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Abstract 

The mutational process varies at many levels, from within genomes to among taxa.  Many 

mechanisms have been linked to variation in mutation, but understanding of the evolution of the 

mutational process is rudimentary.  Physiological condition is often implicated as a source of 

variation in microbial mutation rate and may contribute to mutation rate variation in multicellular 

organisms.   

 Deleterious mutations are a ubiquitous source of variation in condition.  We test the 

hypothesis that the mutational process depends on the underlying mutation load in two groups 

of Caenorhabditis elegans mutation accumulation (MA) lines that differ in their starting mutation 

loads.  "First-Order MA" (O1MA) lines maintained under minimal selection for ~250 generations 

were divided into high-fitness and low-fitness groups and sets of "second-order MA" (O2MA) 

lines derived from each O1MA line were maintained for ~150 additional generations.  Genomes 

of 48 O2MA lines and their O1MA progenitors were sequenced.  There is significant variation 

among O2MA lines in base-substitution rate (µbs), but no effect of initial fitness, whereas the 

indel rate is greater in high-fitness O2MA lines. Overall, µbs is positively correlated with 

recombination and proximity to short tandem repeats and negatively correlated with 1 Kb GC 

content. However, multiple logistic regression shows mutability is sufficiently predicted by the 

three-nucleotide motif.  ~90% of the variance in standing nucleotide variation is explained by 

mutability.  Total mutation rate increased in the O2MA lines, as predicted by the "drift barrier" 

model of mutation rate evolution. These data, combined with experimental estimates of fitness, 

suggest that epistasis is synergistic. 
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Introduction 

The evolution of the mutation rate is of longstanding interest to evolutionary theorists 

(Fisher 1930; Sturtevant 1937; Lynch et al. 2016), and there is abundant empirical evidence that 

the overall rate, molecular spectrum, and phenotypic consequences of mutation - collectively, 

the mutational process - vary at many biological levels, from within an individual genome to 

among species and higher taxa (Drake et al. 1998; Conrad et al. 2011; Schrider et al. 2013; 

Long et al. 2016; Ness et al. 2016).  However, perhaps with the exception of the eubacterium E. 

coli (e.g., Cairns and Foster 1991; Matic et al. 1997; Foster 1999; Denamur et al. 2002; Bjedov 

et al. 2003; Denamur and Matic 2006; Turrientes et al. 2013), variation in the mutational process 

has not been systematically investigated in any organism.   

A characterization of mutation rate variation with predictive power requires knowledge of 

(among other things), (1) how much genetic variation for the mutational process is present in a 

typical population or species? (2) how much genetic variation for the mutational process is 

introduced into a population by mutation itself? (3) what are the relative contributions of genes 

and environment to variation in the mutational process? and (4) to what extent is the evolution 

of the mutational process influenced by natural selection, relative to the inevitable influences of 

drift and mutation itself?        

Microbiologists have appreciated for many decades that physiological stress is often 

associated with increased mutation rate (e.g., see Figure 6 of Ogur et al. 1960).  Recently, 

Agrawal and his colleagues have undertaken a systematic investigation into the effects of 

physiological condition (~ "stress") on the mutational process in Drosophila melanogaster, 

motivated by theoretical findings that if the mutation rate is condition-dependent, the 

accumulation of deleterious mutations can have interesting and sometimes counterintuitive 

feedback effects on population mean fitness (Agrawal 2002; Shaw and Baer 2011).  They 

manipulated physiological condition both exogenously, by manipulating food quality (Agrawal 

and Wang 2008) and endogenously, by allowing mutations to accumulate under relaxed 
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selection on genomes that were initially identical except for the presence or absence of one or 

two mutations of large deleterious effect (Sharp and Agrawal 2012).  Poorly-fed females 

transmitted ~30% more lethal mutations than did well-fed females (Agrawal and Wang 2008).  

Similarly, mutation accumulation (MA) lines beginning with a large genetic load declined in 

fitness more rapidly than lines with wild-type genomes, which is most simply explained by the 

low-fitness lines having a greater mutation rate than the high-fitness lines (Sharp and Agrawal 

2012).  Whole-genome sequencing of the MA lines revealed that the faster decline in fitness in 

the loaded lines can be attributed to an elevated rate of small deletions (Sharp and Agrawal 

2016).  In an analogous study, Ávila et al. (2006) constructed a set of MA lines of D. 

melanogaster derived from a single MA line that had itself accumulated mutations under relaxed 

selection for 265 generations, a protocol that we call "second-order MA" (O2MA).  The per-

generation decline in fitness was greater in the second-order MA lines than in the ancestral 

("first-order MA", O1MA) lines.  That result is consistent with an increased mutation rate in the 

O2MA lines relative to the O1MA lines, but it is also consistent with mutational effects being 

greater in the second-order MA lines (i.e., synergistic epistasis; Dickinson 2008).    

We report here the results of a second-order MA experiment in the nematode C. 

elegans, specifically designed to assess the relationship between the initial genomic load of 

spontaneous deleterious mutations and the subsequent effects on the mutational process 

(Figure 1).  Initially, a set of 100 MA lines derived from a single, highly inbred individual of the 

N2 strain was allowed to accumulate mutations for approximately 250 generations under 

minimal selection.  From a subset of 67 O1MA lines assayed for fitness, we chose five lines with 

consistently high absolute fitness and five lines with consistently low absolute fitness, from 

which we established ten independent sets of 48 O2MA lines, referred to as "O2MA families", 

which were allowed to accumulate mutations for an additional ~150 generations (Matsuba et al. 

2012).  Upon completion of the second-order MA phase, five replicate O2MA lines derived from 
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each of the ten O2MA families were sequenced at ~25X average coverage, along with nine of 

the ten O1MA progenitors.     

The resulting data allow us to address several fundamental questions about the 

evolution of the mutational process.  First, does initial fitness affect the mutational process, and 

if so, how?  Second, how fast does genetic variation in the mutational process accumulate due 

to the effects of new spontaneous mutations?  Third, how does the mutational process depend 

on underlying features of the genome, e.g., local recombination rate or base composition?  

Fourth, to what extent does the local mutational milieu predict standing nucleotide sequence 

variation? 
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Figure 1. Schematic depiction of the second-order MA (O2MA) experiment.  Of the 100 O1MA 

lines (blue worms), after ~250 generations, five low-fitness O1MA lines and five high-fitness 

O1MA lines were chosen as progenitors for sets of 48 O2MA lines (orange worms).  Relative 

fitness of O1MA lines is represented by the size of the worm, with relative fitness increasing with 

size.  Each set of 48 O2MA lines derived from an O1MA line is an "O2MA family".  The 48 

O2MA lines derived from the circled O1MA line constitute one O2MA family.  After ~150 

additional generations (G400), five O2MA lines (black arrows) were randomly chosen from each 

O2MA family for sequencing. 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 13, 2018. ; https://doi.org/10.1101/280826doi: bioRxiv preprint 

https://doi.org/10.1101/280826
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

Results 

Pooled over 48 (out of 50) O2MA lines and nine of the ten O1MA ancestors, using our 

default pipeline we identified 1828 base substitutions (1481 O2MA, 347 O1MA), 361 small 

deletions (293 O2 MA, 68 O1MA) and 236 small insertions (196 O2MA, 40 O1MA).  We 

sequenced the genomes of an additional 23 O1MA lines not included in the O2MA experiment, 

from which we identified 884 base substitutions, 142 deletions, and 93 insertions.  Mutation 

rates for the different groups are summarized in Table 1, and given for individual lines in 

Supplementary Table S1.  Individual mutations and their properties are listed in Supplementary 

Table S2.  Raw sequence data are archived in the NCBI Short Read Archive, project numbers 

PRJNA395568 (O2MA lines and O1MA ancestors) and PRJNA429972 (other O1MA lines). 

Averaged over all 32 O1MA lines, the per-nucleotide base-substitution mutation rate µbs 

= 2.33 (± 0.08) x 10-9 per generation. µbs for the nine O1MA ancestors is 2.26 ± 0.12 x 10-9 per 

generation).  Averaged over the 48 O2MA lines, the base-substitution mutation rate over the 

subsequent ~150 generations is estimated to be µbs = 2.57 (± 0.11) x10-9 per-generation, not 

significantly different from the combined O1MA rate (general linear model, F1,14.5 = 1.32, p<0.26; 

see Supplementary Appendix A1.6 for details of the GLM).  The short indel rate for the full set of 

32 O1MA lines µINDEL =0.66 (±0.04) x 10-9 per-site per-generation.  The indel rate of the nine 

O1MA ancestors (µINDEL,ANC = 0.68 ± 0.06 x 10-9/generation) does not differ from that of the other 

21 O1MA lines (µINDEL,OTHER = 0.64 ± 0.05 x 10-9/generation.  Averaged over all 48 O2MA lines, 

µINDEL = 0.84 ± 0.05 x10-9/generation, significantly greater than the combined O1MA rate (GLM, 

F1,24.2 = 8.27, p < 0.01) but not significantly greater than that of the nine O1MA ancestors (GLM, 

F1,45.4 = 1.61, p > 0.21).  

The base-substitution mutation rate is not fitness-dependent. 

There is significantly more variation in µbs among O2MA lines than expected if the base-

substitution mutation rate is uniform across the full set of 48 O2MA lines (simulation P<0.0001; 

Supplementary Figure S1).  Moreover, there is significant variation in µbs among O2MA families 
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(LRT, chi-square = 9.27, df=1, P<0.003; Figure 2).  Similarly, there is more variation among  

O1MA lines than predicted by a uniform mutation rate (simulation P<0.015).  The simplest 

interpretation is that some element(s) of the mutational process diverged over the course of the 

first ~250 generations of MA, and that the signal of the difference(s) carried through the next 

~150 generations of O2MA.    

 However, there is no evidence that µbs differs consistently between the O2MA families 

derived from high fitness and low fitness O1MA ancestors (GLM, F1,6.24 = 0.18, p>0.75;). 

Averaged over the five O2MA families in each fitness class, the base substitution mutation rate 

between G250 and G400 for High and Low fitness lines is estimated to be µbs,HIGH = 2.58 (±0.11) 

x 10-9/ gen, and µbs,LOW = 2.49 (±0.32) x 10-9 / gen (Figure 2). 

As expected from the lack of differentiation of µbs, the base-substitution spectrum does 

not differ significantly between the high-fitness and low-fitness O2MA lines (Supplementary 

Figure S2; Monte Carlo Fisher's Exact Test, 107 replicates, P>0.70), nor does it vary between 

O2MA families (MC FET, P>0.25), between individual O2MA lines (MC FET, P>0.08), between 

O2MA lines within any of the ten families (P>0.10 or greater in all ten cases) or between the 

O1MA ancestors at G250 and the O2MA lines at G400 (Supplementary Figure S2; MC FET, 

P>0.51).  Consistent with many previous studies (Lynch 2007), the average mutation rate from 

a C or G to an A or T is significantly greater than the mutation rate from A or T to C or G 

(µC/G→A/T = 3.03 (±0.18) x 10-9/gen; µA/T→C/G = 0.93 (±0.05) x 10-9/gen).  Extrapolating from these 

rates, the expected base composition of the C. elegans genome at mutational equilibrium is 

~76.5% AT, greater than the actual AT fraction of ~64.5%.  The ratio of transitions to 

transversions does not differ significantly between high fitness O2MA and low fitness O2MA 

lines (Ts/TvHigh=0.72, Ts/TvLow=0.68, t-test, P>0.5), nor does it differ between O2MA lines and 

O1MA ancestors (Ts/TvO1MA=0.70, Ts/TvO2MA=0.74, t-test, P>0.8).
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 O1MA ancestor 

(n=9) 

O1MA  

other (n=23) 

O1MA  

all (n=32) 

O2MA, High  

 (n=24) 

O2MA, Low  

 (n=24) 

O2MA, all 

 (n=48) 

µbs (×109) 2.26 (0.12) 2.35 (0.11) 2.33 (0.08) 2.58 (0.11) 2.49 (0.32) 2.57 (0.11) 

µINS (×109) 0.26 (0.04) 0.25 (0.03) 0.26x (0.02) 0.35 (0.03) 0.32 (0.04) 0.34y (0.03) 

µDEL (×109) 0.42 (0.05) 0.39 (0.04) 0.40 (0.03) 0.59a (0.07) 0.41b (0.04) 0.50 (0.04) 

µINDEL(×109) 0.68 (0.06) 0.64 (0.05) 0.66x (0.04) 0.95a (0.06) 0.73b (0.05) 0.84y (0.05) 

µTotal (×109) 2.94 (0.11) 2.99 (0.13) 2.98x,* (0.10) 3.52 (0.13) 3.21 (0.31) 3.37y,* (0.16) 

µGENOME 0.29 0.30 0.30 0.35 0.32 0.34 

 

Table 1. Average mutation rates (standard errors in parentheses).  All mutation rates are per-site, per-generation except µGENOME.  

Abbreviations are: µbs, base substitution mutation rate; µINS, insertion rate; µDEL, deletion rate; µINDEL, indel rate; µTotal, total mutation 

rate; µGENOME, haploid genome-wide mutation rate per-generation.  O2MA rates are estimated by least squares means from the GLM.  

See Supplementary Appendix A1, Extended Methods, for details of the GLM.  Within each row, values with different a,b superscripts 

are significantly different (P<0.05) within O1MA or O2MA groups; values with different x,y superscripts are significantly different 

(P<0.05) between O1MA and O2MA; * P≈0.06. 
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Figure 2. Distribution of base-substitution mutation rate, µbs, among O2MA families. Families derived from high-fitness O1MA 

ancestors are in orange, families derived from low-fitness O1MA ancestors are in green.  Families 522 and 547 contain four 

sequenced O2MA lines, the other families contain five O2MA lines. The horizontal line denotes the mutation rate of the nine O1MA 

ancestors. Points shown outside the box are beyond the 1.5 x inter-quartile range of the family whereas whiskers represent data 

points within that range. that the mutational process in the ten O1MA ancestors diverged by ~250 generations of evolution under MA 

conditions, and the signal of the difference(s) was retained over the subsequent ~150 generations of O2MA.         
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Inspection of the µbs data reveals two potential outlying O2MA lines (Figure 2), one low 

fitness (O2MA line 508.34, µbs = 0.78 x 10-9/gen) and one high fitness (O2MA line 579.36, µbs = 

4.34 x 10-9/gen).  When those two lines are omitted from the analysis, the variance among 

O2MA lines is sufficiently explained by a single base-substitution rate (simulation P>0.07).   

However, O2MA lines derived from O1MA line 508 have the lowest base-substitution rate even 

with the extreme line omitted [µbs = 1.49 (±1.90) x 10-9/gen with line 508.34 included, 1.68 

(±0.91) x 10-9/gen) without line 508.34] and O2MA lines derived from O1MA line 579 have the 

highest base-substitution rate even with the extreme line omitted [µbs = 3.53 (±0.31) x 10-9/gen 

with line 579.36 included, 3.26 (± 0.22) x 10-9/gen) without line 579.36].  The random chance 

that the most extreme high line comes from the family whose other four members also have the 

highest average mutation rate (5/48) and that the most extreme low line comes from the family 

whose other four members also have the lowest average mutation rate (5/47) is approximately 

1%. The most parsimonious explanation is that the two outlying O2MA lines are simply the most 

extreme manifestations of a biological process common to their respective O1MA progenitors 

rather than true outliers.  The alternative is that the apparently extreme mutation rates are 

experimental artifacts, which we think is unlikely (see Extended Discussion in Supplementary 

Appendix A2).                 

Fitness-dependence of the small indel rate.  

In contrast to the base-substitution mutation rate, which does not differ between O2MA 

lines derived from high fitness and low fitness O1MA lines, the O2MA short indel rate is 

significantly greater in the high fitness group (µINDEL = 0.95 ± 0.06 x10-9/generation) than in the 

low fitness group (µINDEL = 0.73 ± 0.50 x10-/generation: GLM, F1,44.4 = 7.84, P<0.01).  The 

difference is primarily due to different rates of deletions (µDEL,High = 0.59 ± 0.07 x10-9/generation, 

µDEL,Low = 0.41 ± 0.04 x10-9/generation; F1,7.58 = 5.77, P < 0.05) rather than insertions (µINS,High = 

0.35 ± 0.03 x10-9/generation, µINS,Low = 0.32 ± 0.04 x10-9/generation; F1,17.5 = 0.51, P > 0.48).  
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The variance in µINDEL among O2MA lines within each fitness group is adequately explained by a 

single, fitness-specific indel rate (high-fitness, simulation P>0.12; low-fitness, simulation P>0.2).  

The distribution of indel lengths is given in Supplementary Figure S3. 

 The higher indel rate of high-fitness O2MA lines suggests that the indel rate of O1MA 

lines should be greater than the overall O2MA rate, given the higher fitness of the G0 ancestor.  

Interestingly, that is not what we observe.  The overall O1MA indel rate, including all 32 O1MA 

lines, is significantly lower than high-fitness O2MA indel rate (µINDEL, O1MA = 0.66 ± 0.04 x10-

9/generation, µINDEL, O2MA_High = 0.95 ± 0.06 x10-10/generation; GLM, F1,41.7=15.61, P<0.0005), but 

not significantly different from low fitness O2MA indel rate (µINDEL, O1MA = 0.66 ± 0.04 x10-

9/generation, µINDEL, O2MA_Low = 0.73 ± 0.05 x10-9/generation; F1,47.6 = 1.10, P>0.29).  The results 

do not change if only the nine O1MA ancestors are used to calculate the indel rate. 

The O2MA insertion and deletion rates are uncorrelated (rINS,DEL = 0.021, P>0.88, n=48), 

suggestive of different factors underlying the two types of mutations.  The base-substitution rate 

is moderately positively correlated with the insertion rate (rbs,INS = 0.32, P<0.03, n=48) but 

uncorrelated with the deletion rate (rbs,DEL = -0.016, P>0.91, n=48).       

 There are two potential evolutionary factors that can explain the difference in the 

deletion rate between the different O2MA fitness groups.  First, some element of the mutational 

process may differ, e.g., DNA repair.  Alternatively, selection may differ in either strength or 

efficiency between the two treatments.  In our MA protocol, differences in selection efficiency 

between lines can result from different frequencies of going to backup (see Methods).  However, 

the mean effectively neutral selection coefficient (sn =1/4Ne) is only slightly smaller in the low-

fitness lines (��
�
� 0.228) than in the high-fitness lines (��

�
� 0.239). The slightly lower efficiency 

of selection in the high fitness group seems unlikely to account for the ~30% greater indel rate. 

 Alternatively, the strength of selection itself may be different between the two fitness 

groups, such that some mutations that are only mildly deleterious – and thus effectively neutral 

– in a high-fitness line are significantly more deleterious in a low-fitness line, i.e., epistasis is 
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synergistic (Gillespie 2004).  In that case, a larger fraction of mutations in the low-fitness lines 

would exceed the threshold of effective neutrality and be removed by selection.  The mutational 

effect analysis, as implemented in snpEff 4.1 (see Methods), reveals no significant difference in 

the frequency of potentially large-effect indels (20/303 among high-fitness O2MA lines, 10/186 

among low-fitness lines, Fisher's Exact Test, two-tailed P>0.70) or SNPs (22/822 vs. 15/659, 

Yates' Chi-square, two-tailed P>0.75).  Nor does the frequency of potentially large-effect 

mutations differ between the high and low-fitness G250 O1MA lines, between high-fitness 

O2MA and O1MA lines, or between low-fitness O2MA and O1MA lines (P>0.12 in all cases).  

The preceding analysis provides no information about mutations that did not fix.  Nevertheless, 

synergistic epistasis, coupled with a slight overall increase in mutation rate, seems a more 

parsimonious explanation than different indel rates in high-fitness and low-fitness O2MA lines.  

Experimentally derived estimates of relative fitness (Matsuba et al. 2012) combined with 

estimates of the average number of mutations carried by high-fitness and low-fitness O2MA 

lines reinforce this conclusion (see Discussion).  

Recombination is positively associated with mutation 

Standing nucleotide diversity is almost always positively associated with recombination rate.  

There is strong reason to believe that natural selection (i.e., Hill-Robertson interference) has an 

important causal role in this pattern (Lynch 2007).  However, with the important exception of 

humans, most of the data are derived from inferences drawn from comparisons with a reference 

class of genomic sites believed to be free from selective constraints (e.g., processed 

pseudogenes or four-fold degenerate sites) rather than directly from de novo mutations, and the 

extent to which recombination is mutagenic per se remains an open question.  Two large 

studies of de novo mutations in humans report a significant univariate association between 

recombination rate and mutation rate (Michaelson et al. 2012; Francioli et al. 2015), although 

recombination appears to affect nucleotide diversity beyond its association with mutation.  Two 
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cohort studies in bees (Yang et al. 2015; Liu et al. 2017) found a weak relationship between 

recombination and mutation, but the numbers of mutations were small and the inferences 

somewhat circumstantial.  Conversely, Ness et al. (2015) found no association between 

recombination rate and mutation rate in the green alga Chlamydomonas reinhardtii, although 

the data on recombination rate in C. reinhardtii are sparser than for humans.      

 To investigate the relationship between recombination and mutation, we determined the 

association between µbs estimated from the O2MA lines and recombination rate using weighted 

OLS regression, dividing each chromosome into the recombination rate bins reported by 

Rockman and Kruglyak (2009) and weighting each bin by its size in Mb.  Recombination rate is 

nearly constant within each bin (see Figure 1 in Rockman and Kruglyak (2009)).  Contrary to our 

previous report from a different (and smaller) subset of G250 O1MA lines (Denver et al. 2009), 

here we find a significant positive univariate association between recombination rate and µbs 

(pseudo-r2 = 0.26, P<0.003, Supplementary Figure S4); presumably the discrepancy between 

this study and the previous report is due to the greater power afforded by the much greater 

number of mutations included in the present study (316 vs. 1828).   

The genomic correlates of mutability 

Many features of the genome and epigenome influence the mutational process.  The effects of 

some such features are well-understood and seem to be relatively general to all living 

organisms (e.g., short tandem repeats, G:C vs. A:T, 5'-methyl-C), whereas others remain 

uncertain and/or appear to be taxon-specific.  To more fully characterize the features of the C. 

elegans genome that are associated with the mutational process, we employed a logistic 

regression method, loosely following the approach of Michaelson et al. (2012) and Ness et al. 

(2015).  Since the deletion rate differs significantly between the two O2MA fitness groups, we 

restricted the analysis to base-substitutions.  Univariate logistic regression coefficients of the 

features included in the full multiple regression are shown in Figure 3.    
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 To assess the predictive power of the mutability model, we randomly sampled half of the 

O2MA lines to train the model (24 lines; roughly 740 mutations) and tested the model on the 

remaining 24 O2MA lines.  All mutant sites and 100,000 randomly chosen non-mutant sites 

were arbitrarily binned into 35 bins of uniform width, and the observed mutation rate for each 

mutability bin was plotted against expected mutability.  Of the factors initially included in the 

multiple regression (see Methods), the best model includes only the 64 three-base motifs as a 

set of predictor variables (Figure 4a). Any combination of other predictors, with or without the 

three-base motif, results in a poorer fit (Figure 4b).  The poorer fit presumably results from either 

overfitting, multicollinearity and/or the inability of the logistic regression model to accommodate 

non-linear relationships between predictor variables and mutation rate, even when tuned with 

high penalty (λ) to drop predictor variables altogether (Lasso).  

It is reassuring but not surprising that the model provides a good fit to the data from 

which it was generated.  Of more interest is the relationship between mutability as predicted 

from MA data and the genetic variation observed in nature.  We obtained publicly-available 

whole genome sequence data from 40 C. elegans wild isolates (Thompson et al. 2013) and 

identified SNPs using the same pipeline that we used to call putative mutations in the MA data.  

We identified ~537,000 SNPs by these criteria.  Sites were categorized as variable or not 

variable, without regard to allele frequency.  

Mutability was assessed as described previously, except in this analysis the model was 

trained on the full set of 1828 mutations.  Figure 4c shows a plot of nucleotide diversity 

(quantified as θW; (Watterson 1975)) at non-coding sites (288,585 intron sites, and 122,272 

intergenic sites) against predicted mutability.  Averaged over all bins, mutability strongly predicts 

standing nucleotide diversity, although the variance is high at predicted high-mutability sites, 

presumably because the sample sizes are small.  

Interestingly, a model including recombination rate and 1000-bp GC content in addition 

to three-base motif, trained with the same set of MA mutations, explains standing nucleotide  
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Figure 3. (a) Univariate logistic regression coefficients for different genomic features (gray bars). Overlapping red bars depict 

the null expectation from sampling variance with 1828 randomly selected genomic sites treated as mutations.  Variable 

abbreviations are: GC_10, 10 bp GC-content centered on the focal base; GC_1000, 1 kb GC content; mono_di, proximity to a 

mono or dinucleotide STR; motif_3bp, three-base motif with the mutant base at the 3' end; Rec, local recombination rate.  The 

method used to condense several predictors into one, for 3-base motif and mono-di STR, is described in the Methods. (b) 

Base-substitution mutation rate (µbs) of each 3-base motif, with mutations on the 3’ end. Motifs are grouped by the mutant 

base. 
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diversity better than the model only including three-base motif (Figure 4d).  The coefficients 

assigned to recombination rate and 1000-bp GC content are smaller than that of three-base 

motif (See Supplementary Table S3), which suggests the inherent mutability of those features is 

minor relative to that captured by the three-base motif.  We discuss the potential causes and 

implications of this observation in the Discussion.             

Short Tandem Repeats (STRs) 

Short tandem repeat loci ("microsatellites") can mutate orders of magnitude faster than 

other classes of loci, and potentially contribute a large fraction of the per-generation mutational 

variance.  We previously estimated the haploid per-genome mutation rate of dinucleotide STR 

loci in the full set of O1MA lines to be ~0.12/generation (Phillips et al. 2009).  That calculation 

accounts for variation in mutation rate among repeat motifs (e.g., AT vs. AG, etc.) and at least 

partly accounts for variation in mutation rate with repeat number, although there is substantial 

uncertainty that cannot be easily quantified. Seyfert et al. (2008) found no significant effect of 

repeat length (di, tri, or tetranucleotide repeat) on the rate of STR mutation in a different set of 

N2-strain MA lines.  Denver et al. (2004) investigated the mutational process of mononucleotide 

repeats (= "homopolymers") in the same MA lines as Seyfert et al. and concluded that the 

(haploid) per-genome mononucleotide mutation rate is about 0.8/generation, more than twice 

the rate of all other classes of mutations combined.  Mutational properties of STRs are 

summarized by repeat type in Supplementary Table S4 and Supplementary Figures S5 and S6. 

Our findings qualitatively recapitulate those of the previous studies.  First, G:C 

mononucleotides experience indel mutations at a tenfold greater rate than A:T 

mononucleotides, as observed by Denver et al. (2004).  Second, indel mutation rate differs only 

about twofold between the three A:T containing dinucleotides (AC, AG, AT) and we detected no 

mutations at CG dinucleotides, both as observed by Phillips et al. (2009).  The ratio of 
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Figure 4. Top panels (a, b) depict the relationship between observed mutation rates and 

mutability across mutability bins (n=35 bins). (a) The mutability model includes only the 3-base 

motif. (b) The mutability model includes 3-base motif, local recombination rate and 1 kb GC 

content.  Bottom panels (c, d) depict the relationship between standing nucleotide variation, 

measured as Watterson’s θ, and predicted mutability. Mutability is calculated using the full 

complement of mutations (n=1828), and mutability is predicted for the entire genome. (c) The 

mutability model includes only the 3-base motif. (d) The mutability model includes 1 kb GC 

content and local recombination rate. 
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mononucleotide deletions (251) to insertions (139) is not significantly different from the 16:14 

ratio reported by Denver et al. (Yates' chi-square = 1.02, df = 1, P > 0.31), and the ratio of 

dinucleotide deletions (10) to insertions (32) is nearly identical to the 8:28 ratio observed by 

Phillips et al.  However, there are important quantitative differences between the findings of this 

study and the previously reported values.  Even if we assume that our list of putative mutations 

contains no false positives, we calculate a genome-wide mononucleotide indel mutation rate of 

0.056 mutations per haploid genome per generation.  An analogous calculation with 

dinucleotide repeats, pooling across repeat types, gives a genome-wide dinucleotide mutation 

rate of ~ 0.003 indel mutations per haploid genome per generation.  The mononucleotide rate is 

about 10% the rate estimated by Denver et al. (2004); the dinucleotide rate is about 5% of the 

estimate from Phillips et al. (2009).  Potential causes of the source(s) of the discrepancies 

between this study and the previous studies are addressed in Supplementary Appendix S1.3.      

Copy Number Variants (CNVs) 

We called CNVs using a read-depth based method implemented in the CNV-seq software (Xie 

and Tammi 2009).  The number of putative CNVs inferred is sensitive to the parameters of the 

analysis, but in no case did the mean number of putative CNVs differ between the high and low-

fitness O2MA lines (Supplementary Table S5).  Under the most liberal CNV-seq parameters 

(1.5X coverage threshold, 200 bp sliding windows), the average number of putative CNVs of 

length >1kb is approximately 0.8 per-genome per-generation, or about twice the number of all 

other types of mutations combined.  The most conservative parameters (2X coverage threshold, 

100 bp sliding windows) yield an estimated CNV mutation rate of about 0.07 per genome per 

generation, about 20% of the rate of all other types of mutations.  To put those estimates in 

perspective, Lipinski et al. (2011) used competitive genome hybridization arrays (CGH) to 

estimate the CNV mutation rate in a different set of N2 strain MA lines.  They reported a CNV 

mutation rate of about 0.006 per genome-generation, which they argued is probably an 
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underestimate. Given the uncertainty associated with the estimates, we did not attempt to 

confirm CNVs (e.g., with qPCR).  We report the results as a cautionary note that, even with as 

"easy" a genome as C. elegans N2 strain MA lines, which are almost completely homozygous 

and have a well-characterized reference genome, estimates of CNVs are extremely sensitive to 

methodological details.  We expect that the CNV problem will eventually be resolved with 

accurate long-read sequencing at high coverage (Chaisson et al. 2015; Tyson et al. 2018).          

Discussion 

The Role of Fitness 

There is no evidence that the rate or molecular spectrum of base-substitution mutations in the 

N2 strain of C. elegans depends on the fitness of the starting genotype.  In contrast, the short 

indel rate, especially the deletion rate, is fitness dependent, but not in the anticipated way: low-

fitness genotypes have a significantly lower deletion rate than do high-fitness genotypes.  This 

result differs from the finding in Drosophila melanogaster that low-fitness genotypes experience 

significantly greater rates of small deletions than do high-fitness genotypes, apparently because 

flies in poor physiological condition employ a different, more error-prone mechanism of double-

strand break repair than do flies in good condition (Sharp and Agrawal 2016).    

 It is certainly possible that worms with high-fitness genotypes incur more short deletions 

than do worms with low-fitness genotypes and/or are worse at repairing them.  Matsuba et al. 

(2012) found no significant difference in the per-generation decline in relative fitness (ΔM) 

between high-fitness and low-fitness O2MA families, but the point estimate of ΔM was 67% 

greater in the low-fitness families.  If we use the point estimates of the total mutation rates for 

O2MA lines derived from high-fitness and low-fitness O1MA ancestors and the estimates of the 

mutational decline in relative (non-competitive) fitness averaged over all O2MA lines (reported 

in Table 1 of Matsuba et al. (2012), recalculated based on the revised generation times reported 

in this study), the mean mutational effect on relative fitness of the low-fitness O2MA lines is 
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approximately -0.43% whereas that of the high-fitness O2MA lines is -0.27%.  If we assume that 

only indels affect fitness, the mean effects on low-fitness and high-fitness O2MA lines are -2.1% 

and -0.9% respectively.  We further suppose that the "dark matter" represented by the 

(assumed) missing fraction of indels in the low-fitness lines would amplify the difference in 

average selective effects.           

 Whether deleterious mutations interact synergistically on average has vexed generations 

of evolutionary biologists.  In the abstract, existence of a robust system seems to imply 

redundancy of components, which in the context of a genetic system implies that epistasis must 

be synergistic on average (de Visser et al. 2003).  Moreover, there are good reasons to believe 

that the continued existence of our own species implies that epistasis is synergistic, on average 

(Kondrashov 1995).  Nevertheless, empirical evidence concerning the average epistatic effect of 

spontaneous deleterious mutations has been inconclusive (Halligan and Keightley 2009).   

 The simplest way to characterize the average epistatic effects of spontaneous mutations 

is to genotype and simultaneously assay for fitness a set of MA lines at two or more time points 

following the divergence from the common ancestor.  A second-order MA experiment is simply a 

"force multiplier" in that regard.  The data presented here represent some of the first direct 

evidence that spontaneous mutations interact synergistically, on average (see also Jasmin and 

Lenormand 2016).   

Variation in the Mutational Process 

The per-generation input of genetic variance for a trait, the mutational variance, VM, ultimately 

governs the evolvability of the trait and is a fundamental parameter in evolutionary genetics 

(Lynch and Hill 1986).  VM can be estimated from MA data from the relationship �� �
��

��
, where 

VL is the among-line component of variance and t is the number of generations of MA (Lynch 

and Walsh 1998).  VM is commonly standardized relative to the residual variance VE, called the 

mutational heritability ��
�
�

��

��

.  Among O2MA families, VL for µBS = 0.196, VE = 0.316, and �� = 
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143, so ��
� ≈ 0.002/generation. To put that result in context, ��

�  for a wide variety of traits in 

disparate taxa averages about 0.001/generation (Houle et al. 1996), although ��
�  for some traits 

(notably gene expression) is consistently an order of magnitude less (e.g., Rifkin et al. 2005; 

Landry et al. 2007). That the mutation rate is evolvable is not surprising (we know it is), but the 

point estimate of ��
�  suggests that the mutational target for mutation rate is substantial.  

However, an estimate of a ratio of variances based on ten data points cannot be considered 

robust.   

Mutability and Genetic Variation 

The observed positive univariate association between local recombination rate and mutation 

rate in this experiment is almost surely not due to Hill-Robertson interference.  The expected 

time to fixation/loss of a new mutation is three generations (Keightley and Caballero 1997), and 

the average mutation rate (CNVs notwithstanding) is about one per genome every three 

generations.  Thus, the opportunity for H-R interference in our experiment is very low, albeit not 

nonexistent.  However, the causal factors underlying the relationship between local 

recombination rate and base-substitution mutation rate remain uncertain.  The cause is not as 

simple as GC content (G:C being more mutable than A:T), because chromosome arms, which 

have higher recombination rates, are AT-rich.  Most clearly, mononucleotide runs are both 

mutagenic and positively associated with local recombination rate. 

Nonetheless, the increase in explanatory power of a mutability model that includes 

recombination rate and 1Kb GC content when predicting standing nucleotide variation begs an 

explanation.  It seems unlikely that the alternative model captures the mutagenicity of 

recombination rate that is relevant to explaining standing nucleotide variation, but somehow 

poorly predicts the training set that generated it, i.e. MA mutations.  There is greater standing 

genetic variation in regions of high recombination rate, so, all else equal, a model including a 

positive coefficient for recombination rate will better explain standing nucleotide diversity than 

the same model minus recombination rate.  When we employ the same method used to 
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construct the mutability model from MA data to construct a "variability" model from standing 

variation, the coefficient for recombination rate increases fivefold, from 0.08 in models trained 

with MA mutations, to 0.35, reflecting the increased association between standing variation and 

recombination rate.  

The mutability model does a good job of predicting standing nucleotide variation in 

natural isolates of C. elegans: sites that are more mutable are, on average, more variable 

(Figure 4c).  Again, this is reassuring, but not surprising; the same relationship has been 

observed in Chlamydomonas reinhardtii (Ness et al. 2016) and humans (Francioli et al. 2015).  

One difference between C. elegans and many other organisms (e.g., humans) is that, in C. 

elegans, regions of low recombination (chromosome cores) are gene-rich rather than gene-

poor, so H-R interference is more important in regions of low recombination both for inherent 

reasons and because the opportunity for selection is greater due to the larger target for 

deleterious mutations.  One possibility is that, because chromosome arms are gene-poor, 

mutagenic features (e.g., specific motifs, such as mononucleotide runs) preferentially 

accumulate because their background effects on linked loci are less important.  Perhaps 

paradoxically, the AT-richness of chromosome arms may be a signature of increased mutation 

rate, because C:G mutates to A:T more often than the reverse.   

Evolution of the mutation rate.  

The total mutation rate, µTotal, of the O2MA lines is about 13% greater than that of the O1MA 

lines (Table 1).  Directional change in a trait under MA conditions ("mutational bias", ΔM) 

suggests that the trait is under ongoing directional selection in the opposite direction, analogous 

to the direction of phenotypic change upon inbreeding (Teotónio et al. 2017).  This finding is 

consistent with the "drift barrier" hypothesis of mutation rate evolution, which posits that 

directional selection to reduce the mutation rate is opposed by a weak mutational bias (Lynch 

2008).  It is not consistent with the mutation rate being at an optimum established by a "cost of 

fidelity", wherein direct selection to reduce the input of deleterious mutations is counterbalanced 
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by indirect selection to reduce the fitness cost of genome surveillance (Kimura 1967).  If the 

mutation rate is at an optimum imposed by countervailing components of selection, the overall 

fitness function will be stabilizing.  Provided that the fitness function is approximately 

symmetrical around the optimum, the expectation is that the among-line variance in the trait will 

increase but that the overall trait mean will not change.  We emphasize that these findings do 

not imply that there is no cost of fidelity, just that the mutation rate in C. elegans does not 

appear to be at a global optimum. 

 The ~13% increase in mutation rate over the course of ~250 generations amounts to a 

per-generation change ΔM ≈0.0005, compared to a per-generation decrease in competitive 

fitness of ≈0.001 in the same lines (Yeh et al. 2018).  It is difficult to believe that direct selection 

to decrease mutation rate is half as strong as selection on competitive fitness.  The most logical 

conclusion is that mutations that increase mutation rate have deleterious pleiotropic effects on 

fitness.  However, this conclusion seems at odds with the failure to observe a main effect of 

fitness in the O2MA lines.  In principle, the discrepancy could be resolved by determining the 

mutational correlation of mutation rate with fitness.  The sample sizes necessary to answer that 

question in multicellular organisms are currently prohibitive, but it may be practical in a microbial 

system.   

Methods and Materials 

Mutation Accumulation Protocol. A schematic depiction of the experimental design is presented 

in Figure 1.  Details of the first-order MA protocol and fitness assays are reported in Baer et al. 

(2005); details of the second-order MA protocol are reported in Matsuba et al. (2012) and 

summarized in the Extended Methods, Supplementary Appendix A1.1.  

Genome sequencing and estimation of mutation rates.  Five O2MA lines from the ten O2MA 

families and 35 O1MA lines, including the ten O2MA progenitors, were sequenced at an 

average of ~25X coverage depth.  Sequencing was done using Illumina technology with 100 bp 

paired-end reads.  Protocols for DNA extraction and construction of sequencing libraries are 
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given in Supplementary Appendix A1.2; details of preliminary processing of raw sequence data 

are given in Supplementary Appendix A1.3. The quality of sequence from two O2MA lines and 

one O1MA line was poor and these samples were omitted from further analyses, leaving 48 

O2MA line and nine of the ten O2MA progenitors.   

Variants were called using GATK software (McKenna et al. 2010) with a minimum 

coverage threshold of >10X.  Variants were identified as putative mutations if (1) the variant was 

identified as homozygous, and (2) it was present in one and only one O2MA line.  Criterion (1) 

means that any mutations that occurred in the last few generations of second-order MA that 

were still segregating and/or occurred during population expansion for DNA extraction were 

ignored.  Because the O1MA progenitor was at mutation-drift equilibrium (Lynch and Hill 1986), 

the segregating variation is expected to be the same in the O1MA progenitor and the O2MA 

line, so ignoring heterozygotes results in an unbiased estimate of mutation rate.  Criterion (2) 

reduces the probability of mistakenly identifying a variant segregating at low frequency in the 

expanded population of the O1MA progenitor as a new mutation.  Two pairs of O1MA lines 

shared multiple variants and were inferred to have experienced contamination at some point 

during the MA phase; one line from each pair was arbitrarily omitted from subsequent analyses 

(see Extended Discussion, Supplementary Appendix A2.1).   

 The mutation rate (per-site, per-generation) μ of each O2MA line was calculated as m/nt 

where m is the number of mutations, n is the number of nucleotide sites observed and t is the 

number of generations of MA (Denver et al. 2009).  The average mutation rate of each O1MA 

progenitor was calculated as the unweighted mean of the O2MA lines in that family. 

 We applied three additional variant-calling strategies, one with a more stringent set of 

criteria which we refer to as the "trimmed genome" and two with more liberal criteria, which we 

refer to as the "lenient genome" and "STR-relaxed", respectively.  We also explored several 

alternative GATK filters.  Details of the alternative GATK filters are given in Supplementary 
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Appendix A1.3; justification and details of of the additional variant-calling strategies are given in 

Supplementary Appendix A1.4.   

Mutation Confirmation - From each of the 48 O2MA lines, we randomly chose one putative 

base-substitution and one putative indel mutation for confirmation by Sanger sequencing.  

Details of the confirmation protocol are given in Supplementary Appendix A1.5.  We confirmed 

43/48 putative base-substitutions (zero false positives, five failures) and 36/48 putative indels 

(zero false positives, 12 failures), consistent with a false positive rate below 2.5% based on the 

upper 95% Poisson confidence limit.  The number of failures did not differ significantly between 

base-substitutions and indels (Fisher's exact test, two-tailed P>0.1).       

Data Analysis 

i) Variation among O1MA and O2MA lines - The simplest hypothesis regarding the mutational 

process is that it remained constant over the course of the experiment subsequent to the 

divergence of the O1MA lines from the common G0 ancestor.  To test the hypothesis that a 

uniform mutation rate sufficiently explains variation among MA lines, we simulated the 

evolutionary process of 48 O2MA lines with a uniform base-substitution mutation rate equal to 

the unweighted mean base-substitution mutation rate of the 48 O2MA lines, accounting for the 

number of callable sites (Supplementary Table S2) and the number of generations of second-

order MA of each line (Supplementary Table S1).  The simulation was repeated 100,000 times, 

and the observed variance in mutation rate among the 48 O2MA lines was compared to the 

distribution of simulated variances (Supplementary Figure S1).  An analogous simulation was 

done for the 34 O1MA lines.  Details of the simulation and code are provided in Supplementary 

Appendix A3.1.    

 To test for effects of fitness on mutation rate and to partition the variance in mutation 

rate into within and among-group components, we consider the mutation rate itself as a 

continuously-distributed dependent variable in a general linear model (GLM).  Details of the 

GLM analyses are given in Supplementary Appendix A1.6.   
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 It is possible that the distribution of mutation types – the mutational spectrum - differs 

among groups even if the overall mutation rate does not (Long et al. 2016), or if none of the 

type-specific mutation rates achieves statistical significance.  Spectra were compared among 

groups by Fisher's Exact Test using Monte Carlo sampling as implemented in the FREQ 

procedure of SAS v. 9.4.         

ii) Mutability – Many factors potentially influence the probability that a site will mutate.  Some of 

these factors can be unambiguously characterized from pooled genomic DNA from a population 

of multicellular organisms (local sequence motif, base composition at various scales, local 

recombination rate), whereas other factors that potentially influence heritable mutation are only 

relevant in the context of the germline or its embryonic precursors (e.g., chromatin state, 

nucleosome occupancy, expression level).  To elucidate the relationship between the various 

genomic properties of a given site and the probability that a mutation occurs at that site, we 

employed a logistic regression model in which the log odds-ratio that a mutation occurs at a 

given site (success=mutation) is modeled as the sum of a set of linear predictor input variables 

(Michaelson et al. 2012; Ness et al. 2016).  We initially included as independent variables the 

three-base motif with the focal nucleotide at the 3' end and at the 5' end (these need not be 

redundant if the probability that a sequencing read is included is not identical for the two 

strands), the five-base motif with the focal nucleotide in the center, local recombination rate (see 

Results for details), presence or absence of the focal site in the vicinity of a (mono/di)nucleotide 

run (+ 2 bp), and the 11-base and 1001-base GC-content, centered on the focal site.  For cross-

validation, we trained our models using half of our O2MA lines (n=24), including all base 

substitutions and 100,000 randomly chosen non-mutant sites, and tested the predictions on the 

remaining 24 O2MA lines.  Following model selection, we trained the model using all the 

ancestral O1MA and O2MA mutations (n=1828).  Including only SNPs from the O2MA lines 

(n=1481) had no qualitative effect on the results.   
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Logistic regression was performed using the GLMnet package in R (Friedman et al. 

2010).  The two model parameters are the tuning penalty λ and the ridge/lasso penalty α.  As 

α→0 (ridge), the model tends to shrink the coefficients of correlated predictor variables toward 

each other without dropping any of the predictor variables.  As α→1 (lasso), when predictor 

variables are correlated the model chooses one and discards the other(s).  The tuning 

parameter λ controls the overall strength of the penalty. For all the models we tested, λ was 

chosen by the package’s built-in cross validation function (“lambda-min”). The fit of our models 

remain largely unchanged by the selection of α, with the exception of instances where α→0 

(ridge). For values of α sufficiently close to 0, we observed twice the slope (bias, or regression 

coefficient; expected value = 1) expected when the observed mutation rate is regressed against 

the predicted mutation rate.  All results presented here used α=0.05. 

Models including short tandem repeats (STRs), five base motif and/or 10bp GC content 

together with three-base motif fit poorly.  The poor fit could be due either to overfitting, 

multicollinearity and/or a non-linear relationship between a predictor variable and mutability.  

Moreover, models that included STRs as the only predictors fit reasonably well in terms of 

calibration of the model, but suffer from poorer predictive discrimination, as they lack any 

discrimination in the non-STR region of the genome (~97% of the genome).  The final set of 

models tested include only the three-base motif with the focal nucleotide at the 3' end, 1Kb GC 

content and local recombination rate. For each set of input predictor variables and α, the dataset 

was resampled 200 times, with a different randomly chosen set of 100,000 non-mutant sites, 

and divided into halves, the training set and the test set. The training set consisted of half the 

O2MA lines, and the test set consisted of the other half. For each data partition, the model was 

trained and the fit to the test set was assessed by the fraction of the variance explained by the 

linear regression of the observed (test) value on the predicted (training) value (R2), the 

regression coefficient (bias, expected value = 1), and the area under the ROC curve (AUC, or c-

statistic) for predictive discrimination (varies between 0 and 1).  For each set of α and input 
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variables, we generated a distribution of 200 R2 values, bias values and AUC values, and 

retained model(s) that maximized R2, and AUC while kept the regression coefficient to as close 

to one as possible.  Code and example files are provided in Supplementary Appendix A3.2. 

Although mutability potentially varies between 0 and 1, the highest mutability observed 

rarely exceeded 0.2, as average mutability is the fraction of mutant sites as compared to the 

total number of sites.  During cross-validation, we trained the model on slightly under half of the 

total mutations (~740 mutants; half of all O2MA mutants, and none of the O1MA mutants), and 

100,000 randomly selected sites, yielding the expected value of mutability to be ~0.007 

(740/(100000+740)).  Following model selection, to assess the relationship between standing 

genetic variation and mutability, we recalculated mutability using all 1828 mutations.  Expected 

mutability calculated from the full data set is ~0.017 (1828/(100000+1828)). 

To assess the relative contribution to mutability of different genomic features, we took a 

slightly different approach.  It is not possible to condense 64 3-base motifs into a single 

predictor in a standard logistic regression framework. Instead, we trained a logistic regression 

model using only the 3-base motif, and used the predictions made from this model as predictors 

in a second logistic regression, which yields a single coefficient for 3-base motif.  We then 

selected 1828 random sites from the genome, treated them as mutations, and repeated the 

process 100 times to obtain the null distribution for these coefficients. 

iii) Copy Number Variants - We called putative copy-number variants (CNVs) using a read-depth 

(RD) based approach as implemented in the CNV-Seq software (Xie and Tammi 2009). Read-

depth outliers in an O2MA line are identified relative to its O1MA ancestor.  We employed a 

sliding window approach, in which read-depth in a given window in the focal O2MA sample is 

compared to read-depth in the reference (O1MA ancestor), by taking the ratio of total reads 

falling in that window, normalized by the average read-depth for that chromosome in that 

sample. We used two different signal thresholds (1.5x/2x) for calling duplications or deletions, 

and two different sliding window sizes (100 bp/200 bp).  The minimum detectable size of a CNV 
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is 1kb in all cases. A putative CNV is called only when all sliding windows covering an interval 

meet the signal threshold.  The smaller the window, the more conservative the test, because 

more consecutive windows must meet the signal criterion. Similarly, the greater the signal 

threshold, the more conservative the criterion.  As with other types of variants, only putative 

CNVs unique to a single O2MA line are considered potential mutations.  For reasons which we 

elaborate in the Results, we did not attempt to validate CNVs.  

iv) Predicted Mutational Effects – Selection in a MA experiment is minimal, but it is not absent.  

Mutations with fitness effects s > 1/4Ne will be subject to purifying selection (Ne ≈ 1 in this 

experiment), and we expect that different types of mutations will have different probabilities of 

surpassing the threshold of effective neutrality.  To broadly categorize the distribution of 

predicted mutational effects, we used the publicly available software snpEff 4.1 (Cingolani et al. 

2012) to annotate variants with respect to a set of characteristics potentially related to fitness 

(http://snpeff.sourceforge.net/VCFannotationformat_v1.0.pdf).  The snpEff software uses gene 

lists (gtf/gff3) from the WS234 build of the C. elegans genome to assign a putative effect score 

of high, moderate, or low based on these characteristics, where a "high" effect variant is most 

likely to have a deleterious effect on fitness.  Each variant can have multiple annotations due to 

different alleles and/or different splice variants; we included only the largest potential effect of 

each variant.  Effects were parsed using custom AWK scripts and categorized as having low, 

medium, or high maximum impact.   
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