and 23	

tissue-infiltrating activated Teff at the transcriptomic level by CCA. 24	
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Next, we addressed whether the highly “activated” status of Treg is dependent 1	

on Foxp3. Since Foxp3 suppresses Runx1-mediated transcriptional activities 2	

(38), we investigated the same T cell population dataset using the following 3	

three explanatory variables: T cell activation (Tact), retroviral Foxp3 4	

transduction (Foxp3) and Runx1 transduction (Runx1) (see Methods). The 5	

CCA solution was 3-dimensional, while the first two axes explained the 6	

majority of variance (98.8%, Figure 2A). As expected, Tmem, tissue-7	

infiltrating Teff and Treg had low negative values and showed high 8	

correlations to T cell activation (Tact) in Axis 1, whereas only Treg had high 9	

correlations with the Foxp3 variable in Axis 2, while Tmem and Teff were 10	

correlated with the Runx1 variable in Axis 2 (Figure 2A). By analysing the 11	

gene space of the CCA solution, genes in the lower left quadrant (i.e. negative 12	

in both Axes 1 and 2) were enriched with the genes that are involved in T cell 13	

activation, effector functions, and T follicular helper cells (Tfh), including 14	

Cxcr5, Pdcd1(PD-1) Il21, Ifng, Tbx21 (T-bet), Mki67 (Ki-67) (Figure 2B). On 15	

the other hand, genes in the upper left quadrant (i.e. negative in Axis 1 and 16	

positive in Axis 2) were enriched with Treg-associated genes including Ctla4, 17	

Il2ra (CD25), Itgae (CD103), Tnfrsf9 (4-1BB) and Tnfrsf4 (OX40) (Figure 2B). 18	

These results indicate that a set of activation genes are operating in all the 19	

three non-naïve T cell populations (i.e. Treg, Teff and Tmem), while some of 20	

them are more specific to Treg. 21	

 22	

 23	
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The Treg transcriptome is characterized by the repression of a part of the 1	

activation genes for Tmem 2	

Next, we determine the modules of genes that are differentially regulated 3	

between Treg and Tmem, in order to understand the multidimensional identity 4	

of Treg and Tmem transcriptomes (i.e. how these populations can be defined 5	

in comparison to all relevant populations). Specifically, we asked if the Axis 2 6	

captured the differential transcriptional regulations between Tmem and Treg. 7	

Importantly, Axis 2 represents Foxp3-driven and Runx1-driven transcriptional 8	

effects, which are correlated with Treg and Tmem/Teff, respectively (Figure 9	

3A). This suggests that Axis 2 provides a ‘scoring system’ for regulatory vs 10	

effector functions. Thus, the genes in Axis 1-low (precisely, genes above 25 11	

percentile for positive correlations with Tact) were identified as Tact genes. 12	

These genes were subsequently classified into Axis 2-positive (i.e. positive 13	

correlations with Foxp3 and Treg) [designated as “Tact-Foxp3 genes”; top left 14	

quadrant of CCA gene space in Figure 1D] and Axis 2-negative genes (i.e. 15	

positive correlations with Runx1 and Tmem/Teff) [designated as “Tact-Runx1 16	

genes”; bottom left quadrant of CCA gene space in Figure 1D] (Figure 3A). 17	

Tact-Runx1 genes contain genes linked to T cell activation (e.g. Mki67), 18	

effector functions (e.g. Tbx21), and Tfh (e.g. Bcl6, Pdcd1), while Tact-Foxp3 19	

genes contain “Treg markers” such as Il2ra (CD25) and Tnfrsf18 (GITR) 20	

(Figure 2B).  21	

Intriguingly, heatmap analysis showed that both Treg and Tmem expressed 22	

Tact-Foxp3 genes at high levels, compared to naïve and effector T cells 23	

(Figure 3B). On the other hand, Tact-Runx1 genes were selectively 24	
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downregulated in Treg, while their expressions were sustained in Tmem 1	

(Figure 3C). In other words, the repression of Tact-Runx1 genes was the 2	

major feature of Treg in comparison to Tmem, and Tact-Foxp3 genes are the 3	

activation genes, the expression of which is induced by T cell activation in 4	

both Treg and Tmem, and is sustained or enhanced even in the presence of 5	

Foxp3. Interestingly, comparable selective downregulation of Tact-Runx1 6	

genes was observed in Teff as well (Figure 3C). This suggests that the set of 7	

activation genes operating in Teff is different from the ones in Tmem, and that 8	

Tmem and Treg share more activation genes than Treg-Teff and Tmem-Teff 9	

(Figure 3B and 3C). These results collectively indicate that the Treg-ness is 10	

composed of the induction of the Treg-Tmem shared activation genes (i.e. 11	

Tact-Foxp3 genes) and the Foxp3-mediated repression of Tmem-specific 12	

genes (i.e. Tact-Runx1 genes), defining the multidimensional identity of Treg.  13	

While the overall activation levels of Treg and Tmem are similar to the ones of 14	

the tissue-infiltrating Teff at transcriptional level (Figure 1B), when explained 15	

by the prototype signature of activation in CD4+ T cells (i.e. the explanatory 16	

variable Tact), the compositions of the activation genes are different between 17	

Treg, Tmem and Teff (as captured by Figure 3B and 3C). Importantly, many 18	

of these activation genes are shared between Treg and Tmem, but not with 19	

Teff. The closer similarity between resting Treg and Tmem, compared to Teff, 20	

is not surprising, considering that both resting Treg and Tmem are at the 21	

resting status, while Teff are more recently activated and executing effector 22	

functions. In addition, the distinct features of Teff may also include their 23	

capacity of tissue infiltration and the effects of the microenvironment. These 24	
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features were not captured by standard t-test analysis (Supplementary Fig 1	

1).  2	

Tact-Foxp3 genes included the transcription factors Nfat5, Runx2, and Ahr, 3	

which were expressed by most of Tmem cells as well (Figure 3D). The Treg-4	

associated markers, Il2ra (CD25), Itgae (CD103), and Tnfrsf18 (GITR) were 5	

expressed not only by Treg but also by Tmem at moderate to high levels. 6	

Notably, the expression of Ctla4, Ccr4, and Lag3 was high in Treg and Tmem 7	

cells, but it was repressed in Teff (Figure 3D). This suggests that Treg and 8	

Tmem are in later stages of T cell activation, when the expression of CTLA-4 9	

is induced as a negative feedback mechanism (41), while it is not induced in 10	

tissue-infiltrating Teff, presumably because they are more recently activated 11	

and actively proliferating.  12	

Tact-Runx1 genes included many cell cycle-related genes (e.g. Ccna1, 13	

Cdca2, and Chek2), suggesting that these cells are in cell cycle and 14	

proliferating (Figure 3E). The higher expression of Mki67 and Fos suggests 15	

that these Tmem cells had been activated by TCR signals in vivo before the 16	

analysis. Tact-Runx1 genes also included the transcription factors Tbx21, 17	

Maf, Hif1a, and Bcl6, which have roles in Th1, Th2, Th17, and Tfh 18	

differentiation, respectively (42-44). In accordance with this, the Tfh markers 19	

Cxcr5 and Pdcd1 were specifically expressed by Tmem, suggesting that 20	

Tmem are heterogenous populations and composed of these Th and Tfh 21	

cells. These results are compatible with the model that Treg and Tmem 22	

constitute the self-reactive T cell population that have constitutive activation 23	

status	(7), and that the major function of Foxp3 is to modify the constitutive 24	
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activation processes by repressing a part of the activation gene modules (i.e. 1	

Tact-Runx1 genes) (Figure 4).  2	

 3	

The activated status of Treg is TCR signal dependent 4	

We next asked whether the constitutively “activated” status of Treg is 5	

dependent on TCR signals. We applied CCA to the microarray data of 6	

CD44hiCD62Llo activated Treg (CD44hi activated Treg) and CD44loCD62Lhi 7	

naïve-like Treg (CD44lo naïve Treg) from inducible Tcra KO or WT (TCR KO 8	

data, Table 1, Figure 5A) using the T cell activation variable as explanatory 9	

variable. The CCA result showed that CD44hi activated Treg from WT mice 10	

only showed high activation scores, compared with all the other groups. 11	

Interestingly, TCRa KO CD44lo naïve-like Treg showed the lowest scores, and 12	

were lower than WT CD44lo naïve-like Treg (Figure 5B). These results 13	

indicate that TCR signaling is required for the constitutive activation status of 14	

Treg, especially CD44hi activated Treg, and suggest that these activated Treg 15	

are more enriched with the cells that received TCR signals recently, 16	

compared to CD44lo naïve-like Treg.  17	

In order to further address whether the TCR signal-dependent activation 18	

signature of Treg is constitutively maintained or specifically induced by in vivo 19	

activation events (presumably as tonic TCR signals	(7)), we analysed the 20	

RNA-seq dataset of in vivo activated Treg (Ref. (16), Table 1). The dataset 21	

was generated by depleting a part of Treg by Diphtheria toxin (DT) using bone 22	

marrow chimera of Foxp3GFPCreERT2:Rosa26YFP and Foxp3GFP DTR	(16). The 23	

DT treatment depletes DT receptor (DTR)-expressing Treg from Foxp3GFP DTR, 24	
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and thus induces a transient inflammation through the reduction of Treg. 1	

Foxp3GFPCreERT2 allows to label Foxp3-expressing cells by YFP at the moment 2	

of tamoxifen administration. Van der Veeken et al thus analysed resting Treg 3	

from untreated mice (rTreg), activated Treg from mice with recent depletion 4	

(11 days before the analysis) in an inflammatory condition (aTreg), and 5	

“memory” Treg (mTreg) from mice with a distant depletion (60 days before the 6	

analysis) (Figure 5C). As expected, the CCA analysis using the T cell 7	

activation variable showed that aTreg had higher activation scores than both 8	

rTreg and mTreg (Figure 5D). This indicates that the activation mechanisms 9	

are more actively operating in activated Treg in an inflammatory environment. 10	

In order to further dissect the activation signature of Treg, we obtained the 11	

lists of differentially expressed genes (DEG) between WT Treg vs Tcra KO 12	

Treg (designated as TCR-dependent genes), and between aTreg and rTreg 13	

(designated as aTreg-specific genes, see Methods). Interestingly, 94/286 14	

genes of Tact-Runx1 genes (Tmem-specific activation genes, repressed in 15	

resting Treg) are also used during the activation of Treg (Figure 6A), while 16	

only 8/119 of Tact-Foxp3 genes (used by Tmem and resting Treg) are 17	

induced during the activation of Treg (Figure 6B). This indicates that the 18	

activation of Treg does not enhance the genes that are used in resting Treg, 19	

but induces the expression of the Tmem-specific genes that are suppressed 20	

in resting Treg. On the other hand, 51/286 of Tact-Runx1 and 19/119 of Tact-21	

Foxp3 genes are regulated by TCR signalling (Figure 6A and 6B), 22	

suggesting that the activation status of resting Treg and Tmem may be 23	

sustained by TCR signals. Pathway analysis showed that Tact-Runx1 and 24	

aTreg-specific genes were enriched for cell-cycle related pathways. In 25	
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contrast, Tact-Foxp3 genes were enriched for pathways related to signal 1	

transduction only (Figure 6C). Collectively, the results above suggest that 2	

resting Treg are maintained by TCR and cytokine signalling, and that the 3	

activation of Treg induces the transcriptional activities of Tact-Runx1 genes, 4	

which promote proliferation and cell division.  5	

 6	

FOXP3 expression more frequently occurs in activated T cells than resting 7	

cells by single cell CCA 8	

The analyses above showed that Treg are on average more activated than 9	

naïve T cells and that the activation status of Treg can be variable. However, 10	

it is still unclear whether individual Treg are activated than any naïve T cells at 11	

the single cell level. The alternative hypothesis is that Treg are enriched with 12	

the T cells that have recognised their cognate antigens and been activated. In 13	

order to determine this and thereby understand the dynamics of T cell 14	

regulation in vivo, we investigated the single cell RNA-seq data of tumour-15	

infiltrating T cells from human patients (Ref.	(35) Table 1), and further 16	

enquired how the activation mechanisms are operating in Treg at the single 17	

cell level.  18	

Firstly, we in silico-sorted FOXP3+ and FOXP3- CD4+CD3+ T cells from 19	

unannotated single cell data from tumours, which tissues were dispersed and 20	

CD45+ cells were sorted by flow cytometry without the use of any lymphocyte 21	

markers (GSE72056, Table 1). Thus, the identities of individual single cells 22	

were needed to be identified in a data-oriented manner, and Treg and non-23	

Treg cells in these tumour tissues had unknown individual activation and 24	
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differentiation statuses. Thus, we applied CCA to the in silico-sorted single 1	

cell T cell data using the explanatory variables of activated conventional CD4+ 2	

T cells (Tact) and resting T cells (Trest; GSE15390, Table 1), aiming to define 3	

individual single cells according to their level of activation by their correlations 4	

to these two variables (Figure 7A). Here we used these two variables, Tact 5	

and Trest, in order to generate a two-dimensional CCA solution, instead of a 6	

single explanatory variable that represents T cell activation by the log2 fold 7	

change in gene expression between activated and resting CD4+ T cells (c.f. 8	

Figures 1-6), which produces a one-dimensional CCA solution visualised as a 9	

single axis), because we aimed to identify any additional major differentiation 10	

process(es) in the Axis 2. The explanatory variables Tact and Trest are both 11	

captured by Axis 1 because they represent two poles of one continuum – the 12	

spectrum of activation – ranging from ‘resting’ to ‘activated’ cell state. Thus 13	

the CCA aimed to sort the single cells according to their individual levels of 14	

activation along the spectrum of activation, capturing the heterogeneity in 15	

activation levels in single cells. Remarkably, in the cell sample space of the 16	

CCA solution, the majority of FOXP3+ T cells were positively correlated with 17	

the T cell activation variable Tact (Figure 7B), and thus had negative scores 18	

in the Axis 1 (Figure 7B). Here, CCA Axis 1 ´ (-1) score is designated as the 19	

T cell activation score. Thus, using the activation score and FOXP3 20	

expression, the following four subpopulations were defined: “Activated 21	

FOXP3+”, “Resting FOXP3+”, “Activated FOXP3-”, and “Resting FOXP3-” 22	

(Figure 7B). 23	

Next, we aimed to determine whether individual activated FOXP3+ Treg are 24	

more activated than activated FOXP3- non-Treg at the single cell level 25	
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According to the T cell activation score established by the CCA solution in 1	

Figure 7B, FOXP3+ Treg had significantly higher T cell activation scores than 2	

FOXP3- non-Treg on average, as indicated by the higher median in the violin 3	

plots and greater density of samples with higher T cell activation scores 4	

(Figure 7C), confirming the results by bulk cell analysis (Figure 1). Using the 5	

CCA definition of activated and resting Treg and non-Treg established in 6	

Figure 7B, the T cell activation score neatly captured the activated status of 7	

single cells, allocating high positive and negative scores to activated and 8	

resting cells, respectively (Figure 7D). Importantly, there was no significant 9	

difference between Activated FOXP3+ and Activated FOXP3- cells and 10	

between Resting FOXP3+ and Resting FOXP3- cells (Figure 7D), indicating 11	

that in tumour microenvironment, Treg cells are as activated as non-Treg 12	

CD4+ T cells, which may be enriched with Teff. Strikingly, 32.5% of activated 13	

T cells expressed FOXP3, while only 8.2% of resting T cells expressed 14	

FOXP3 in Figure 7B. In other words, FOXP3 expression occurred more 15	

frequently in activated T cells. Given that the activation signature of Treg is 16	

dependent on TCR signals (Figure 5), these results suggest that FOXP3 17	

expression occurs predominantly in the activated T cells that have recognised 18	

the tumour antigens and received TCR signals, as a negative feedback 19	

mechanism to suppress the effector response against tumour antigen	(7). 20	

Alternatively, but not exclusively, FOXP3+ T cells may have high-affinity TCRs 21	

to self-MHC and/or tumour antigens and be more prone to activation	(10).  22	

In the gene space of the CCA solution, genes with strong correlations to 23	

activated FOXP3+ T cells included FOXP3 itself and common Treg markers 24	

such as CTLA4 and IL2RA (CD25), which were found in the upper left 25	
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quadrant (Axis 1-negative Axis 2-positive). Interestingly, the lower left 1	

quadrant (Axis 1-negative Axis 2-negative) contained more Tfh-like or 2	

effector-like molecules PDCD1 (PD-1), BCL6, IL21, and IFNG. The 3	

chemokine receptors CCR5 and CCR2 had negative scores in Axis 1 (i.e. 4	

correlated with Tact), while CCR7 had a high positive score in Axis 1 (i.e. 5	

correlated with Trest) (Figure 7E).  6	

 7	

Identification of Tfh-like differentiation and Foxp3-driven processes and the 8	

common activation process in tumour-infiltrating T cells 9	

Next, we aimed to identify major differentiation and activation processes in the 10	

single cell transcriptomes above. To this end, we have developed a new CCA 11	

approach for single cell analysis (Single Cell Combinatorial CCA, SC4A), 12	

which aims to visualise major differentiation/activation processes and the 13	

underlying gene regulations (Figure 8A, see Materials and Methods). Firstly, 14	

we classified single cells into the four populations (Activated and Resting 15	

cells, and FOXP3+ Treg and FOXP3- non-Treg; Figure 7B), and thereby 16	

identified the following four processes as putative differentiation and activation 17	

processes in the dataset: T cell activation (Activated cells), and naïve-ness 18	

(Resting cells), FOXP3-driven process (Activated FOXP3+), and Tfh-like 19	

process (Activated FOXP3-) (Figure 7). Secondly, based on their high scores 20	

in the CCA solution (i.e. either high positive or high negative scores in either 21	

Axis 1 or 2 in Figure 7E) and abundant expressions in FOXP3+ and FOXP3- 22	

cells (data not shown), we selected 12 candidate genes (CCR7, CCR5, 23	

CCR4, IL2RA, IL2RB, CTLA4, ICOS, TNFRSF4, TNFRSF9, FOXP3, BCL6, 24	
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PDCD1) as the candidate genes for the four processes. From these genes, 1	

we identified the most positively correlated gene to each of the four processes 2	

using the combinatorial CCA, which tests all the combinations of variables by 3	

CCA and obtains the most correlated gene for each population; see Materials 4	

and Methods). Thus, PDCD1, FOXP3, CTLA4, and CCR7 were identified as 5	

the most correlated genes for Activated FOXP3-, Activated FOXP3+, 6	

Activated T cells, and Resting T cells, respectively (Supplementary Figure 7	

3), which represent the four immunological processes (see above). Finally, 8	

using these four genes as explanatory variables, we applied CCA to the single 9	

cell transcriptomes, obtaining the solution of the SC4A approach. 10	

The single cell space of the SC4A solution showed that Activated and Resting 11	

T cells had negative and positive scores, respectively (Figure 8B). This 12	

indicates that Axis 1 represents T cell activation vs naïve-ness. Single cells 13	

were successfully clustered into Activated FOXP3+ Treg, Activated FOXP3- 14	

non-Treg, and Resting T cells. Resting FOXP3+ Treg and Resting FOXP3- T 15	

cells were mostly overlapped (Figure 8C), indicating that the major features in 16	

the dataset dominated the difference between these two resting T cell groups. 17	

Importantly, the explanatory variable CTLA4, which represents the T cell 18	

activation process, was highly correlated with both Activated FOXP3+ Treg 19	

and Activated FOXP3- non-Treg at the middle, indicating its neutral position in 20	

terms of Tfh and Treg activation processes. As expected, the variable CCR7, 21	

which represents naïve-ness, was correlated with both Resting FOXP3+ Treg 22	

and Resting FOXP3- T cells. The explanatory variable PDCD1, which 23	

represents the Tfh-like process, was highly correlated with Activated FOXP3- 24	

non-Treg cells, while the variable FOXP3 was correlated with Activated 25	
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FOXP3+ Treg. Thus, the single cell transcriptomes were modelled by the 1	

correlations between gene expression, single cells, and the expression of the 2	

four key genes, which represent the four immunological processes (Figure 8B 3	

and 8C). PCA and t-distributed stochastic neighbor embedding (t-SNE) did 4	

not provide insights into such cross-level relationships or clear separations of 5	

the populations (Supplementary Figure 4).  6	

Next, in order to understand the relationship between the T cell activation 7	

signature and FOXP3-driven and Tfh-like processes (Figure 8B and 8C), we 8	

aimed to identify and characterise genes with high correlations to these 9	

processes, which were represented by CTLA4, FOXP3, and PDCD1 10	

explanatory variables, by analysing the gene space of the final output of 11	

SC4A (Figure 8C; see Methods). As expected, the Tfh genes, IL21 and BCL6 12	

(45), were highly correlated with PDCD1 explanatory variable. IL2RA (CD25) 13	

is a Treg marker (46) and was highly correlated with FOXP3 explanatory 14	

variable. IL7R and BACH2 are known to be associated with naïve T cells	(47, 15	

48), and were positively correlated with CCR7 explanatory variable, which 16	

represents the naïve-ness (Figure 8C). Thus we defined FOXP3-driven Treg 17	

genes (magenta circles) and Tfh-like genes (blue circles) according to their 18	

high correlation to the FOXP3 and the PDCD1 explanatory variables, 19	

respectively, while we designated as Activation genes (red circles) the genes 20	

that have high correlations with the CTLA4 variable, including LAG3 and 21	

CCR5, which were positioned around 0 in Axis 2 (Figure 8C).   22	

 23	
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Identification of the bifurcation point of activated T cells that leads to Tfh-like 1	

and Treg differentiation in tumour-infiltrating T cells 2	

The analyses above strongly suggested that there are two major 3	

differentiation pathways for those tumour-infiltrating T cells, which are 4	

regulated by FOXP3-driven and Tfh-like processes. In order to identify these 5	

lineages, we applied an unsupervised clustering algorithm to the sample 6	

space of the SC4A/CCA result (Figure 8B), and identified 6 clusters, to which 7	

a pseudotime method (49) was applied, constructing “lineage curves” (Figure 8	

8D; see Methods). Importantly, the lineage curves had a bifurcation point at 9	

Cluster II, which leads to the two distinct differentiation pathways, Tfh-like and 10	

FOXP3-driven differentiation. Since cells may change and mature their 11	

phenotypes in different dynamics between these two lineages, we designated 12	

Tfh-like-associated and FOXP3-associated pseudotime as Tfh-pseudotime 13	

and FOXP3-pseudotime (Figure 8D).  14	

In fact, the expression of Activation genes was progressively increased in the 15	

shared clusters (i.e. Cluster I and II) for the two pseudotimes, and throughout 16	

the rest of the FOXP3-pseudotime and the early phase of Tfh-like 17	

differentiation (i.e. Cluster III) in Tfh-pseudotime, while it was suppressed 18	

towards the end of Tfh-like differentiation (Cluster IV; Figure 8E) in Tfh-19	

pseudotime. Given that Tfh-pseudotime is correlated with PDCD1 expression 20	

(Figure 8C), this suggests that PDCD1 expression and the Tfh-effector 21	

process are induced during the earlier phases of effector T cell activity, and 22	

that the activation processes in PDCD1high T cells are suppressed, 23	

presumably through PD1-PDL1 interactions in the tumour environment (50). 24	
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Interestingly, FOXP3-driven genes had similar dynamics to Activation genes 1	

in both FOXP3-pseudotime and Tfh-pseudotime (Figure 8F). In contrast, Tfh-2	

like genes were mostly suppressed throughout FOXP3-pseudotime, while 3	

they were progressively induced throughout Tfh-pseudotime (Figure 8G). 4	

These differential regulations of two gene modules resonate with those of 5	

Tact-Foxp3 genes (which are expressed by both Treg and Tmem) and Tact-6	

Runx1 genes (which are expressed specifically in Tmem, and repressed in 7	

Treg) (Figure 3). In fact, FOXP3 expression is weakly induced in some cells in 8	

the bifurcating Cluster II and the early phase of Tfh-like differentiation (Cluster 9	

III) in Tfh-pseudotime, and is progressively increased at and beyond Cluster V 10	

in FOXP3-pseudotime (Figure 8H).  11	

RUNX1 is highly expressed in the common Clusters I and II, and is 12	

downregulated in the transition from Cluster II to Cluster III in Tfh-pseudotime, 13	

and from Cluster II to Cluster V in FOXP3-pseudotime (Figure 8I), which is 14	

compatible with the known dynamics of RUNX1 expression: Runx1 is 15	

downregulated when naïve CD4+ T cells differentiate into activated/effector 16	

cells following TCR signaling (51). By analysing other key genes used as CCA 17	

explanatory variables, CTLA4 was induced at the bifurcating point, Cluster II, 18	

and onwards in both of the lineages at equivalent expression levels (Figure 19	

8J), reflecting the activated status of both effector Tfh-type cells and Treg. 20	

Importantly, CTLA4 is a marker of Treg as well as activated effector T cells, 21	

where it acts as a negative regulator of T cell proliferation (52).  22	

PDCD1 expression was also induced at the bifurcating point, and throughout 23	

Tfh-pseudotime, but specifically suppressed in the early phase of FOXP3-24	
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pseudotime (Figure 8K), which is compatible with the known dynamics that 1	

PDCD1 is transiently upregulated in activated CD4+ T cells as a negative 2	

regulatory mechanism to restrain proinflammatory immune responses and 3	

maintain peripheral tolerance	(53). Further supporting this dynamic 4	

perspective, IL2 expression occurs mainly in Cluster II, indicating that these 5	

cells are enriched with the T cells that recently recognised antigens	(54) 6	

(Figure 8L). Consistently, the expression of the naïve T cell marker CCR7 7	

was the highest in the cells with a relatively naïve phenotype in shared Cluster 8	

I, and was moderately downregulated in the early and late phase of Tfh-9	

pseudotime, and suppressed in most Treg in FOXP3-pseudotime (Figure 10	

8M).  11	

These results collectively support the model that constant activation 12	

processes in the tumour microenvironment promote terminal differentiation of 13	

the Treg- and Tfh-like lineages in both previously committed and non-14	

committed lineages of T cells. Interestingly, Cluster II is the bifurcation point, 15	

in which T cells show moderate activation and together with simultaneous 16	

expression of FOXP3 and Tfh-like genes, as well as RUNX1 and PDCD1 17	

expression. These cells are most probably engaged in decision-making about 18	

their cell fate and the cell type-specific usage of these genes – whether their 19	

transcriptional mechanisms would be used to generate a proinflamamtory or 20	

regulatory response. This understanding was possible because SC4A 21	

effectively annotated genes and cells and thereby allowed to identify new cell 22	

populations.  23	

 24	
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Identification of markers for the differential regulation of Tfh-like and Treg 1	

differentiation in activated T cells 2	

Lastly, we aimed to demonstrate the utility of the current approach by 3	

discovering exemplary marker genes that distinguish cells in FOXP3- and Tfh-4	

pseudotime (i.e. the FOXP3-driven pathway I-II-V-VI, and the Tfh-like pathway 5	

I-II-III-IV) (Figure 9A), and identifying the T cell subpopulations by a flow 6	

cytometric visualisation of single cell data. Since Activation genes (Figure 8C) 7	

are shared by early phases of Tfh-like and FOXP3-driven differentiation 8	

(Figure 8E), we took the intersect of these genes and the Tact-Foxp3 genes, 9	

which were expressed by both resting Tmem and resting Treg in mice (Figure 10	

3). DUSP4 and NFAT5 were such genes and in fact induced in cells at the 11	

activated bifurcating Cluster II and onwards in both lineages (Figure 9B). 12	

Similarly, in order to identify a marker to distinguish Treg and Tfh-like cells, 13	

firstly, we identified CCR8 and IL2RA in the intersect of FOXP3-driven genes 14	

(Figure 8C) and the Tact-Foxp3 genes, which were induced highly and 15	

progressively in Treg-lineage cells throughout FOXP3-pseudotime, while 16	

mostly suppressed across Tfh-pseudotime (Figure 9C). In contrast, BCL6 and 17	

KCNK5 (found in the intersect of Tfh-like genes (Figure 8C) and the Tact-18	

Runx1 genes, which are expressed in resting Tmem but suppressed in resting 19	

Treg (Figure 3)) were progressively induced across Tfh-pseudotime, while 20	

suppressed in FOXP3-pseudotime (Figure 9D). 21	

Lastly, in order to make the newly obtained knowledge easily accessible to 22	

experimental immunologists, we showed the expression of NFAT5, IL2RA, 23	

CCR8, BCL6, and KCNK5 in the tumour-infiltrating T cells in a flow cytometric 24	
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format (Figure 9E). The common activation gene NFAT5 in fact captured the 1	

majority of Treg-lineage cells (i.e. cells in the Clusters V and VI) and Tfh-like-2	

lineage cells (i.e. cells in the Clusters III and IV). The Treg-specific genes the 3	

expression of IL2RA and CCR8 occurred in the majority of FOXP3+ Treg-4	

lineage cells, whether NFAT-positive or negative, but not in most of Tfh-like-5	

lineage cells. In contrast, the Tfh-like-specific genes BCL6 and KCNK5 were 6	

expressed by a majority of Tfh-like-lineage cells and were not expressed in 7	

Treg-lineage cells (Figure 9E). 8	

Collectively, these results indicate that the SC4A analysis successfully 9	

decomposed the gene regulations for T cell activation and Treg and effector T 10	

cell differentiation, identifying new cell populations, which include activated 11	

cells at the bifurcation point, early and late phases of Treg and Tfh-like 12	

differentiation, and their feature genes. In addition, although there must be 13	

considerable differences between resting T cells in the secondary lymphoid 14	

organs and between humans and mice, our study successfully identified the 15	

shared activation processes and the conserved genes that are differentially 16	

used between the Treg- and the Teff-lineage cells, identifying a shared 17	

systems-level mechanism for the differentiation regulation of activation and 18	

differentiation processes in CD4+ T cell populations. 19	

20	
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Discussion 1	
 2	

Resting Treg showed an activated status, comparable to that of Teff and 3	

Tmem at the population level. In addition, the activation signature of Treg was 4	

more remarkable in CD44hiCD62Llo activated Treg than CD44loCD62Lhi naïve-5	

like Treg. CD44hiCD62Llo Treg are also identified as eTreg, which may have 6	

enhanced immunosuppressive activities (55). The eTreg fraction includes the 7	

GITRhiPD-1hiCD25hi “Triple-high” eTreg that have high CD5 and Nur77 8	

expressions, which indicates that they have received strong TCR signals (17). 9	

In humans, CD25hiCD45RA-FOXP3hi eTreg highly express Ki67	(56), 10	

indicating that these cells were recently activated. Given that TCRs of Treg 11	

have higher affinities to self-antigens (57), these eTreg may have the most 12	

self-reactive TCRs during homeostasis. Alternatively, the eTreg subset may 13	

have recently received strong TCR signals and upregulated activation 14	

markers, and such cells may acquire a resting status at later time points. 15	

Future investigations by TCR repertoire analysis will answer this question. 16	

Our study revealed the heterogeneity of FOXP3+ Treg at the single cell level, 17	

and showed that tumour-infiltrating Treg include FOXP3+ T cells with various 18	

levels of activation (Figure 7B and Figure 8C).  It is plausible that, in the 19	

physiological polyclonal settings, the variations in the activated status of 20	

individual Treg may be due to the TCR affinity to its cognate antigen, the 21	

availability of cognate antigen, and the strength and duration of TCR signals. 22	

Our SC4A analysis identified the FOXP3-driven genes, which are specific to 23	

activated FOXP3+ cells and include IL-2 and common gamma chain cytokine 24	

receptors (i.e. IL2RA, IL2RB, IL15RA, IL4R, and IL2RG), DNA replication 25	
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licensing factors (e.g. MCM2), and transcription factors such as PRDM1 1	

(BLIMP1) and IRF4 (which control the differentiation and function of eTreg 2	

(19)). These gene modules are distinct from the Tfh-like genes and the 3	

activation genes (Figure 8), and may be controlled specifically by FOXP3 4	

under strong TCR signals. The expression of these genes is variable within 5	

the FOXP3+ T cells, suggesting that the transcriptional activities of these 6	

genes are dynamically regulated over time in tumour-infiltrating Treg. Thus, 7	

single cell-level analysis is becoming a key technology to address the 8	

heterogeneity of Treg. To our knowledge, this study is one of the first single 9	

cell analyses of Treg transcriptomes, while we find that, during the review 10	

process of this manuscript, another study addressing Treg heterogeneity by 11	

single cell RNA-seq was deposited at a preprint server	(58)). 12	

The shared activation genes between activated FOXP3+ Treg and FOXP3- 13	

non-Treg contain apoptosis-related genes (e.g. CASP3, BAD), which may be 14	

differentially controlled between Treg and non-Treg at the protein level. For 15	

example, activated FOXP3- non-Treg express DUSP6 (Figure 9B), which is a 16	

negative regulator of JNK-induced apoptosis through BIM activation, while 17	

FOXP3 suppresses DUSP6 expression and promotes the apoptosis 18	

mechanism	(59). In addition, the activation genes include transcription factors 19	

such as TBX21 (T-bet) and BATF. Although TBX21 is sometimes thought to 20	

be a Th1-specific gene, it is upregulated immediately after T cell activation 21	

(60). BATF was identified as a critical factor for the differentiation and 22	

accumulation of tissue-infiltrating Treg (61). These activation genes may be 23	

required when T cells are activated and differentiate into either Treg or Teff. 24	
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Further studies are required to investigate the temporal sequences of these 1	

differentiation events in vivo. 2	

Although the effects of TCR signals on Tmem were not directly examined, 3	

considering that Tmem are self-reactive and their differentiation is dependent 4	

on the recognition of cognate antigens in the thymus (7), these results 5	

collectively suggest that the activation signature of Tmem is also dependent 6	

on TCR signals, as is the activation signature in Treg (Figure 5B). Intriguingly, 7	

some Treg may lose their Foxp3 expression and become ex-Treg, which are 8	

enriched in CD44hi effector T cells or Tmem	(30). In contrast, a Tmem 9	

population (precisely, Foxp3−CD44hiCD73hiFR4hi T cells) efficiently express 10	

Foxp3 during lymphopenia	(62). These findings support the feedback control 11	

model that Foxp3 expression can be induced in Tmem and sustained in Treg 12	

as a regulatory feedback mechanism for TCR signals (7). Given the variations 13	

in the activated status in individual Treg and Tmem, single cell analysis will be 14	

required to address this problem. For example, although Samstein et al. 15	

showed that DNA hypersensitivity sites in Treg are similar to those in 16	

activated T cells	(9), it is possible that DNA hypersensitivity sites are variable 17	

between individual Treg, and that Tmem may have a similar chromatin 18	

structure to Treg. 	19	

Importantly, our analysis showed that Tmem-specific activation-induced 20	

genes (i.e. Tact-Runx1 genes) are uniquely repressed in Treg. The repression 21	

is likely to be mediated by the interaction between Foxp3 and other 22	

transcription factors that regulate the expression of the Tmem-specific 23	

activation genes (Figure 3C). Interestingly, Runx1 was associated with these 24	
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Tmem-specific genes. In fact, Foxp3 interacts with Runx1 and thereby 1	

represses IL-2 transcription and controls the regulatory function of Treg (38), 2	

and a significant part of the Foxp3-binding to active enhancers occurs through 3	

the Foxp3-Runx1 interaction (9). These suggest that Runx1 may have a 4	

unique role in the differentiation and maintenance of Tmem.  5	

While CTLA-4 is commonly recognised as a Treg marker, it is upregulated in 6	

all activated T cells, thus CTLA-4 is also a marker of activated T cells (41). 7	

CTLA-4 is in fact expressed by only a subset of resting Treg	(63), which may 8	

be more activated and proliferating in vivo	(64). In fact, our study shows that 9	

CTLA-4 is expressed by non-Treg activated T cells including resting Tmem 10	

(Figure 3D) and FOXP3- Tfh-like effector T cells in the tumour 11	

microenvironment (Figure 7E and 8C). These findings support that CTLA-4 is 12	

primarily a marker for general T cell activation, rather than Treg-specific 13	

marker, and that Treg are highly activated T cells with FOXP3 and CTLA-4 14	

expression. Importantly, although both FOXP3+ and FOXP3- cells had the 15	

same relative level of activation (Figure 7D), the absolute number of FOXP3+ 16	

cells expressing CTLA4 was lower than that of Tfh-type cells (Figure 8J), 17	

which suggests that therapeutic anti-CTLA4 antibodies (i.e. Ipilimumab) 18	

primarily target activated Tfh-like effector cells and thereby directly enhance 19	

their activities in tumour microenvironments. Future studies are required to 20	

experimentally investigate the in vivo dynamics of CTLA-4 expression in mice 21	

and humans.  22	

In contrast, the expression of PDCD1 was consistently high in all Tfh-like 23	

cells, while it was sparse among FOXP3+ cells (Figure 8K). The co-24	
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expression of BCL6 and IL21 in some of these PD-1+ cells indicates that Tfh 1	

differentiation occurs in the tumour microenvironment, presumably through 2	

the repeated and chronic exposure to quasi-self antigens (i.e. tumour 3	

antigens). Interestingly, the Tfh signature has been identified in type-I 4	

diabetes in both mice and humans	(65). Intriguingly, the Tfh-like genes include 5	

cell-cycle related genes (e.g. CDK6), immediate early transcription factors 6	

(NFATC1, EGR2/3), and RNA-processing genes (e.g. DICER1). The 7	

significance of these gene modules should be addressed in future studies. 8	

However, the high PDCD1 expression in Tfh-like cells may make them 9	

vulnerable to the negative immunoregulatory effect of PD-1 in tumour 10	

microenvironments (50). In fact, the most mature PDCD1high Tfh-like cells 11	

(cluster VI, Figure 8K) moderately decrease the expression levels of activation 12	

genes (Figure 8E), suggesting that these cells may have started to be 13	

regulated by PD1 ligands. Further experimental investigations are required to 14	

reveal how dynamically PD1 regulates T cells during immune response. 15	

Interestingly, RUNX1 is completely repressed in the early phase of FOXP3-16	

pseudotime (Cluster V) but re-expressed in the late phase of FOXP3-17	

pseudotime the expression of RUNX1 is significantly elevated (Cluster VI) 18	

(Figure 8I). Similar to RUNX1, some cells appear to be expressing PDCD1 in 19	

the later phase of FOXP3-pseudotime in Treg-lineage cells. The 20	

reappearance of effector phenotype genes RUNX1 and PDCD1 in FOXP3high 21	

cells may indicate that these Treg are highly activated effector Treg, which 22	

may be actively participating in neutralizing the activities of effector T cells 23	

and Tfh. Alternatively, these FOXP3high cells may include ambivalent cells with 24	

the characters of both regulatory and effector, or alternatively, be at the point 25	
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of conversion to Tmem (Figure 8K). In bulk resting Treg, Pdcd1 was 1	

expressed at low levels in some Treg (Figure 3E) as well as PD-L2-encoding 2	

gene Pdcd1lg2 (Figure 3D). Future studies are required to reveal the role of 3	

these cells. 4	

SC4A is a useful method to identify distinct clusters of T cells and the 5	

correlated genes to each cluster, and thereby to reveal characteristic cell 6	

groups and their active gene modules, while retaining the single-cell level 7	

variations. We also showed that SC4A and CCA results can be further 8	

analysed by the pseudotime approach (CCA-pseudotime). Since SC4A/CCA 9	

provides functional annotations to cell groups and gene clusters, the 10	

understanding of the pseudotime axis is effective, as shown in the current 11	

study. However, given that pseudotime is not a direct measurement of the 12	

time-dependent events, but rather is that of similarities between samples	(66), 13	

future studies are required to analyse time-dependent events in vivo, ideally 14	

with a new experimental system to directly address the temporal dynamics. In 15	

order to make the current SC4A/CCA approach accessible to experimental 16	

immunologists, we visualised our single cell data findings using a flow-17	

cytometry style (Figure 9). Although reliable antibodies are currently not 18	

available for those intracellular candidate genes, and the expression of protein 19	

and transcripts may not be synchronized, the present study demonstrated the 20	

power of the SC4A/CCA approach to extract biological meaning from 21	

unannotated single cell RNA-seq data. The current limitation of SC4A is that it 22	

is computationally expensive (i.e. requires several hours for each analysis 23	

using a standard desktop), and the improvement of the computational 24	

algorithm using a low-level language will be beneficial. Importantly, SC4A is 25	
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most effective when used together with in-depth knowledge of immunology 1	

and gene regulation, facilitates the interpretation of CCA results and 2	

explanatory variable selection. Thus, it is hoped that these tools will be widely 3	

used by experimental immunologists with a sound understanding of the 4	

biological significance of results, as well as adequate competence in 5	

computational analysis, which will enable to ask questions involving 6	

multidimensional problems such as multiple T cell subsets. 7	

 8	

Data and code availability 9	

All R codes are available upon request. Processed data will be provided upon 10	

reasonable requests to the corresponding author. 11	
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Table 1. Datasets used in this study  
Accession	
number	

Short	
description	

Reference	 Description	of	animal	models	
	

Timing	of	
cell	harvest	
	

Cell	purification	strategy	and	sorting	
markers	
	

Tissue	origin	
	

Link	to	
Figures	
	

Link	to	
materials	
and	
methods	
	

GSE15907	 T	cell	
subsets	

Immunolo
gical	
Genome	
Project;	
Painter	et	
al.,	2011		

Primary	cells	from	multiple	
immune	lineages	are	isolated	
ex-vivo,	primarily	from	young	
adult	B6	male	mice	(WT,	
Foxp3GFP	or	BDC	Tg	mice),	and	
double-sorted	to	>99%	purity.	
	

6	weeks		 Flow	cytometric	sorting;	
Treg	(spleen):	Foxp3GFP+	CD25+	
CD4+	
Tmem	(subcutaneous	(sc)LN,	
spleen):	TCRb+CD44high	CD122lo	
CD25-	CD4+	
CD44hiCD62Llo	Tmem	(scLN,	spleen):	
Foxp3GFP-TCRb+	CD44hi	CD62Llo	
CD4+	
Naïve	CD4	(scLN):	CD25-	62Lhi	44lo	
CD4+	
Naïve	CD4	(mesenteric	(m)	LN):	
CD25-	CD62Lhi	CD44lo	CD4+			
Naïve	CD4	(Peyer’s	patches):	TCRb+	
CD44lo	CD62Lhi	CD4+	
Naïve	CD4	(spleen):	CD25-	CD62Lhi	
CD44lo	CD4+	
Foxp3-	Tnaive	(spleen):			Foxp3GFP-	
CD44lo	CD4+		
Non-dLN,	BDC	(scLN):	BDC+	CD4+	
dLN	BDC	(pancreatic	LN):	CD4+	
BDC+	
Tissue-Teff,	BDC	(pancreas):		BDC+	
CD4+	

Spleen,	
subcutaneous	
LNs,	mesenteric	
LN,	Peyer’s	
patches,	
pancreatic	LN,	
pancreas	
	
	

Figure	1	
Figure	2	
Figure	3	

NCBI	GEO	
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*Exclusion	markers	include	PI,	CD8,	
CD11b,	CD11c,	CD19,	CD49b,	Gr-1,	
Ter119	
	

GSE83315	 aTreg	data	 Van	der	
Veeken	et	
al.,	2016	

Mixed	bone	marrow	chimeras	
were	generated	with	90%	
Foxp3GFP-DTR	/10%	Foxp3-GFP-CRE-
ERT2	Rosa26YFP	bone	marrow.	
Diphtheria	toxin	(DT)	was	
administered	at	day	0	to	these	
chimeric	mice	in	order	to	
deplete	Foxp3GFP-DTR	Treg	cells	
and	induce	expansion/	
activation	of	effector	CD4+	T	
cells	and	Treg,	thereby	inducing	
inflammation.	Subsequently,	
tamoxifen	was	administered	at	
days	3	and	4	to	irreversibly	
label	Foxp3-expressing	Foxp3-
GFP-CRE-ERT2	Rosa26YFP	T	cells	
with	YFP.		Resting	Treg	(rTr),	
activated	Treg	(aTr),	and	
‘memory’	Treg	(mTr)	were	
isolated	at	day	0,	11,	and	60,	
respectively,	based	on	the	
dynamics	of	inflammation	
(CD4+	T	cell	number	is	
normalised	by	day	60).	
	
	

Day	0	
(resting	
Treg),	day	
11	
(activated	
Treg),	day	
60	(memory	
Treg)	after	
DT	
treatment	

Flow	cytometric	sorting;	
rTr:	CD4,	Foxp3-GFP	
aTr	and	mTr:	CD4,	Foxp3-GFP,	YFP	
	

Spleen	and	
peripheral	LN	

Figure	
5C	and	
5D	

PMC	
NCBI	GEO	
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GSE61077	 TCR	KO	
data	

Levine	et	
al.,	2014		

8-10	week	mice	from	Tracflox/WT	
x	Foxp3ERT2-Cre		
(tamoxifen-inducible	deletion	of	
TCRa	in	Treg.	Tamoxifen	was	
administered	on	days	0,	1	and	3.		

Day	14	after	
the	first	
tamoxifen	
administrati
on	

Flow	cytometric	sorting;	
TCRβ+	CD4+	Foxp3+	CD44high/low	
CD62Llow/high	

LN	 	 NCBI	GEO	

GSE42276	 T	cell	
activation		

Wakamats
u	et	al.,	
2013	

Conventional	CD4+	T	cells	from	
C57BL/6J	male	mice	were	
stimulated	by	anti-CD3	and	
anti-CD28	for	20	h	and	48	h	and	
data	were	pooled.	
0h	unstimulated	samples	were	
used	as	control.		

8	weeks	 Flow	cytometric	sorting;	
DAPI−CD45R−CD8a−CD11b/c−CD4+
GFP+	
	

Spleen,	LN	
	

Figure	1	
Figure	2	
Figure	3	
Figure	5	

NCBI	GEO	

GSE6939	 RV-
transduced	
T	cells	

Ono	et	al.,	
2007	

Cells:	T	cells	from	LN	and	spleen	
of	8	week-old	BALB/c	mice	and	
purified	into	CD4+	naive	T	cells	
(GITRlowCD25-CD4+),		
which	were	subsequently	
activated	by	anti-CD3	and	
antigen-presenting	cells	
(mitomycin-treated	Thy1(-)	
splenocytes)	in	the	presence	of	
IL-2.	On	the	following	day,	T	
cells	were	retrovirally	gene	
transduced	with	Runx1	(AML1),	
wild	type	Foxp3,	and	empty	
vector	as	control.		

60	hours	
after	
transfection	
	

Flow	cytometric	sorting;	
CD4,	GFP	
Exclusion	marker:	PI	

Spleen,	LN	 Figure	2	
Figure	3	

NCBI	GEO	
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GSE72056	
	
	
	
	
	
	
	
	

Single	cell	
analysis	of	
tumour-
infiltrating	
T	cells	

Tirosh	et	
al.,	2016	

Single	cell	RNA-seq	analysis	of	
human	melanoma	tumour	
samples.	
Freshly	resected	samples	
were	disaggregated	to	generate	
single	cell	suspensions	of	mixed	
cells	of	unknown	identities.		
Individual	viable	immune	
(CD45+)	and	nonimmune	
(CD45–)	cells	(including	
malignant	and	stromal	cells)	
were	recovered	from	the	single	
cell	suspension	by	flow	
cytometry.			
Single	cells	were	profiled	by	
single-cell	RNA-seq.		

Single	cells	
were	
obtained	
within	45	
min	of	
tumour	
resection		
	
	
	

Flow	cytometric	sorting;	
CD45	
	
	

Human	
melanoma	
tissues	

Figure	7	
Figure	8	
Figure	9	
	

NCBI	GEO	

GSE15390	 Human	
activated	T	
cells	and	
Treg	

Beyer	et	
al.,	2011		

Resting	T	cells	(CD25-CD4+	T	
cells;	GSM386262,	GSM386264,	
and	GSM386266)	were	obtained	
from	whole	blood	of	healthy	
human	donors.	
Activated	T	cells	(GSM777695)	
were	prepared	by	stimulating	
CD25-CD4+	T	cells	for	24	hours	
with	CD3	and	IL-2.	

Freshly	
sorted	from	
buffy	coat;	
or	cultured	
for	24	hours	

Magnetic	and	flow	cytometric	
sorting;	
CD4,	CD25,	CD127	
	
	

Human	PBMC	 Figure	7	 PMC	
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Figure Legends 1	

 2	

Figure 1. Identification of the activation signature in Treg and Tmem by 3	

CCA of T cell populations 4	

The microarray dataset of peripheral CD4+ T cells, including naïve, effector 5	

and memory phenotype from various sites (GSE15907), was analysed using 6	

the T cell activation variable, which was obtained by the microarray dataset of 7	

conventional activated CD4+ T cells (GSE42276). (A) Schematic 8	

representation of CCA for the cross-level analysis of T cell populations (cells), 9	

immunological processes, and genes. (B) CCA was applied to the T cell 10	

population data using an explanatory variable for T cell activation, which was 11	

obtained as fold change between activated and resting conventional CD4+ T 12	

cells.  The CCA solution is thus one-dimensional, and is used as “T cell 13	

activation score” (see Methods).  14	

 15	

Figure 2. Identification of the Foxp3-independent activation signature in 16	

Treg by CCA of T cell populations 17	

The microarray dataset of peripheral CD4+ T cells (GSE15907) was analysed 18	

using the T cell activation variable and the variables for retroviral Foxp3 19	

transduction and Runx1 transduction as explanatory variables. (A) The CCA 20	

solution was visualised by a biplot where CD4+ T cell samples are shown by 21	

closed circles (see legend) and the explanatory variables are shown by blue 22	

arrows. Percentage indicates that of the variance accounted for by the inertia 23	

of the axes (i.e. the amount of information (eigenvalue) retained in each axis). 24	
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(B) Gene biplot of the 2D CCA solution in (C) showing the relationships 1	

between genes (grey circles) and the explanatory variables (blue arrows). 2	

Selected key genes are annotated.  3	

 4	

Figure 3. Differential regulations of transcriptional modules for 5	

activation in Treg and Tmem by Foxp3 and Runx1 6	

(A) Definition of Tact-Foxp3 genes and Tact-Runx1 genes. In the gene plot of 7	

the CCA solution in Figure 2B, Axis 1-low genes (25 percentile low) were 8	

designated as activation genes, which were further classified into Tact-Foxp3 9	

genes and Tact-Runx1 genes by Axis 2, which have high correlations to Treg 10	

and Tmem samples, respectively, in the CCA cell space (Figure 2A). (B) 11	

Heatmap analysis of all the Tact-Foxp3 genes. (C) Heatmap analysis of all the 12	

Tact-Runx1 genes. (D) Heatmap analysis of selected Tact-Foxp3 genes. (E) 13	

Heatmap analysis of selected Tact-Runx1 genes.  14	

 15	

Figure 4. A model for the differential regulation of activation genes in 16	

Treg and Tmem 17	

The proposed differential regulations of TCR signal downstream genes in 18	

Treg and Tmem. Since both naturally-arising Treg and Tmem are self-reactive 19	

T cells, they may frequently receive tonic TCR signals by recognising their 20	

cognate antigens in the periphery. This results in the full activation of both the 21	

Tact-Foxp3 and Tact-Runx1 gene modules in Tmem. However, in Treg, 22	

Foxp3 represses Tact-Runx1 genes and sustains the expression of Tact-23	

Foxp3 genes, producing the characteristic Treg transcriptome.  24	

 25	
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Figure 5. The activation signature of Treg is dependent on TCR 1	

signalling 2	

(A) The experimental design for the TCR dataset. CD44hi activated Treg and 3	

CD44lo naïve-like Treg were obtained from TCRa KO or WT mice and 4	

analysed by transcriptome analysis. (B) CCA was applied to the transcriptome 5	

data of CD44loCD62hi naïve-like and CD44hiCD62lo activated Treg cell 6	

populations from inducible TCRa KO or WT (from the TCR KO data, 7	

GSE61077), using the T cell activation variable as the explanatory variable. 8	

This produces a 1D CCA solution, and the sample score was plotted 9	

(representing “T cell activation score”). (C) The experimental design for the 10	

activated Treg dataset. Bone marrow (BM) cells were obtained from 11	

Foxp3GFPCreERT2:Rosa26YFP mice (YFP mice), and transferred into Foxp3GFP 12	
DTR	mice (Foxp3-DTR mice), in order to make BM chimera, in which ~10% of 13	

Treg expressed DTR. Subsequently, DT was administered to these BM 14	

chimera, which depleted Foxp3-DTR cells but not donor cells. This treatment 15	

induced a transient activation of T cells and inflammation in vivo. Activated 16	

Treg (aTreg) were obtained from these mice with inflammation, while resting 17	

Treg (rTreg) were from control mice, and memory Treg (mTreg) were from the 18	

mice after the resolution of inflammation.  (D) 1D CCA sample score plot of 19	

transcriptomic data of resting Treg (rTreg), in vivo activated Treg (aTreg) and 20	

memory Treg (mTreg) from the aTreg data (GSE83315), with T cell activation 21	

signature as explanatory variable.  22	

 23	
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Figure 6. The comparative analysis of Tmem-specific and Treg-Tmem 1	

shared activation genes and TCR-dependent and activated Treg-specific 2	

genes 3	

Venn diagram analysis was used to obtain intersects of TCR-dependent 4	

genes (DEG between TCRa KO and WT Treg), aTreg-specific genes (DEG 5	

between aTreg and rTreg), and Tact-Foxp3 and Tact-Runx1 genes (see 6	

Figure 3). (A) Pie chart showing the number of genes in the intersects 7	

between aTreg-specific genes, TCR-dependent genes, and Tact-Runx1 8	

genes. (B) Pie chart showing the numbers of aTreg-specific genes, TCR-9	

dependent genes, and Tact-Foxp3 genes. 10	

(C) Pathway analysis of Tact-Foxp3 genes, Tact-Runx1 genes and aTreg-11	

specific genes showing enriched pathways in these gene lists.  12	

 13	

 14	

Figure 7. Single cell CCA of melanoma-infiltrating T cells determines the 15	

activation status of individual T cells and identifies a putative Tfh-like 16	

process 17	

(A) Schematic representation of CCA of CD4+ T cell single cell 18	

transcriptomes analysed by two explanatory variables: activated naïve T cells 19	

(Tact) and resting naïve T cells (Trest). (B) CCA biplot showing the 20	

relationship between Treg and non-Treg T cells (sample scores) and the 21	

explanatory variables (Tact and Trest). Axis 1 represents the difference 22	

between Tact and Trest, and thus, Activated T cells and Resting T cells were 23	

defined by the CCA Axis 1 score, and these cells were further classified into 24	

Treg and non-Treg by their FOXP3 expression (see legend). Percentage 25	
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indicates that of the variance (inertia) accounted for by the axis. (C) Violin plot 1	

showing the CCA activation scores (Axis 1 score ´ -1) of FOXP3- and 2	

FOXP3+ cell groups. Asterisk indicates statistical significance by Mann-3	

Whitney test (D) Violin plot showing the CCA activation scores of Activated 4	

(Act.) and Resting (Rest.) FOXP3- and FOXP3+ cell groups. Asterisks 5	

indicate the values of post-hoc Dunn’s test following a Kruskal Wallis test. *** 6	

p < 0.005. (E) Gene biplot of the CCA solution in (B) showing the relationships 7	

between genes (grey circles) and the Tact and Trest explanatory variables 8	

(blue arrows). Genes are shown by grey circles, and well-known genes that 9	

are key for T cell activation processes are annotated.  10	

 11	

 12	
Figure 8. SC4A identifies the bifurcation point of activated T cells that 13	

leads to Tfh-like and Treg differentiation in tumour-infiltrating T cells 14	

SC4A was applied to the single cell data of tumour-infiltrating T cells, and 4 15	

genes (CTLA-4, CCR7, FOXP3, and PDCD1) were chosen as explanatory 16	

variables to represent the T cell activation, resting, FOXP3-driven process, 17	

and Tfh-like process.  (A) The design of analysis. The single cell data from the 18	

melanoma samples were analysed by SC4A to identify the most effective 19	

combinations of explanatory variables for dispersing the 4 presumptive T cell 20	

populations identified in Figure 7. These genes were used as explanatory 21	

variables to analyse the rest of the single cell data as main dataset. Thus, the 22	

single-cell level dynamics of T cell differentiation and activation are modelled 23	

by the key biological processes that are represented by the T cell populations 24	

and explanatory variables. (B) Single cell sample space of the final SC4A 25	

output showing correlations between single cell samples and the explanatory 26	
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variables (C) Gene space of the final SC4A output showing correlations 1	

between genes and the explanatory variables. The genes that showed high 2	

correlations to the PDCD1, CTLA4, and FOXP3 variables were identified as 3	

Tfh-like genes, Activation genes, and FOXP3-driven genes, respectively. (D) 4	

The identification of two differentiation processes as lineages and a 5	

bifurcation point. The cells in the sample space of the SC4A output (B) were 6	

classified into 6 clusters by an unsupervised clustering algorithm. These 7	

clusters were further analysed for pseudotime inference. (E-G) The average 8	

gene expression was plotted against each pseudotime (upper: FOXP3-9	

pseudotime; lower: Tfh-pseudotime). The bifurcation point (Cluster II) is 10	

emphasised by broken lines. The numbers in circle indicate the cluster 11	

number. Gene expression was standardised, and the sum of the standardised 12	

expression was obtained for (E) Activation genes, (F) FOXP3-driven genes, 13	

and (G) Tfh-like genes (see C). (H-M) The expression of key genes was 14	

plotted against each pseudotime.  15	

 16	

Figure 9. Identification of the conserved genes for the differential 17	

regulation of Tfh-like and Treg differentiation in activated T cells 18	

(A) The identified lineage curves and the bifurcation point in the tumour-19	

infiltrating T cells. The number in circle indicates the cluster number in Figure 20	

8D. (B-D) The expression of selected feature genes was plotted against each 21	

pseudotime. Genes are from the intersect of (B) Activation genes (Figure 8C) 22	

and Tact-Foxp3 genes (Figure 3), (C) FOXP3-driven genes (Figure 8C) and 23	

Tact-Foxp3 genes, and (D) Tfh-like genes (Figure 8C) and Tact-Runx1 genes 24	

(Figure 3). (E) The expression of selected genes in the tumour-infiltrating T 25	
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cells was shown by a 2-dimensional plot in a flow cytometric style. Data from 1	

Treg-lineage cells (Cluster V and VI, upper panels) and Tfh-like lineage cells 2	

(Cluster III and IV, lower panels). The gene in x-axis (NFAT5) is from the 3	

activation gene group (B), while y-axis shows genes from either the FOXP3-4	

Treg group (C) or the Tfh-like/Tmem group (D). Thresholds and quadrant 5	

gates were determined in an empirical manner using density plot. 6	

 7	
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