| 1  | Long-read whole genome sequencing and comparative analysis of six strains of the human                                                               |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | pathogen Orientia tsutsugamushi                                                                                                                      |
| 3  |                                                                                                                                                      |
| 4  |                                                                                                                                                      |
| 5  | Elizabeth M. Batty <sup>a,b,c</sup> , Suwittra Chaemchuen <sup>b</sup> , Stuart D. Blacksell <sup>b,c</sup> , Daniel Paris <sup>b,c,d,e</sup> , Rory |
| 6  | Bowden <sup>a</sup> , Caroline Chan <sup>f</sup> , Ramkumar Lachumanan <sup>f</sup> , Nicholas Day <sup>b,c</sup> , Peter Donnelly <sup>a,g</sup> ,  |
| 7  | Swaine L. Chen <sup>h,i</sup> , Jeanne Salje <sup>b,c#</sup>                                                                                         |
| 8  |                                                                                                                                                      |
| 9  | Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX1 7BN, UK $^{a}$ ;                                                               |
| 10 | Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol                                                                |
| 11 | University, Bangkok, Thailand <sup>b</sup> ;                                                                                                         |
| 12 | Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine,                                                                     |
| 13 | University of Oxford, Oxford, United Kingdom <sup>c</sup> ;                                                                                          |
| 14 | Swiss Tropical and Public Health Institute, Basel, Switzerland <sup>d</sup> ;                                                                        |
| 15 | Faculty of Medicine, University Basel, Basel, Switzerland <sup>e</sup> ;                                                                             |
| 16 | Pacific Biosciences, 1305 O'Brien Drive, Menlo Park, CA 94025, USA <sup>f</sup> ;                                                                    |
| 17 | Department of Statistics, University of Oxford, Oxford, OX1 3TG, UK <sup>g</sup>                                                                     |
| 18 | Department of Medicine, Division of Infectious Diseases, Yong Loo Lin School of Medicine,                                                            |
| 19 | National University of Singapore, Singapore <sup>h</sup>                                                                                             |
| 20 | Genome Institute of Singapore, A*STAR, Singapore 138672 <sup>i</sup>                                                                                 |
| 21 |                                                                                                                                                      |
| 22 |                                                                                                                                                      |
| 23 | <sup>#</sup> Address correspondence to Jeanne Salje: jeanne.salje@ndm.ox.ac.uk                                                                       |
| 24 |                                                                                                                                                      |

#### 25 Abstract (250 words)

#### 26 Background

27 Orientia tsutsugamushi is a clinically important but neglected obligate intracellular bacterial 28 pathogen of the Rickettsiaceae family that causes the potentially life-threatening human 29 disease scrub typhus. In contrast to the genome reduction seen in many obligate 30 intracellular bacteria, early genetic studies of Orientia have revealed one of the most 31 repetitive bacterial genomes sequenced to date. The dramatic expansion of mobile 32 elements has hampered efforts to generate complete genome sequences using short read 33 sequencing methodologies, and consequently there have been few studies of the 34 comparative genomics of this neglected species.

35

#### 36 Results

We report new high-quality genomes of *Orientia tsutsugamushi*, generated using PacBio single molecule long read sequencing, for six strains: Karp, Kato, Gilliam, TA686, UT76 and UT176. In comparative genomics analyses of these strains together with existing reference genomes from Ikeda and Boryong strains, we identify a relatively small core genome of 657 genes, grouped into core gene 'islands' and separated by repeat regions, and use the core genes to infer the first whole-genome phylogeny of *Orientia*.

43

#### 44 **Conclusions**

45 Complete assemblies of multiple Orientia genomes verify initial suggestions that these are remarkable organisms. They have large genomes with widespread amplification of repeat 46 47 elements and massive chromosomal rearrangements between strains. At the gene 48 level, Orientia has a relatively small set of universally conserved genes, similar to other obligate intracellular bacteria, and the relative expansion in genome size can be accounted 49 50 for by gene duplication and repeat amplification. Our study demonstrates the utility of long 51 read sequencing to investigate complex bacterial genomes and characterise genomic 52 variation.

53

54

#### 55 Keywords (3-10)

56 Orientia tsutsugamushi, Rickettsiales, comparative genomics, PacBio, long read sequencing

#### 57 Introduction

#### 58 Background

59 Orientia tsutsugamushi is an obligate intracellular bacterial pathogen of the order 60 Rickettsiales, family Rickettsiaceae which causes the life-threatening human disease scrub 61 typhus. *Orientia* is transmitted by *Leptotrombidium* mites that occasionally feed on humans during the larval stage of development ("chiggers"), inoculate bacteria into the skin, and 62 63 initiate infection. Orientia is maintained in mite populations by transovarial transmission. 64 The mites normally feed only once on a vertebrate host, and cannot transmit bacteria 65 directly from one host to another (Coleman et al., 2003). Bacteria propagate within 66 endothelial cells, dendritic cells and monocytes at the site of inoculation, sometimes 67 resulting in a visible red skin feature called an eschar (Paris et al., 2012). Bacteria subsequently spread through the endothelial and lymphatic system to cause a systemic 68 69 infection characterised by lymphadenopathy, headache, fever, rash and myalgia, which 70 typically begin 7-10 days after inoculation. The non-specificity of these symptoms makes 71 scrub typhus difficult to diagnose based purely on clinical observations, and this is an 72 important reason why the prevalence of scrub typhus has been historically under-73 recognised. Scrub typhus has now been shown to be a leading cause of severe fever and 74 sepsis in studies in Thailand, India, China, Laos and Myanmar (Luce-Fedrow et al., 2018) and 75 untreated or severe cases are associated with CNS infection, morbidity and death (Bonell et 76 al., 2017; Dittrich et al., 2015). Locally acquired cases of scrub typhus have been reported in 77 South America and the Middle East(Izzard et al., 2010; Weitzel et al., 2016), suggesting that the global burden of this disease may stretch beyond the traditionally known endemic areas 78 79 of Asia and Northern Australia (Luce-Fedrow et al., 2018).

80

Orientia tsutsugamushi (previously Rickettsia tsutsugamushi), is distinct from other 81 82 members of the Rickettsiaceae. The genus Orientia currently includes two known species, O. 83 tsutsugamushi and O. chuto, the latter represented to date by a single strain isolated from a 84 patient with a febrile illness contracted in Dubai (Izzard et al., 2010). High antigenic diversity 85 among strains of Orientia tsutsugamushi is reflected in the poor immunological protection that recovered patients exhibit towards strains different from their original infection and, 86 87 combined with a complex immune response that involves both humoral and cell-mediated 88 immunity, this has hampered efforts towards vaccine development.

89

90 Despite its importance as a pathogen, few genomic analyses of *O. tsutsugamushi* have been 91 published. The first whole genome sequence, Boryong, (Cho et al., 2007) reported a 92 proliferation of type IV secretion systems in a repeat-dense genome of which 37.1% comprised identical repeats. A comparison of Boryong and the second complete genome, 93 Ikeda (Nakayama et al., 2008), revealed similar repeats present in each genome, dominated 94 by an integrative element named the Orientia tsutsugamushi amplified genetic element 95 96 and identified a core genome of 520 genes shared between the two O. (OTage), tsutsugamushi strains and the 5 available sequences of other Rickettsia (Nakayama et al., 97 98 2010). Extensive genomic reshuffling was thought to have been mediated by amplification 99 of repetitive sequences.

100

In comparison to other *Rickettsiae*, many of which have small and extremely stable 101 102 genomes, Orientia tsutsugamushi has a large genome with an extraordinary proliferation of 103 repeat sequences and conjugative elements. Some of the conjugative elements present in 104 multiple copies across the genome are homologues of a gene cluster found in a single copy 105 in *Rickettsia bellii*. Many of the genes in these elements are fragmented, suggesting they are 106 non-functional (Darby et al., 2007). Other intracellular pathogens also contain repetitive 107 elements, such as the mobile genetic elements in Wolbachia (Wu et al., 2004) and the 108 tandem intergenic repeats in *Ehrlichia ruminantum* (Frutos et al., 2006). These mechanisms 109 may evolve to increase genetic variability and aid immune evasion in bacteria which cannot 110 easily take up novel DNA.

111

Larger collections of *O. tsutsugamushi* strains have been extensively studied using MLST and sequence typing of the *groES* and *groEL* (Arai et al., 2013) genes, and the outer membrane proteins 47kDa (also called HtrA or TSA47) (Jiang et al., 2013) and 56kDa (also called OmpA or TSA56) (Lu et al., 2010) genes. The 56kDa and 47kDa genes are highly immunogenic in human patients and animal models and have long been investigated as candidates for vaccine design, but high levels of diversity between strains, especially in the 56kDa gene, have limited the potential of developing a universal vaccine based on these epitopes.

120 Multiple studies in South East Asia have looked at the diversity of strains by MLST and 56kDa typing, and shown a high level of diversity, with many MLSTs unique to an individual 121 122 strain (Duong et al., 2013; Phetsouvanh et al., 2015; Sonthayanon et al., 2010; 123 Wongprompitak et al., 2015). Work in Thailand and Laos has shown recombination between 124 MLSTs, as well as evidence for multiple infections in individual patients, implying that 125 multiple strains may co-exist in mites (Sonthayanon et al., 2010). Comparisons of 56kDa 126 typing with MLST (Sonthayanon et al., 2010) and 47kDa (Jiang et al., 2013) also show low 127 congruence between methods, suggesting that single gene typing of Orientia may not 128 represent the true relationships between strains; by extension, a 7-gene MLST scheme may 129 not capture the full set of genomic relationships among strains.

130

131 Attempts to generate complete Orientia tsutsugamushi genomes by whole genome sequencing have been limited by the difficulties of sequencing and assembling a repeat-132 133 dense genome, and no further genomes have been completed since the Boryong and Ikeda 134 genomes in 2008. Current draft assemblies are fragmented with over 50 contigs per 135 genome, and vary in size – the two assemblies of the genome of Orientia tsutsugamushi str. 136 Karp available Genbank 1,459,958bp on are (https://www.ebi.ac.uk/ena/data/view/LANM01000000) 137 and 2,022,909bp 138 (https://www.ncbi.nlm.nih.gov/nuccore/LYMA00000000; Liao et al., 2017) in length, suggesting that assemblies are either incomplete, or have problems caused by the 139 140 misassembly of repeats or the inclusion of contaminating sequences.

141

142 In this work, we have used Pacific Biosciences long-read sequencing to assemble six 143 complete genomes of *Orientia tsutsgamushi* strains representing a range of geographical 144 origins and serotypes. From this, we gain new insights into potential mechanisms underlying 145 the characteristic antigenic diversity of Orientia, which may contribute to its widespread 146 prevalence among humans. Finally, this expanded genomic perspective will contribute to 147 our understanding of the phylogeography and epidemiology of this species, as well as 148 contribute to more detailed studies of virulence mechanisms.

#### 150 Methods

151

### 152 Bacterial propagation

153 All experiments were performed using *O. tsutsugamushi* grown in the mouse fibroblast cell line L929. Uninfected L929 cells were grown in 25 cm<sup>2</sup> and 75 cm<sup>2</sup> plastic flasks at 37 °C and 154 5% CO<sub>2</sub>, using DMEM or RPMI 1640 (Thermo Fisher Scientific) media supplemented with 155 10% FBS (Sigma) as described previously (Giengkam et al 2015). Infected L929 cells were 156 grown in the same way, but at 35 °C. Frozen stocks of bacteria were grown for 5 days, then 157 158 the bacterial content was calculated using qPCR against the bacterial gene TSA47 (Giengkam et al., 2015). Bacteria were isolated onto fresh L929 cells in 75 cm<sup>2</sup> flasks at an Multiplicity 159 160 of Infection of 10:1 and then grown for an additional 7 days. At this point bacteria were 161 isolated from host cells and prepared for DNA extraction.

162

### 163 **DNA extraction**

164 The supernatant was removed from infected flasks and replaced with 6-8 ml pre-warmed 165 media. Infected cells were harvested by mechanical scraping and then lysed using a bullet 166 blender (BBX24B, Bullet Blender Blue, Nextadvance USA) operated at power 8 for 1 min. 167 Host cell debris was removed by centrifugation at 300xg for 3 minutes, and the supernatant 168 was filtered through a 2.0  $\mu$ m filter unit. 10  $\mu$ l of 1.4  $\mu$ g/ $\mu$ l DNase (Deoxyribonuclease I from 169 bovine pancreas, Merck, UK) was added per 1 ml of bacterial solution, then incubated at 170 room temperature for 30 minutes. This procedure removed excess host cell DNA. The bacterial sample was then isolated by centrifugation at 14,000xg for 10 min at 4 °C, and 171 172 washed two times with 0.3M sucrose (Merck, UK). After the washing steps were completed 173 DNA was extracted using a QIAGEN Dneasy Blood & Tissue Kit (QIAGEN, UK) following the 174 manufacturer's instructions.

Purified DNA samples were analysed by gel electrophoresis using 0.8% agarose gel, in order
to assess the DNA integrity. The yield of genomic DNA was quantified using a nanodrop
(Nanodrop<sup>™</sup> 2000, Thermo Scientific, UK) and Qubit Fluorometric Quantitation (Qubit<sup>™</sup> 3.0
Fluorometer, Thermo Scientific, UK).

179

180 Sequencing

181 SMRTBell templates were prepared from purified Orientia genomic DNA according to PacBio's recommended protocols. Briefly, 20kb libraries were targeted; enrichment for large 182 183 fragments was done using BluePippin (Sage Science) size selection method or successive 184 Ampure (Beckman Coulter) clean-ups, depending on the original DNA size distribution and 185 quantity, as recommended by PacBio. SMRTBell templates were sequenced on a Pacific 186 Biosciences RSII Sequencer using P6 chemistry with a 240min run time. An average of 1.05 187 Gb of raw sequence was collected per strain (range 0.3-2.4 Gb), with an average N50 read 188 length of 28.5 Kb (range 10.6-41.5 Kb). Genomes were assembled using the 189 RS\_HGAP\_Assembly.3 protocol from the PacBio SMRTPortal (version 2.3.0), with initial 190 polishing performed on trimmed initial assemblies using the same raw sequencing data with 191 the RS Resequencing.1 protocol. Each assembly was further polished using paired-end 192 reads sequenced on an Illumina Miseq machine. Sequencing information and Illumina data 193 availability for each sample can be found in Table S1; PacBio data is available under EBI 194 accession PRJEB24834. For each assembly, the corresponding Illumina reads were aligned to 195 the PacBio assembly using Stampy v1.0.23 (Lunter and Goodson, 2010). Pilon v1.16 (Walker 196 et al., 2014) was then used to generate a final genome, and corrected 2 to 265 errors in the 197 assemblies, with the majority of the errors being single base deletions at the end of A or T 198 homopolymer runs. All genomes were rotated and reverse complemented as needed so 199 that the predicted start codon for the dnaA gene formed the first nucleotide in the genome 200 sequence. Sequencing and assembly statistics can be found in Table 2.

201

The Boryong, Ikeda, and non-*Orientia* Rickettsial genomes used in this study were obtainedfrom NCBI (Table S2).

204

The finished assemblies were annotated using Prokka v1.11 (Seemann, 2014), using a 205 206 custom database created from the Boryong and Ikeda strains, which were previously 207 annotated using the NCBI prokaryotic annotation pathway. The Boryong and Ikeda strains 208 were re-annotated using Prokka for consistency with the other samples. Short gene names 209 for all non-hypothetical gene products were checked manually (607 products). Where genes names were present for Boryong and/or Ikeda a consensus name based on these was 210 211 selected. Where no short name was available, the long gene name was searched for in E. 212 coli using the UniProt database, and where a single and unambiguous match was selected

this was used. In cases of ambiguity the protein sequence from *Orientia* was used in a BLAST
search against *E. coli, R. rickettsii* and *H. sapiens* and the short name of the closest match
was selected. The key *Orientia* genes *TSA56, TSA47, TSA22, ScaA, ScaC, ScaD,* and *ScaE* were
also manually annotated by taking known protein sequences from the UT76 strain and using
BLAST to find the homologous genes in the other strains and give them the correct names.
The single contig genomes were rotated to begin with the *DnaA* gene.

219

Repetitive regions of the genome were defined as regions of at least 1000bp in length which
had a match with another 1000bp region with up to 100 differences (mismatches,
insertions, and deletions) allowed. The repetitive regions were identified with Vmatch
(Abouelhoda et al., 2004).

224

225 The core and accessory genome was identified using Roary (Page et al., 2015) with a 226 threshold of 80% sequence identity required to consider two sequences part of the same 227 gene group. Core genes were defined as genes present in every sample and as a single copy 228 in every sample. The accessory genes identified using Roary were re-clustered using CD-Hit 229 (Fu et al., 2012; Li and Godzik, 2006) with a cutoff of 80% identity across 95% of the length 230 of the shortest protein to identify accessory genes which were truncated copies of other 231 proteins. The correlation between gene order in each pair of samples was calculated by 232 taking the order of the genes relative to the Karp strain and calculating the Spearman's rank 233 coefficient between each pair. COG categories were assigned using RPS-BLAST to find 234 matches in the NCBI Conserved Domain Database (Marchler-Bauer et al., 2002) and 235 assigning a COG category to these using cdd2cog (Leimbach, 2016). Core repeat genes were 236 identified using protein clusters generated by CD-Hit to find gene groups which were 237 present at more than 1 copy. The clusters were identified using CD-Hit on the proteins 238 predicted by Prokka with a cutoff of 80% identity across 90% of the length of the shortest 239 protein. Pseudogenes were identified from CD-Hit protein clusters where at least one 240 protein was a truncated version of the longest protein in the group. As pseudogenes which 241 are truncated at the 5' end will not be annotated by Prokka, BLAST (Altschul et al., 1997) was using to screen for any additional pseudogenes in non-genic regions by searching for 242 BLAST hits with protein identity >= 80% and an E-value  $<10^{-15}$ . This method found a further 243 244 26-37 pseudogenes per strain.

245

Further analysis used BioPython (Cock et al., 2009) and the GenomeDiagram package (Pritchard et al., 2006). Figure 1 was created with Circos (Krzywinski et al., 2009). Statistical tests were carried out in R (R Core Team, 2014) and the Python SciPy library (Jones et al.). Phylogenies were inferred using Maximum Likelihood methods in RaxML (Stamatakis, 2014)

under the GAMMA model of rate heterogeneity and bootstrap values calculated using the
rapid bootstrap method. The input sequences were aligned with Clustal Omega (Sievers et
al., 2011) (for the 56kDa/46kDa/MLST trees) or using the MAFFT alignments produced by
Roary (for the core gene tree). Phylogenetic trees were drawn using the ape (Paradis et al.,
2004) and phytools (Revell, 2012) R packages, and Robinson-Foulds distances were
calculated using the phangorn (Schliep, 2011) R package.

### 257 Results

258

### 259 Sequencing, Assembly, and Annotation

260 Eight genomes were assembled using the PacBio reads to perform initial genome assembly 261 and Illumina sequencing reads to polish the genomes and reduce errors. Six of the eight 262 genomes could be assembled into a single finished contig, while two genomes remain in 263 multiple contigs. In addition, two previously assembled references genomes, Orientia 264 tsutsugamushi str. Boryong and Orientia tsutsugamushi str. Ikeda, were incorporated into 265 our analysis. The genome size ranges from 1.93Mb to 2.47Mb, and the GC content for all 266 strains is consistent at 30-31%. We assessed the genomes to identify core genes shared between all genomes, and look for repetitive regions and repeat genes in each strain. 267 Figure 1 plots the genetic elements of each complete genome. 268

The number of predicted genes in each strain ranges from 2086 (UT176) to 2709 (Gilliam) 269 and is highly correlated with genome size (Spearman's correlation coefficient 0.94, p < 270 2.2x10<sup>-16</sup>). A function could not be assigned, by similarity to reported sequences, to 325-547 271 272 22 % of the identified coding regions) in genes (16 to each strain.

#### 273 Core genome analysis

274

275 The set of 8 complete, single-contig genomes was used to identify core genes (present in all 276 genomes) and accessory genes (present in a subset of genomes), using the criterion that all 277 members of a group of putative orthologues should be at least 80% identical (similar) to all 278 other members of the group. While the unfinished genomes do not appear to have lower 279 numbers of predicted genes, which might indicate the assembly is incomplete, for this 280 analysis the two strains which assembled as multiple contigs were excluded to avoid 281 excluding core genes which are missing from the unfinished assemblies. A total of 657 gene 282 groups were present in all 8 strains and therefore form a putative core genome, while 2812 283 gene groups were present in 2-7 of the 8 strains, and a further 4687 gene groups were 284 found in a single strain. The 657 core genes make up 28-35% of the genome of each strain 285 (Table S3). The number of core gene groups does not continue to decrease as more 286 genomes are added to the analysis, suggesting that the core genome of Orientia can be 287 defined with 8 representative genomes. In the initial analysis with Roary, the total number 288 of gene groups continues to grow, suggesting an open pan-genome, but observation of the 289 7499 accessory gene groups showed that of the 6050 groups where a function can be 290 assigned to one or more gene, there are only 122 distinct gene products, many of them 291 conjugal transfer proteins, transposases, DNA helicases, and other functions shared by 292 genes known to be part of the Orientia tsutsugamushi amplified genetic element identified 293 in the Ikeda strain (Nakayama et al., 2008). Re-clustering these accessory genes but allowing 294 genes which are only a match to part of a gene sequence to cluster together to include 295 more truncated and fragmented copies of genes shows that the number of accessory gene 296 groups continues to increase, but at a slower rate (Figure S1). The number of gene products 297 remains constant at 122 no matter how many strains are included in the analysis. This 298 suggests that the increase in non-core gene clusters is mainly due to further duplication and 299 truncation of existing genes, rather than by the import of novel genes.

300

#### 301 Genome Synteny

With the completed genomes produced by long read sequencing, the synteny of the genomes can be investigated. Previous work on the Boryong and Ikeda genomes showed extensive genome shuffling between the two strains. Analysis of the order and grouping of 305 the core genes which are conserved in each genome shows that the genome has undergone 306 massive rearrangement, with the core genes found in core gene 'islands' with repeat 307 regions interspersed between these islands. The 657 core genes are present in 145-157 308 distinct islands, of which only 51 are conserved (defined as the same genes present in the 309 same order) in all genomes. Figure 3 shows the position and ordering of these conserved 310 core gene islands which are maintained in all samples relative to the position and ordering in the Karp strain. The correlation between gene order in each pair of samples is shown in 311 312 Figure S2. A value close to 0 shows low correlation in gene order, while values closer to 1 show higher correlation in gene order. As there are differences in the correlation of gene 313 314 order between strains, this suggests that the process of genome rearrangement is 315 happening in multiple steps and not as a single event.

316

The identities of genes present on conserved islands is shown in table S5. Conserved islands 317 318 range from 1-13 genes in size, with larger islands often containing genes linked by plausible 319 biological functions. For example, groups 3 and 6 include a number of cell division and 320 peptidoglycan biosynthesis genes (including mraY, murF, murE, pbp, ftsL, dnaJ and dnaK in 321 group 3 and murC, murB, ddl and ftsQ in group 6) and groups 31 and 32 include a number of 322 30S and 50S ribosomal proteins. Analysis of the number of conserved islands shared 323 between samples shows that the number of conserved islands continues to decrease as 324 more genomes are included (Figure S3), and suggests that gene order and clustering is not 325 always constrained in Orientia tsutsugamushi. There is no difference seen in the size of the 326 islands between conserved and non-conserved islands (Figure S4) (two-sample Kolmogorov-327 Smirnov test D=0.085, p-value=0.86), the nucleotide diversity between genes in the two 328 categories of islands (Figure S5) (two-sample Kolmogorov-Smirnov test D=0.052, pvalue=0.86), or the Clusters of Orthologous Groups (COG) categories assigned to genes in 329 the two island categories (Chi-squared test  $\chi^2$ = 15.03, p=0.82). 330

331

#### 332 Repeats and pseudogenes

The genomes of *Orientia tsutsugamushi* are known to be highly repetitive, including a highly amplified genetic element known as the *Orientia tsutsugamushi* amplified genetic element (Otage), as well as other transposable elements. 336 Our results emphasise the large number of repeated genes and regions, including many genes related to the Type IV secretion system. The total proportion of the genome which is 337 338 repetitive (see Methods for our definition of repetitive) differs markedly from 33% in UT176 339 to 51% in Gilliam (Table S3). In contrast, the extremely compact (and therefore nonrepetitive) Rickettsia typhi genome is 0% repetitive by our measure and even, intriguingly, 340 the Rickettsia endosymbiont of Ixodes scapularis, known to encode multiple copies of the 341 342 same repetitive element found in Orientia (Gillespie et al., 2012), is 20% repetitive in our 343 analysis, despite our methods giving more conservative figures than previously determined 344 for the Ikeda strain (Nakayama et al., 2008).

345 We identified 530 groups of repeat genes containing 12043 genes present in multiple copies 346 in at least one strain, which we term "core repeats". Of the 530 groups, 427 represent genes 347 found in multiple strains, which 103 are found only in a single strain. Despite clustering in 348 530 groups, the genes have only 66 different functional products, as is expected from the 349 earlier results looking at all the non-core genes. The repeat genes are mainly transposase 350 and conjugal transfer genes, similar to those previously reported in the Otage (Table S6), 351 and cluster into genetic elements which are interspersed between the core genes. Many of 352 these genes are present in high copy number, with all strains carrying over 200 transposases and 300 conjugal transfer genes and gene fragments. These core repeat elements occupy 353 354 35-47% of the Orientia tsutsugamushi genome and represent 57-67% of the genes in these 355 genomes (Table S4).

356

357 *Orientia tsutsugamushi* genes are known to exhibit high levels of pseudogenisation and 358 gene decay. We searched for pseudogenes in each genome, and identified up to 484 359 pseudogenes per strain (Table S7). This is lower than previously reported in Ikeda, but due 360 to methodological differences the figures cannot be directly compared. We also assessed 361 whether the pseudogene had been caused by truncation at the 5' or 3' end of the 362 sequencing, or by frameshift.

363

#### 364 **Phylogenetics**

A phylogenetic tree was constructed using the core genes from each strain. This can be compared to trees built using the 56kDa (Figure 4) and 47kDa (Figure S6) genes, which are often used for phylogenetic analysis of *Orientia tsutsugamushi*, or to trees built using the MLST genes (Figure S7). *Orientia* strains are commonly based on their similarity to reference strains, either from phylogenetics or serology. Compared to the 56kDa tree, the core gene tree suggests the Kato and Ikeda strains are more closely related to the Karp, UT176, and UT76 strains than the TA686 and Gilliam strains (Figure 4). Robinson-Foulds distances between trees are shown in Table S8; for this small number of strains, the distance is lowest between the 47kDa tree and the core genome tree.

374

### 375 Discussion

We present the first large-scale study of *Orientia tsutsugamushi*, a bacterium which is important both for the study of human disease and for its unique insights into genome evolution.

379 Previous studies of Orientia tsutsugamushi genomes have used BAC cloning and Sanger 380 sequencing to produce complete genomes (Cho et al., 2007; Nakayama et al., 2008), or have 381 used next-generation sequencing strategies which have produced only incomplete and 382 fragmented genomes (Liao et al., 2017). We demonstrate that a combination of PacBio and 383 Illumina sequencing is sufficient to produce a single-contig genome, allowing us to study the 384 gene content and synteny of this organism. For the two genomes which could not be 385 assembled into single contigs in our study (FPW1038 and TA763), we found that the 386 sequencing produced fewer reads at the high end of the length distribution. This suggests 387 that given the highly repetitive nature of the Orientia tsutsugamushi genome, the DNA preparation and sequencing methods must be carefully chosen to produce very long reads 388 389 in order to produce complete assemblies. We used Illumina sequencing to correct errors in 390 our genomes, which was vital to reduce the number of homopolymer errors, which could 391 otherwise suggest frameshift errors and affect gene annotation. While the fewest errors we 392 corrected in a strain was two, this is likely an underestimate as errors in repetitive regions 393 where Illumina reads cannot map are impossible to correct. While our analysis shows small 394 differences when quantifying the extent of the repeat regions and repeat gene families in 395 Orientia compared to previous work, a direct comparison is difficult due to differences in 396 methodology between analyses.

397 Owing to the difficulties of producing complete genomes, most previous work has relied on single gene or MLST studies to investigate the genetic diversity of Orientia tsutsugamushi. 398 399 We demonstrate that phylogenies generated from limited data are substantially different 400 from those produced from the whole core genome. The common practice of grouping 401 Orientia strains into 'Karp-like' or 'Gilliam-like' groups based on the genotype of the 56kDa 402 antigen may not give an accurate view of the relatedness of these strains, especially when 403 recombination is taken into account, although this may still be important when considering 404 immune response.

405 Previous work has demonstrated limited synteny between the two reference strains of 406 *Orientia tsutsugamushi*, but we extend this to demonstrate that there is minimal synteny 407 between any known Orientia tsutsugamushi genome. The pattern of core gene islands 408 separated by transposable elements and repeats suggests a repeat-mediated system of 409 chromosome rearrangement. It is unclear whether this is a gradual process of genome 410 rearrangement, or whether the genome is being broken apart and rearranged rapidly, similar to chromothripsis or the chromosome repair of *Deinoccocus radiodurans* after 411 412 exposure to ionizing radiation. In *Deinococcus*, it is thought that RecFOR pathway is particularly important for DNA repair, and it has no homologues to RecB or RecC (Cox et al., 413 414 2010). Similarly, in Orientia, the core genome does not contain RecB or RecC, but does 415 contain the RecFOR pathway genes, indicating this alternative DNA repair pathway may also 416 be important. Longitudinal studies of *Orientia tsutsugamushi* genomes during passage or 417 infection may be needed to determine the speed and processes of genome rearrangement 418 in Orientia.

We report a core genome of only 657 genes, compared to the 519 previously reported as the core genome shared between *Orientia* and five other sequenced *Rickettsia*, despite using a relatively low sequence identity threshold to determine gene clusters. Differences in methodology may lead to the reporting of different core gene sets, but more interesting is the pattern of core genome islands separated by amplified repeat regions, and the lack of conservation in the ordering and clustering of the core genes.

425 All of the *Orientia* genomes show high repetitiveness, which we measured as both non-426 unique regions of the genome, and genes which are present in multiple copies (some of 427 which may be truncated). The genomes of intracellular bacteria tend towards genome reduction and gene loss (Darby et al., 2007; Merhej and Raoult, 2011), but maintain 428 429 degraded genes and accumulate non-coding DNA. The transition to intracellularity has been 430 hypothesized to lead to the relaxation of selective pressure on the genome (Moran, 1996), 431 with an increased rate of sequence evolution. The expansion of the Otage (and other mobile elements) throughout the Orientia lineage appears to be another consequence of relaxed 432 selection on Orientia in its intracellular niche, again leading to accelerated sequence 433 434 evolution of the genome through rearrangement and gene loss. This is supported by the 435 finding that the diversity of gene repertoire between strains of Orientia tsutsugamushi is 436 largely due to the duplication and truncation of existing genes, and we find no evidence for 437 the acquisition of new genetic material via horizontal transfer . The amplication of a 438 transposable element has been seen in Rickettsial (Gillespie et al., 2012) and non-Rickettsial (Wiens et al., 2008) species, but it is not known whether this is associated with 439 440 rearrangement of the genome in other species.

441 In conclusion, we report the generation of six complete and a further two draft genomes 442 from a diverse set of strains of the important but neglected human pathogen Orientia 443 tsutsugamushi. This set includes the major reference strains Karp, Kato and Gilliam, and will 444 serve as a valuable resource for scientists and clinicians studying this pathogen, in particular 445 supporting future work on Orientia genomics, vaccine development, and cell biology. The 446 new genomes reported here confirm the status of Orientia as one of the most fragmented 447 and highly repeated bacterial genomes known, and exciting questions remain regarding the 448 mechanisms and timeframes driving the evolution of these extraordinary genomes.

## 450 **Conflict of Interest**

451 P.D. is Founder, Director, and Executive Officer of Genomics plc and a Partner of Peptide452 Groove LLP.

453

## 454 Data Availability

455 Sequence data and assemblies generated in this study have been uploaded to the EBI under 456 project PRJEB24834.

457

## 458 Author Contributions

459

## 460 Acknowledgements and Funding

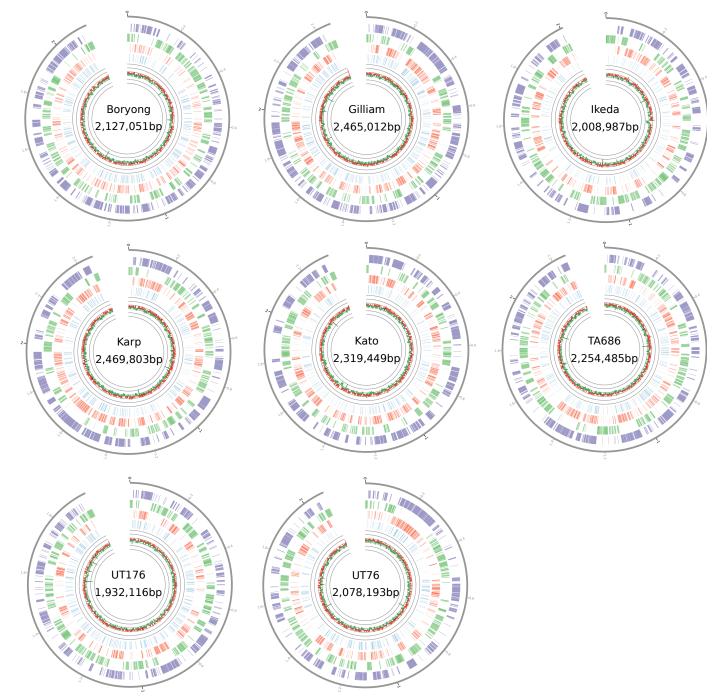
- J.S. was funded by a Royal Society Dorothy Hodgkin Research Fellowship. P.D. is supportedby a Wellcome Trust Core Award (090532/Z/09/Z).
- 463
- 464

# 465 References

- Abouelhoda, M.I., Kurtz, S., and Ohlebusch, E. (2004). Replacing suffix trees with enhanced
  suffix arrays. J. Discret. Algorithms 2, 53–86.
- 468 Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J.
- 469 (1997). Gapped {BLAST} and {PSI-BLAST:} a new generation of protein database search
  470 programs. Nucleic Acids Res. *25*, 3389–3402.
- Arai, S., Tabara, K., Yamamoto, N., Fujita, H., Itagaki, A., Kon, M., Satoh, H., Araki, K., TanakaTaya, K., Takada, N., et al. (2013). Molecular phylogenetic analysis of Orientia tsutsugamushi
- based on the groES and groEL genes. Vector Borne Zoonotic Dis. *13*, 825–829.
- 474 Blacksell, S.D., Luksameetanasan, R., Kalambaheti, T., Aukkanit, N., Paris, D.H., McGready,
- 475 R., Nosten, F., Peacock, S.J., and Day, N.P.J. (2008). Genetic typing of the 56-kDa type-
- 476 specific antigen gene of contemporary *Orientia tsutsugamushi* isolates causing human scrub
- 477 typhus at two sites in north-eastern and western Thailand. FEMS Immunol. Med. Microbiol.
  478 *52*, 335–342.
- 479 Bonell, A., Lubell, Y., Newton, P.N., Crump, J.A., and Paris, D.H. (2017). Estimating the 480 burden of scrub typhus: A systematic review. PLoS Negl. Trop. Dis. *11*, e0005838.
- 481 Cho, N.-H., Kim, H.-R., Lee, J.-H., Kim, S.-Y., Kim, J., Cha, S., Kim, S.-Y., Darby, A.C., Fuxelius,
- 482 H.-H., Yin, J., et al. (2007). The Orientia tsutsugamushi genome reveals massive proliferation
- 483 of conjugative type IV secretion system and host-cell interaction genes. Proc. Natl. Acad. Sci.
  484 U. S. A. *104*, 7981–7986.
- Cock, P.J.A., Antao, T., Chang, J.T., Chapman, B.A., Cox, C.J., Dalke, A., Friedberg, I.,
  Hamelryck, T., Kauff, F., Wilczynski, B., et al. (2009). Biopython: freely available Python tools
  for computational molecular biology and bioinformatics. Bioinformatics *25*, 1422–1423.
- 467 for computational molecular biology and bioinformatics. Bioinformatics 25, 1422–1423.
- Coleman, R.E., Monkanna, T., Linthicum, K.J., Strickman, D.A., Frances, S.P., Tanskul, P.,
  Kollars, T.M., Inlao, I., Watcharapichat, P., Khlaimanee, N., et al. (2003). Occurrence of
  Orientia tsutsugamushi in small mammals from Thailand. Am. J. Trop. Med. Hyg. *69*, 519–
  524.
- 492 Cox, M.M., Keck, J.L., and Battista, J.R. (2010). Rising from the Ashes: DNA Repair in 493 Deinococcus radiodurans. PLoS Genet. *6*, e1000815.
- 494 Darby, A.C., Cho, N.-H., Fuxelius, H.-H., Westberg, J., and Andersson, S.G.E. (2007).
- 495 Intracellular pathogens go extreme: genome evolution in the Rickettsiales. Trends Genet.
- 496 *23,* 511–520.

Dittrich, S., Rattanavong, S., Lee, S.J., Panyanivong, P., Craig, S.B., Tulsiani, S.M., Blacksell,
S.D., Dance, D.A.B., Dubot-Pérès, A., Sengduangphachanh, A., et al. (2015). Orientia,
rickettsia, and leptospira pathogens as causes of CNS infections in Laos: a prospective study.
Lancet. Glob. Heal. *3*, e104-12.

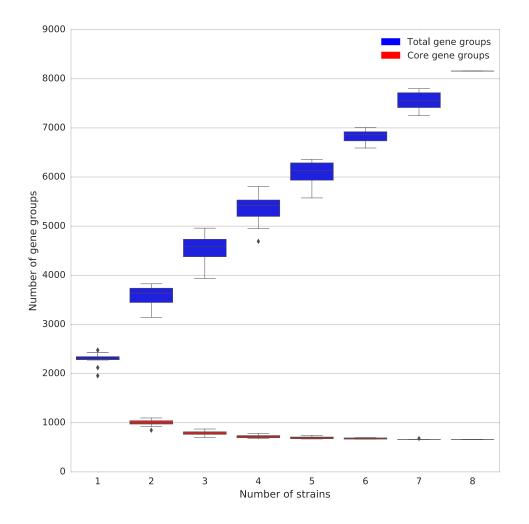
501 Duong, V., Blassdell, K., May, T.T.X., Sreyrath, L., Gavotte, L., Morand, S., Frutos, R., and 502 Buchy, P. (2013). Diversity of Orientia tsutsugamushi clinical isolates in Cambodia reveals 503 active selection and recombination process. Infect. Genet. Evol. *15*, 25–34.


- 504 Enatsu, T., Urakami, H., and Tamura, A. (1999). Phylogenetic analysis of *Orientia* 505 *tsutsugamushi* strains based on the sequence homologies of 56-kDa type-specific antigen 506 genes. FEMS Microbiol. Lett. *180*, 163–169.
- 507 Frutos, R., Viari, A., Ferraz, C., Morgat, A., Eychenié, S., Kandassamy, Y., Chantal, I., Bensaid,
- A., Coissac, E., Vachiery, N., et al. (2006). Comparative genomic analysis of three strains of
  Ehrlichia ruminantium reveals an active process of genome size plasticity. J. Bacteriol. *188*,
  2533–2542.
- 511 Fu, L., Niu, B., Zhu, Z., Wu, S., and Li, W. (2012). CD-HIT: accelerated for clustering the next-
- generation sequencing data. Bioinformatics 28, 3150–3152.
  Giengkam, S., Blakes, A., Utsahajit, P., Chaemchuen, S., Atwal, S., Blacksell, S.D., Paris, D.H.,
- 513 Giengkam, S., Biakes, A., Utsanajit, P., Chaemonuen, S., Atwai, S., Biacksen, S.D., Paris, D.H.,
- 514 Day, N.P.J., and Salje, J. (2015). Improved Quantification, Propagation, Purification and 515 Storage of the Obligate Intracellular Human Pathogen Orientia tsutsugamushi. PLoS Negl.
- 516 Trop. Dis. *9*, e0004009.
- 517 Gillespie, J.J., Joardar, V., Williams, K.P., Driscoll, T., Hostetler, J.B., Nordberg, E., Shukla, M.,
- 518 Walenz, B., Hill, C.A., Nene, V.M., et al. (2012). A Rickettsia genome overrun by mobile 519 genetic elements provides insight into the acquisition of genes characteristic of an obligate
- 520 intracellular lifestyle. J. Bacteriol. *194*, 376–394.
- 521 Izzard, L., Fuller, A., Blacksell, S.D., Paris, D.H., Richards, A.L., Aukkanit, N., Nguyen, C., Jiang,
- 522 J., Fenwick, S., Day, N.P.J., et al. (2010). Isolation of a Novel *Orientia* Species (*O. chuto* sp. 523 nov.) from a Patient Infected in Dubai. J. Clin. Microbiol. *48*, 4404–4409.
- 524 Jiang, J., Paris, D.H., Blacksell, S.D., Aukkanit, N., Newton, P.N., Phetsouvanh, R., Izzard, L.,
- 525 Stenos, J., Graves, S.R., Day, N.P.J., et al. (2013). Diversity of the 47-kD HtrA nucleic acid and
- translated amino acid sequences from 17 recent human isolates of Orientia. Vector BorneZoonotic Dis. *13*, 367–375.
- 528 Jones, E., Oliphant, T., Peterson, P., and others {SciPy}: Open source scientific tools for 529 {Python}.
- 530 Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones, S.J., and
- 531 Marra, M.A. (2009). Circos: An information aesthetic for comparative genomics. Genome
- 532 Res. 19, 1639–1645.
  - Leimbach, A. (2016). bac-genomics-scripts: Bovine E. coli mastitis comparative genomics edition.
  - Li, W., and Godzik, A. (2006). Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics *22*, 1658–1659.
  - 537 Liao, H.-M., Chao, C.-C., Lei, H., Li, B., Tsai, S., Hung, G.-C., Ching, W.-M., and Lo, S.-C. (2017).
  - 538 Intraspecies comparative genomics of three strains of Orientia tsutsugamushi with different 539 antibiotic sensitivity. Genomics Data *12*, 84–88.
  - 540 Lu, H.-Y., Tsai, K.-H., Yu, S.-K., Cheng, C.-H., Yang, J.-S., Su, C.-L., Hu, H.-C., Wang, H.-C.,
  - 541 Huang, J.-H., and Shu, P.-Y. (2010). Phylogenetic analysis of 56-kDa type-specific antigen
  - 542 gene of Orientia tsutsugamushi isolates in Taiwan. Am. J. Trop. Med. Hyg. *83*, 658–663.
  - 543 Luce-Fedrow, A., Lehman, M., Kelly, D., Mullins, K., Maina, A., Stewart, R., Ge, H., John, H.,

- Jiang, J., and Richards, A. (2018). A Review of Scrub Typhus (Orientia tsutsugamushi and Related Organisms): Then, Now, and Tomorrow. Trop. Med. Infect. Dis. *3*, 8.
- 546 Lunter, G., and Goodson, M. (2010). Stampy: A statistical algorithm for sensitive and fast 547 mapping of Illumina sequence reads. Genome Res.
- 548 Marchler-Bauer, A., Panchenko, A.R., Shoemaker, B.A., Thiessen, P.A., Geer, L.Y., and Bryant,
- 549 S.H. (2002). CDD: a database of conserved domain alignments with links to domain three-550 dimensional structure. Nucleic Acids Res. *30*, 281–283.
- 551 McGready, R., Blacksell, S.D., Luksameetanasan, R., Wuthiekanun, V., Jedsadapanpong, W.,
- 552 Day, N.P.J., and Nosten, F. (2010). First report of an Orientia tsutsugamushi type TA716-553 related scrub typhus infection in Thailand. Vector Borne Zoonotic Dis. *10*, 191–193.
- Merhej, V., and Raoult, D. (2011). Rickettsial evolution in the light of comparative genomics.
  Biol. Rev. Camb. Philos. Soc. *86*, 379–405.
- Moran, N.A. (1996). Accelerated evolution and Muller's rachet in endosymbiotic bacteria.
  Proc. Natl. Acad. Sci. U. S. A. *93*, 2873–2878.
- Nakayama, K., Yamashita, A., Kurokawa, K., Morimoto, T., Ogawa, M., Fukuhara, M.,
  Urakami, H., Ohnishi, M., Uchiyama, I., Ogura, Y., et al. (2008). The Whole-genome
  sequencing of the obligate intracellular bacterium Orientia tsutsugamushi revealed massive
  gene amplification during reductive genome evolution. DNA Res. *15*, 185–199.
- Nakayama, K., Kurokawa, K., Fukuhara, M., Urakami, H., Yamamoto, S., Yamazaki, K., Ogura,
  Y., Ooka, T., and Hayashi, T. (2010). Genome comparison and phylogenetic analysis of
  Orientia tsutsugamushi strains. DNA Res. *17*, 281–291.
- Page, A.J., Cummins, C.A., Hunt, M., Wong, V.K., Reuter, S., Holden, M.T.G., Fookes, M.,
  Falush, D., Keane, J.A., and Parkhill, J. (2015). Roary: rapid large-scale prokaryote pan
  genome analysis. Bioinformatics *31*, 3691–3693.
- 568 Paradis, E., Claude, J., and Strimmer, K. (2004). A{PE}: analyses of phylogenetics and 569 evolution in {R} language. Bioinformatics *20*, 289–290.
- Paris, D.H., Aukkanit, N., Jenjaroen, K., Blacksell, S.D., and Day, N.P.J. (2009). A highly
  sensitive quantitative real-time PCR assay based on the groEL gene of contemporary Thai
  strains of Orientia tsutsugamushi. Clin. Microbiol. Infect. *15*, 488–495.
- 573 Paris, D.H., Phetsouvanh, R., Tanganuchitcharnchai, A., Jones, M., Jenjaroen, K.,
- Vongsouvath, M., Ferguson, D.P.J., Blacksell, S.D., Newton, P.N., Day, N.P.J., et al. (2012).
  Orientia tsutsugamushi in human scrub typhus eschars shows tropism for dendritic cells and
  monocytes rather than endothelium. PLoS Negl. Trop. Dis. *6*, e1466.
- 577 Phetsouvanh, R., Sonthayanon, P., Pukrittayakamee, S., Paris, D.H., Newton, P.N., Feil, E.J.,
  578 Day, N.P.J., Kurup, A., Issac, A., Loh, J., et al. (2015). The Diversity and Geographical
- 579 Structure of Orientia tsutsugamushi Strains from Scrub Typhus Patients in Laos. PLoS Negl.
  580 Trop. Dis. *9*, e0004024.
- 581 Pritchard, L., White, J.A., Birch, P.R.J., and Toth, I.K. (2006). GenomeDiagram: a python 582 package for the visualization of large-scale genomic data. Bioinformatics *22*, 616–617.
- 583 R Core Team (2014). R: A Language and Environment for Statistical Computing.
- Revell, L.J. (2012). phytools: An R package for phylogenetic comparative biology (and other
  things). Methods Ecol. Evol. *3*, 217–223.
- 586 Rights, F.L., and Smadel, J.E. (1948). Studies on scrub typhus; tsutsugamushi disease;
- heterogenicity of strains of R. tsutsugamushi as demonstrated by cross-vaccination studies.
  J. Exp. Med. *87*, 339–351.
- 589 Schliep, K.P. (2011). phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593.
- 590 Seemann, T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–

591 2069.

- Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., McWilliam, H.,
  Remmert, M., Söding, J., et al. (2011). Fast, scalable generation of high-quality protein
  multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. *7*.
- 595 Sonthayanon, P., Peacock, S.J., Chierakul, W., Wuthiekanun, V., Blacksell, S.D., Holden, 596 M.T.G., Bentley, S.D., Feil, E.J., and Day, N.P.J. (2010). High rates of homologous 597 recombination in the mite endosymbiont and opportunistic human pathogen Orientia 598 tsutsugamushi. PLoS Negl. Trop. Dis. *4*, e752.
- 599 Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of 600 large phylogenies. Bioinformatics *30*, 1312–1313.
- Walker, B.J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., Cuomo, C.A., Zeng,
  Q., Wortman, J., Young, S.K., et al. (2014). Pilon: An Integrated Tool for Comprehensive
  Microbial Variant Detection and Genome Assembly Improvement. PLoS One *9*, e112963.
- 604 Weitzel, T., Dittrich, S., López, J., Phuklia, W., Martinez-Valdebenito, C., Velásquez, K.,
- 605 Blacksell, S.D., Paris, D.H., and Abarca, K. (2016). Endemic Scrub Typhus in South America. N. 606 Engl. J. Med. *375*, 954–961.
- 607 Wiens, G.D., Rockey, D.D., Wu, Z., Chang, J., Levy, R., Crane, S., Chen, D.S., Capri, G.R.,
- Burnett, J.R., Sudheesh, P.S., et al. (2008). Genome sequence of the fish pathogen Renibacterium salmoninarum suggests reductive evolution away from an environmental Arthrobacter ancestor. J. Bacteriol. *190*, 6970–6982.
- 611 Wongprompitak, P., Duong, V., Anukool, W., Sreyrath, L., Mai, T.T.X., Gavotte, L., Moulia, C.,
- 612 Cornillot, E., Ekpo, P., Suputtamongkol, Y., et al. (2015). Orientia tsutsugamushi, agent of 613 scrub typhus, displays a single metapopulation with maintenance of ancestral haplotypes
- 613 scrub typhus, displays a single metapopulation with maintenance of a
  614 throughout continental South East Asia. Infect. Genet. Evol. *31*, 1–8.
- 615 Wu, M., Sun, L. V, Vamathevan, J., Riegler, M., Deboy, R., Brownlie, J.C., McGraw, E.A.,
- 616 Martin, W., Esser, C., Ahmadinejad, N., et al. (2004). Phylogenomics of the Reproductive
- 617 Parasite Wolbachia pipientis wMel: A Streamlined Genome Overrun by Mobile Genetic
- 618 Elements. PLoS Biol. 2, e69.
- 619
- 620

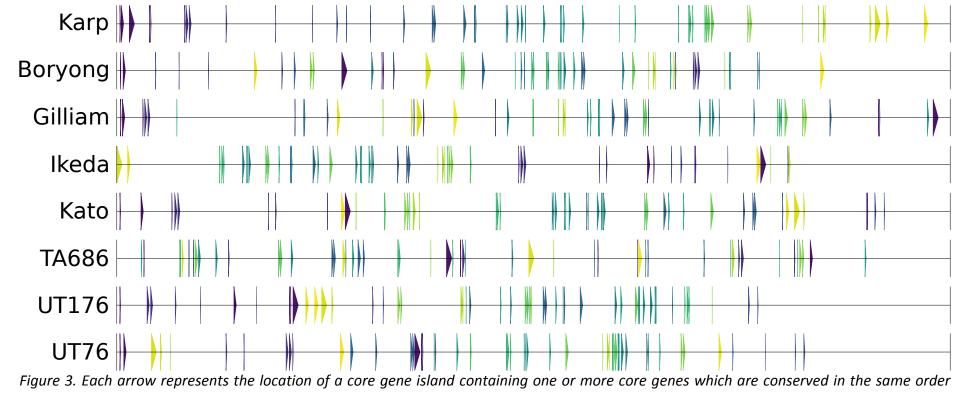

## 621 Figures and Tables



622

Figure 1. Ring diagrams for all single-contig strains. From outermost feature in each genome, moving inwards: repetitive regions are shown in purple, core genes in green, repeat genes in red and pseudogenes in blue. The track shows the GC percentage in windows of 1000bp. Values above the median GC are in green, and values below the median GC are in red.

- 628
- 629




630

631 Figure 2: The number of core gene groups and the total number of gene groups (including

632 the core gene groups) as more strains are added to the analysis. Boxplots represent all

633 *possible combinations of the number of strains given on the x-axis.* 



636 within an island across all strains. The arrows are coloured relative to their order in the Karp genome.

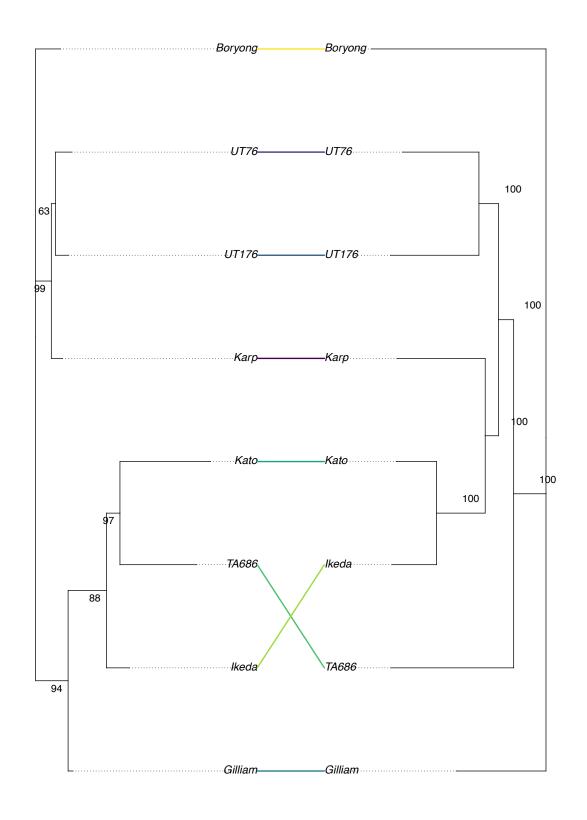



Figure 4. Phylogenetic trees generated from the 56kDa antigen sequence (left) and the
sequence of the 657 core genes (right). The tree was inferred using the maximum likelihood
method implemented in RaxML, and bootstrap values were calculated with the RaxML rapid
bootstrap method.

| Strain  | Original Source     | Source in this study | Reference             |
|---------|---------------------|----------------------|-----------------------|
| Karp    | New Guinea, human   | Naval Medical        | (Enatsu et al., 1999) |
|         | patient, 1943       | Research Centre      |                       |
|         |                     | (NMRC)               |                       |
| Kato    | Niigata, Japan,     | NMRC                 | (Enatsu et al., 1999) |
|         | human patient,      |                      |                       |
|         | 1955                |                      |                       |
| Gilliam | Indian-Burmese      | NMRC                 | (Rights and Smadel,   |
|         | border, human       |                      | 1948)                 |
|         | patient, 1943       |                      |                       |
| TA686   | Thailand, animal    | NMRC                 | (Enatsu et al., 1999) |
|         | (Tupaia glis), 1963 |                      |                       |
| TA763   | Thailand, animal    | NMRC                 | (Enatsu et al., 1999) |
|         | Rattus rajah), 1963 |                      |                       |
| FPW1038 | Thailand-Burmese    | Mahidol-Oxford       | (McGready et al.,     |
|         | border, human       | Research Centre      | 2010)                 |
|         | patient (pregnant), | (MORU)               |                       |
|         | 2010                |                      |                       |
| UT76    | Udon Thani,         | MORU                 | (Blacksell et al.,    |
|         | Thailand, human     |                      | 2008)                 |
|         | patient, 2003       |                      |                       |
| UT176   | Udon Thani,         | MORU                 | (Paris et al., 2009)  |
|         | Thailand, human     |                      |                       |
|         | patient, 2004       |                      |                       |

642 Table 1. Bacterial strains used in this study.

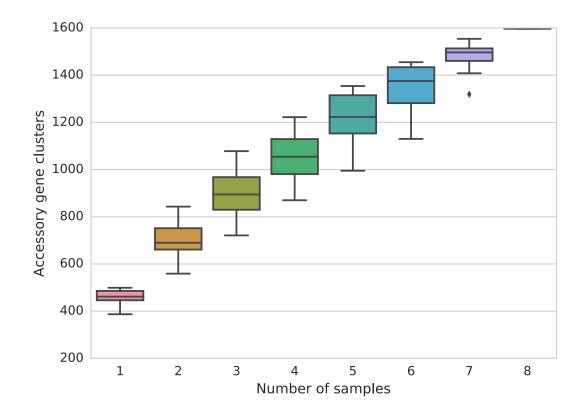
| Strain   | Genome length<br>(bp) | Contigs | GC<br>percentage | Errors corrected by Illumina sequencing |
|----------|-----------------------|---------|------------------|-----------------------------------------|
| Boryong* | 2,127,051             | 1       | 31               | -                                       |
| lkeda*   | 2,008,987             | 1       | 31               | -                                       |
| FPW1038  | 2,035,338             | 25      | 31               | 265                                     |
| Gilliam  | 2,465,012             | 1       | 31               | 7                                       |
| Karp     | 2,469,803             | 1       | 31               | 48                                      |
| Kato     | 2,319,449             | 1       | 31               | 5                                       |
| TA686    | 2,254,485             | 1       | 31               | 28                                      |
| TA763    | 2,089,396             | 8       | 31               | 88                                      |
| UT76     | 2,078,193             | 1       | 30               | 2                                       |
| UT176    | 1,932,116             | 1       | 30               | 13                                      |

644

Table 2. Assembly statistics for the 10 assemblies used in this analysis. Genomes marked

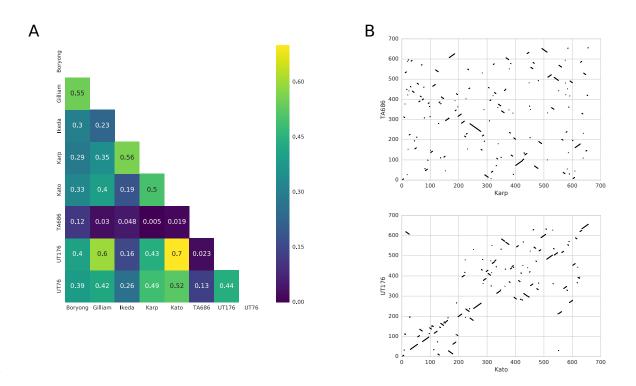
646 with \* are previously-assembled reference strains.

## 648


| Strain  | Genes | Annotated as hypothetical |
|---------|-------|---------------------------|
| Boryong | 2443  | 547                       |
| Ikeda   | 2186  | 417                       |
| FPW1038 | 2198  | 369                       |
| Gilliam | 2709  | 463                       |
| Karp    | 2578  | 470                       |
| Kato    | 2406  | 465                       |
| TA686   | 2546  | 474                       |
| TA763   | 2212  | 396                       |
| UT76    | 2247  | 420                       |
| UT176   | 2086  | 325                       |

649

Table 3. Number of genes predicted in each strain after annotation with Prokka, and the
number of genes which were annotated as hypothetical. The Boryong and Ikeda strains were
reannotated with Prokka for consistency between strains.


# 654 Supplementary Figures and Tables

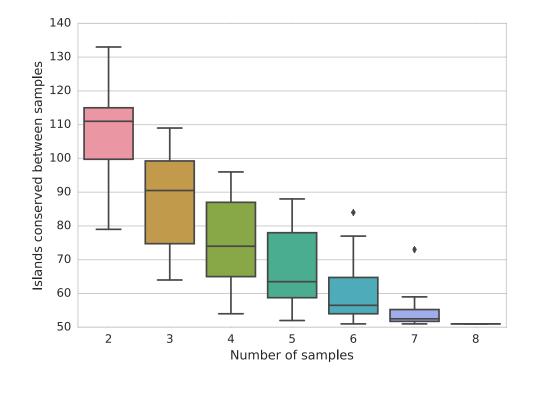
655



656 Figure S1. Boxplot of accessory genes clustered with a lenient length threshold to show how

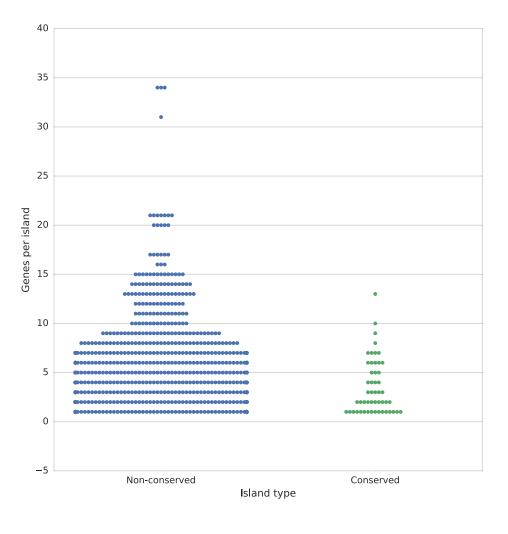
657 the number of clusters increases with number of samples included in the analysis.



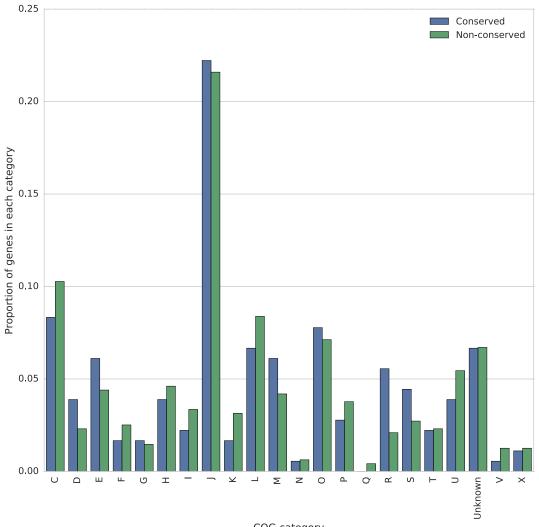

658

659

660 Figure S2. A - Heatmap showing the correlation in gene order between each pair of samples.


661 *B* – dotplots showing the gene ordering between the pair with the highest correlation (Kato

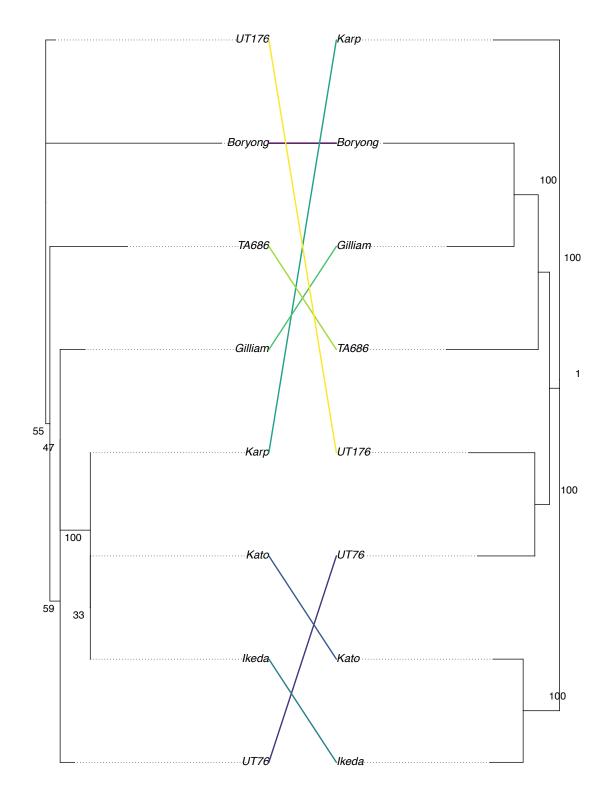
662 and UT176) and the lowest correlation (Karp and TA686).




666 Figure S3. Boxplot showing the number of islands conserved between samples across all

*different combinations of samples.* 

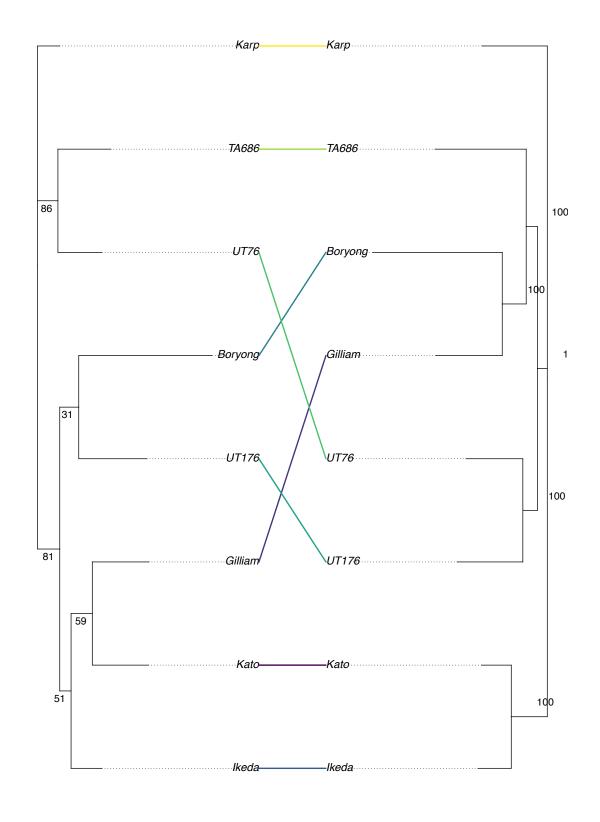



670 Figure S4. The number of genes per island in conserved versus non-conserved islands.



671

COG category


- *Figure S5. The proportion of core genes which are in conserved and non-conserved islands in* 672
- each COG category. 673



675

676 Figure S6. A phylogenetic tree showing the relationship between a tree generated using the

677 47kDa antigen sequences, and the sequences of 657 core genes.



679

Figure S7. A phylogenetic tree showing the relationship between a tree generated using
MLST gene sequences, and the sequences of 657 core genes.

| Strain  | Sequencing                    | Accession   |  |  |
|---------|-------------------------------|-------------|--|--|
| Karp    | Institute for Genome Sciences | PRJNA212440 |  |  |
| Kato    | Institute for Genome Sciences | PRJNA212441 |  |  |
| Gilliam | Institute for Genome Sciences | PRJNA212442 |  |  |
| TA686   | MicrobesNG                    | PRJEB24834  |  |  |
| TA763   | Institute for Genome Sciences | PRJNA212454 |  |  |
| FPW1038 | Oxford Genomics Centre        | PRJEB24834  |  |  |
| UT76    | Oxford Genomics Centre        | PRJEB24834  |  |  |
| UT176   | Oxford Genomics Centre        | PRJEB24834  |  |  |
|         |                               |             |  |  |

683 Table S1. Sources and data accession for Illumina sequencing data.

684

| Genome                                       | NCBI Identifier |
|----------------------------------------------|-----------------|
| Orientia tsutsugamushi strain Boryong        | GCF_000063545.1 |
| Orientia tsutsugamushi strain Ikeda          | GCF_000010205.1 |
| Rickettsia typhi strain Wilmington           | GCF_000008045.1 |
| Rickettsia endosymbiont of Ixodes scapularis | GCF_000160735.1 |
|                                              |                 |

685 Table S2. NCBI identifiers for previously published strains used in this paper.

687 688

| Sample     | Genome  | Length of repetitive | Percentage of genome which is |
|------------|---------|----------------------|-------------------------------|
| Sumple     | Length  | sequence (bp)        | repetitive                    |
| Boryong    | 2127051 | 895302               | 42                            |
| FPW1038    | 2035338 | 957348               | 47                            |
| Gilliam    | 2465012 | 1246424              | 51                            |
| Ikeda      | 2008987 | 721214               | 36                            |
| Karp       | 2469803 | 1210014              | 49                            |
| Kato       | 2319449 | 1050415              | 45                            |
| TA686      | 2254553 | 976333               | 43                            |
| TA763      | 2089396 | 895735               | 43                            |
| UT176      | 1932116 | 635697               | 33                            |
| UT76       | 2078193 | 868414               | 42                            |
| REIS       | 2100092 | 426115               | 20                            |
| Wilmington | 1111496 | 0                    | 0                             |

689Table S3. Total length of repetitive genome sequences in each strain, and as a percentage of

690 the genome. REIS: Rickettsia endosymbiont of Ixodes scapularis. Wilmington: Rickettsia 691 typhi strain Wilmington.

| Sample  | Genome<br>Length | Length of core genes | Core genes as<br>proportion of<br>genome | Length of<br>repeat genes | Repeat genes as<br>percentage of<br>genome |
|---------|------------------|----------------------|------------------------------------------|---------------------------|--------------------------------------------|
| Boryong | 2127051          | 679631               | 0.32                                     | 748541                    | 35                                         |
| Gilliam | 2465012          | 681491               | 0.28                                     | 1165831                   | 47                                         |
| Ikeda   | 2008987          | 683889               | 0.34                                     | 757868                    | 38                                         |
| Karp    | 2469803          | 682061               | 0.28                                     | 1163785                   | 47                                         |
| Kato    | 2319449          | 682142               | 0.29                                     | 1039243                   | 45                                         |
| TA686   | 2254553          | 682706               | 0.30                                     | 933469                    | 41                                         |
| UT176   | 1932116          | 681689               | 0.35                                     | 738572                    | 38                                         |
| UT76    | 2078193          | 682964               | 0.33                                     | 826716                    | 40                                         |

693 Table S4. Core gene and core repeat statistics.

709 Table S5. Core genes calculated by Roary. Gene names are given for the Karp strain.

| Gene group | Island<br>number | Annotation                                                                                | Gene name | Boryong           | Gilliam           | Ikeda           | Karp       | Kato       | TA686           | UT176           | UT76-HP           |
|------------|------------------|-------------------------------------------------------------------------------------------|-----------|-------------------|-------------------|-----------------|------------|------------|-----------------|-----------------|-------------------|
| clpP       |                  | 1 ATP-dependent Clp protease proteolytic subunit                                          |           | Boryong_01<br>567 | Gilliam_019<br>42 | Ikeda_0042<br>3 | Karp_01574 | Kato_01535 | TA686_0207<br>9 | UT176_017<br>55 | UT76-<br>HP_01648 |
| gatB       |                  | 2 aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase subunit B                              | GatB      | Boryong_01<br>584 | Gilliam_019<br>57 | lkeda_0040<br>9 | Karp_01279 |            | TA686_0028<br>8 | UT176_017<br>41 | UT76-<br>HP_01661 |
| gatA       |                  | 2 glutamyl-tRNA(Gln) amidotransferase subunit A                                           | GatA      | Boryong_01<br>583 | Gilliam_019<br>56 | lkeda_0041<br>0 | Karp_01280 | Kato_01522 | TA686_0028<br>9 | UT176_017<br>42 | UT76-<br>HP_01660 |
| group_5707 |                  | 2 aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase subunit C                              | GatC      | Boryong_01<br>582 | Gilliam_019<br>55 | lkeda_0041<br>1 | Karp_01281 |            | TA686_0029<br>0 | UT176_017<br>43 | UT76-<br>HP_01659 |
| group_6080 |                  | 2 RNase J family beta-CASP ribonuclease                                                   |           | Boryong_01<br>581 | Gilliam_019<br>54 | Ikeda_0041<br>2 | Karp_01282 | Kato_01524 | TA686_0029<br>1 | UT176_017<br>44 | UT76-<br>HP_01658 |
| group_7975 |                  | 2 DNA-binding response regulator                                                          |           | Boryong_01<br>580 | Gilliam_019<br>53 | lkeda_0041<br>3 | Karp_01283 |            | TA686_0029<br>2 | UT176_017<br>45 | UT76-<br>HP_01657 |
| group_250  |                  | 3 transposase                                                                             |           | Boryong_00<br>790 | Gilliam_027<br>03 | lkeda_0211<br>8 | Karp_00040 | Kato_00709 | TA686_0116<br>2 | UT176_005<br>74 | UT76-<br>HP_00998 |
| group_5845 |                  | 3 multidrug ABC transporter ATP-binding protein                                           |           | Boryong_00<br>791 | Gilliam_027<br>04 | lkeda_0211<br>9 | Karp_00041 | Kato_00710 | TA686_0116<br>1 | UT176_005<br>73 | UT76-<br>HP_00999 |
| group_7831 |                  | 3 UMP kinase                                                                              |           | Boryong_00<br>792 | Gilliam_027<br>05 | lkeda_0212<br>0 | Karp_00042 | Kato_00711 | TA686_0116<br>0 | UT176_005<br>72 | UT76-<br>HP_01000 |
| group_5846 |                  | 3 phospho-N-acetylmuramoyl-pentapeptide- transferase                                      | MraY      | Boryong_00<br>793 | Gilliam_027<br>06 | lkeda_0212<br>1 | Karp_00043 | Kato_00712 | TA686_0115<br>9 | UT176_005<br>71 | UT76-<br>HP_01001 |
| group_5550 |                  | UDP-N-acetylmuramoylalanyl-D-glutamyl-2, 6-diaminopimelate<br>3 D-alanyl-D-alanine ligase | MurF      | Boryong_00<br>794 | Gilliam_027<br>07 | lkeda_0212<br>2 | Karp_00044 | Kato_00713 | TA686_0115<br>8 | UT176_005<br>70 | UT76-<br>HP_01002 |
| group_5397 |                  | UDP-N-acetylmuramoyl-L-alanyl-D-glutamate2, 6-<br>3 diaminopimelate ligase                | MurE      | Boryong_00<br>795 | Gilliam_027<br>08 | Ikeda_0212<br>3 | Karp_00045 | Kato_00714 | TA686_0115<br>7 | UT176_005<br>69 | UT76-<br>HP_01003 |
| group_5847 |                  | 3 penicillin-binding protein                                                              | PBP       | Boryong_00<br>796 | Gilliam_027<br>09 | Ikeda_0212<br>4 | Karp_00046 | Kato_00715 | TA686_0115<br>6 | UT176_005<br>68 | UT76-<br>HP_01004 |
| ftsL       |                  | 3 hypothetical protein                                                                    | FtsL      | Boryong_00<br>797 | Gilliam_027<br>10 | Ikeda_0212<br>5 | Karp_00047 | Kato_00716 | TA686_0115<br>5 | UT176_005<br>67 | UT76-<br>HP_01005 |
| group_5670 |                  | 3 16S rRNA methyltransferase                                                              |           | Boryong_00<br>798 | Gilliam_027<br>11 | lkeda_0212<br>6 | Karp_00048 | Kato_00717 | TA686_0115<br>4 | UT176_005<br>66 | UT76-<br>HP_01006 |
| group_6027 |                  | 3 molecular chaperone DnaJ                                                                | DnaJ      | Boryong_00<br>799 | Gilliam_027<br>12 | Ikeda_0212<br>7 | Karp_00049 | Kato_00718 | TA686_0115<br>3 | UT176_005<br>65 | UT76-<br>HP_01007 |
| group_7111 |                  | 3 molecular chaperone DnaK                                                                | DnaK      | Boryong_00<br>800 | Gilliam_027<br>13 | Ikeda_0212<br>8 | Karp_00050 | Kato_00719 | TA686_0115<br>2 | UT176_005<br>64 | UT76-<br>HP_01008 |
| group_6028 |                  | 3 BolA family transcriptional regulator                                                   |           | Boryong_00<br>801 | Gilliam_027<br>14 | Ikeda_0212<br>9 | Karp_00051 | Kato_00720 | TA686_0115<br>1 | UT176_005<br>63 | UT76-<br>HP_01009 |
| group_5671 |                  | 3 enoyl-ACP reductase                                                                     | ENR       | Boryong_00<br>802 | Gilliam_027<br>15 | lkeda_0213<br>0 | Karp_00052 | Kato_00721 | TA686_0115<br>0 | UT176_005<br>62 | UT76-<br>HP_01010 |
| group_4752 |                  | 4 sodium:proline symporter                                                                |           | Boryong_00<br>980 | Gilliam_006<br>83 |                 | Karp_00697 |            | TA686_0210<br>2 | UT176_020<br>68 | UT76-<br>HP_02241 |
| group_5324 |                  | 5 hypothetical protein                                                                    |           | Boryong_00<br>010 | Gilliam_000<br>14 | Ikeda_0177<br>8 | Karp_00009 | Kato_00009 | TA686_0119<br>8 | UT176_000<br>09 | UT76-<br>HP_00009 |
| group_5345 |                  | 6 hypothetical protein                                                                    |           | Boryong_00<br>676 | Gilliam_022<br>58 | lkeda_0108<br>4 | Karp_02002 |            | TA686_0234<br>1 | UT176_009<br>40 | UT76-<br>HP_01866 |
| group_5664 |                  | 6 UDP-N-acetylmuramateL-alanine ligase                                                    | MurC      | Boryong_00<br>675 | Gilliam_022<br>59 | lkeda_0108<br>5 | Karp_02003 |            | TA686_0234<br>0 | UT176_009<br>39 | UT76-<br>HP_01867 |
| group_5663 |                  | 6 UDP-N-acetylenolpyruvoylglucosamine reductase                                           | MurB      | 674               |                   | 6               | Karp_02004 | Kato_00904 |                 | 38              | HP_01868          |
| group_5839 |                  | 6 D-alanineD-alanine ligase                                                               | Ddl       | Boryong_00<br>673 | Gilliam_022<br>61 | Ikeda_0108<br>7 | Karp_02005 |            | TA686_0233<br>8 | UT176_009<br>37 | UT76-<br>HP_01869 |
| group_5662 |                  | 6 cell division protein FtsQ                                                              | FtsQ      | 672               |                   | 8               | Karp_02006 |            | TA686_0233<br>7 | UT176_009<br>36 | UT76-<br>HP_01870 |
| group_5548 |                  | 6 DNA replication/repair protein RecF                                                     | RecF      | 671               | Gilliam_022<br>63 | 9               | Karp_02007 |            |                 | 35              | HP_01871          |
| group_5349 |                  | 7 hypothetical protein                                                                    |           | 099               |                   | 1               | Karp_02387 | Kato_02127 |                 | 68              | HP_00144          |
| group_6051 |                  | 7 virB4 protein precursor                                                                 |           | 098               | Gilliam_009<br>70 | 2               | Karp_02388 | Kato_02126 |                 | 67              | HP_00143          |
| group_5858 |                  | 7 type I glyceraldehyde-3-phosphate dehydrogenase                                         | GapA      | 097               |                   | 3               | Karp_02389 | Kato_02125 |                 | 66              | HP_00142          |
| group_5857 |                  | 7 phosphoglycerate kinase                                                                 | Pgk       | 096               | Gilliam_009<br>72 | 4               | Karp_02390 | Kato_02124 |                 | 65              | HP_00141          |
| group_6050 |                  | 7 hypothetical protein                                                                    |           | 095               | Gilliam_009<br>73 | 5               | Karp_02391 | Kato_02123 |                 | 64              | HP_00140          |
| group_5856 |                  | 7 prolinetRNA ligase                                                                      | ProS      | Boryong_01<br>094 | Gilliam_009<br>74 | Ikeda_0000<br>6 | Karp_02392 | Kato_02122 | TA686_0141<br>4 | UT176_006<br>63 | UT76-<br>HP_00139 |

| group_7234 | 7 ATP-dependent Clp protease ATP-binding subunit ClpX                                                  | ClpX  | Boryong_01<br>093 | Gilliam_009<br>75 | Ikeda_0000<br>7 | Karp 02393 | Kato 02121      | TA686_0141      | UT176_006       | UT76-<br>HP_00138 |
|------------|--------------------------------------------------------------------------------------------------------|-------|-------------------|-------------------|-----------------|------------|-----------------|-----------------|-----------------|-------------------|
|            | 7 elongation factor P                                                                                  |       | Boryong_01<br>092 | Gilliam_009       |                 |            | Kato 02120      | TA686_0141      |                 | UT76-             |
| group_8077 |                                                                                                        |       | Boryong_01        | Gilliam_009       | Ikeda_0000      |            |                 | TA686_0141      | UT176_006       |                   |
| group_6049 | 7 extragenic suppressor protein SuhB<br>tRNA (adenosine(37)-N6)-threonylcarbamoyltransferase complex   | SuhB  | 091<br>Boryong 01 | 77<br>Gilliam_009 | 9<br>Ikeda 0001 | Karp_02395 | Kato_02119      | 1<br>TA686_0141 | 60<br>UT176 006 | HP_00136<br>UT76- |
| group_5557 | 7 dimerization subunit type 1 TsaB                                                                     | TsaB  | 090               | 78<br>Gilliam 013 | 0               | . –        | Kato_02118      |                 | 59              | HP_00135          |
| group_5351 | 8 hypothetical protein                                                                                 |       | 511               | 39                | 3               |            | Kato_00841      | 1               | 64              | HP_01169          |
| group_5352 | 9 glycerol-3-phosphate dehydrogenase (NAD(P)( ))                                                       | GpsA  | Boryong_01<br>513 | Gilliam_013<br>37 | Ikeda_0114<br>5 | Karp_01850 | Kato_00843      | TA686_0022<br>9 | UT176_013<br>66 | UT76-<br>HP_01171 |
| group_8119 | tRNA (N(6)-L-threonylcarbamoyladenosine(37)-C(2))-<br>9 methylthiotransferase MtaB                     | MtaB  | Boryong_01<br>514 | Gilliam_013<br>36 | lkeda_0114<br>6 | Karp_01851 | Kato_00844      | TA686_0022<br>8 | UT176_013<br>67 | UT76-<br>HP_01172 |
| group_5359 | 10 crossover junction endodeoxyribonuclease RuvC                                                       | RuvC  | Boryong_01<br>866 | Gilliam_014<br>37 | lkeda_0105<br>3 | Karp_02233 | Kato_00938      | TA686_0209<br>2 | UT176_011<br>31 | UT76-<br>HP_01610 |
| group_5717 | 10 tRNA dihydrouridine synthase DusB                                                                   | DusB  | Boryong_01<br>867 | Gilliam_014<br>38 | lkeda_0105<br>4 | Karp_02234 | Kato_00937      | TA686_0209<br>1 | UT176_011<br>32 | UT76-<br>HP_01611 |
| group_5494 | 10 hypothetical protein                                                                                |       | Boryong_01<br>868 | Gilliam_014<br>39 | lkeda_0105<br>5 | Karp_02235 | Kato_00936      | TA686_0209<br>0 | UT176_011<br>33 | UT76-<br>HP_01612 |
| group_5495 | bifunctional 3-demethylubiquinone 3-O-methyltransferase/2-<br>10 octaprenyl-6-hydroxy phenol methylase |       | Boryong_01<br>869 | Gilliam_014<br>40 | lkeda_0105<br>6 | Karp_02236 | Kato_00935      | TA686_0208<br>9 | UT176_011<br>34 | UT76-<br>HP_01613 |
| group_5718 | 10 protein-(glutamine-N5) methyltransferase, release factor-specific                                   | :     | Boryong_01<br>870 | Gilliam_014<br>41 | lkeda_0105<br>7 | Karp_02237 | Kato_00934      | TA686_0208<br>8 | UT176_011<br>35 | UT76-<br>HP_01614 |
| group_6104 | 10 tRNA pseudouridine(38-40) synthase TruA                                                             | TruA  | Boryong_01<br>871 | Gilliam_014<br>42 | lkeda_0105<br>8 | Karp_02238 | Kato_00933      | TA686_0208<br>7 | UT176_011<br>36 | UT76-<br>HP_01615 |
| group_7746 | 10 50S ribosomal protein L13                                                                           | L13   | Boryong_01<br>872 | Gilliam_014<br>43 | lkeda_0105<br>9 | Karp_02239 | Kato_00932      | TA686_0208      | UT176_011<br>37 | UT76-<br>HP_01616 |
| group_5719 | 10 30S ribosomal protein S9                                                                            | S9    | Boryong_01<br>873 | Gilliam_014<br>44 |                 |            | -<br>Kato_00931 | TA686_0208      | UT176_011<br>38 | UT76-<br>HP_01617 |
|            | 11 rRNA (cytidine-2'-O-)-methyltransferase                                                             |       |                   | Gilliam_017       |                 |            | Kato_01661      | TA686_0054      |                 | _                 |
| group_5458 |                                                                                                        |       | Boryong_01        | Gilliam_017       | Ikeda_0048      |            |                 | TA686_0054      | UT176_013       | UT76-             |
| group_5865 | 11 serinetRNA ligase                                                                                   | SerS  | 203<br>Boryong_01 | 34<br>Gilliam_017 | 1<br>Ikeda_0048 | Karp_01859 | Kato_01662      | 6<br>TA686_0054 | 56<br>UT176_013 | HP_01639<br>UT76- |
| group_7705 | 11 twin-arginine translocase subunit TatC                                                              | TatC  | 204<br>Boryong_01 | 35<br>Gilliam_017 | 0<br>Ikeda_0047 | Karp_01860 | Kato_01663      | 7<br>TA686_0054 | 55<br>UT176_013 | HP_01638<br>UT76- |
| group_6566 | 11 hypothetical protein                                                                                |       | 205<br>Bopyong 01 | 36<br>Gilliam_017 | 9<br>Ikeda 0047 | Karp_01861 | Kato_01664      | 8<br>TA686_0054 | 54<br>UT176_013 | HP_01637          |
| group_6058 | 11 16S rRNA methyltransferase                                                                          |       | 206               | 37                | 8               | Karp_01862 | Kato_01665      | 9               | 53              | HP_01636          |
| group_7851 | 11 chromosome partitioning protein ParA                                                                | ParA  | 207               |                   | 7               | Karp_01863 | Kato_01666      |                 | 52              | HP_01635          |
| group_6059 | 11 chromosome partitioning protein                                                                     | ParB  | Boryong_01<br>208 | Gilliam_017<br>39 | Ikeda_0047<br>6 | Karp_01864 | Kato_01667      | TA686_0055<br>1 | UT176_013<br>51 | UT76-<br>HP_01634 |
| group_5485 | 12 rod shape-determining protein MreC                                                                  | MreC  | Boryong_01<br>561 | Gilliam_021<br>76 | Ikeda_0033<br>6 | Karp_01810 | Kato_01222      | TA686_0116<br>9 | UT176_018<br>39 | UT76-<br>HP_01300 |
| group_7287 | 12 rod shape-determining protein                                                                       | MreB  | Boryong_01<br>562 | Gilliam_021<br>75 | Ikeda_0033<br>5 | Karp_01811 | Kato_01223      | TA686_0116<br>8 | UT176_018<br>38 | UT76-<br>HP_01301 |
| group_5575 | 12 dihydrolipoamide acetyltransferase                                                                  |       | Boryong_01<br>563 | Gilliam_021<br>74 |                 | Karp_01812 | Kato_01224      | TA686_0116<br>7 | UT176_018<br>37 | UT76-<br>HP_01302 |
| group_5491 | 13 aspartate kinase                                                                                    | АК    | Boryong_01<br>771 | Gilliam_019<br>06 | Ikeda_0077<br>2 | Karp_01348 | Kato_01421      | TA686_0034<br>5 | UT176_017<br>25 | UT76-<br>HP_01353 |
| group_5712 | 13 hypothetical protein                                                                                |       | Boryong_01<br>772 | Gilliam_019<br>05 | Ikeda_0077<br>3 | Karp_01349 | Kato_01420      | TA686_0034<br>6 | UT176_017<br>24 | UT76-<br>HP_01354 |
| group_8049 | 13 potassium transporter                                                                               |       | Boryong_01<br>773 | Gilliam_019<br>04 | Ikeda_0077<br>4 | Karp_01350 | Kato_01419      | TA686_0034<br>7 | UT176_017<br>23 | UT76-<br>HP_01355 |
| group_5713 | 13 5-formyltetrahydrofolate cyclo-ligase                                                               | YgfA  | Boryong_01<br>774 | Gilliam_019<br>03 | Ikeda_0077<br>5 | Karp_01351 | Kato_01418      | TA686_0034<br>8 | UT176_017<br>22 | UT76-<br>HP_01356 |
| group_5579 | 13 hypothetical protein                                                                                |       | Boryong_01<br>775 | Gilliam_019<br>02 | Ikeda_0077<br>6 | Karp_01352 | Kato_01417      | TA686_0034<br>9 | UT176_017<br>21 | UT76-<br>HP_01357 |
| group_5496 | 14 ankyrin repeat-containing protein 13                                                                | Ank13 | Boryong_01<br>925 | Gilliam_015<br>41 | lkeda_0052<br>3 | Karp_01630 | -<br>Kato_01772 | TA686_0009<br>5 | UT176_012<br>72 | UT76-<br>HP_01784 |
| group_5411 | 14 hypothetical protein                                                                                |       |                   | Gilliam_015       | Ikeda_0052      |            | Kato_01773      | TA686_0009      | UT176_012       |                   |
|            |                                                                                                        |       | Boryong_02        | Gilliam_015       | Ikeda_0078      |            |                 | TA686_0121      | UT176_017       | UT76-             |
| group_5497 | 15 heme A synthase                                                                                     |       | 136               | 73                | 7               | Karp_01402 | Kato_01407      | 5               | 11              | HP_01347          |

| group_5549 | 16 threonylcarbamoyl-AMP synthase                                         | TsaC  | Boryong_00 G<br>680 54  |             |                 | Karp_01998 Kato_009: | TA686_0234<br>10 5 | 4 UT176_009<br>44 | UT76-<br>HP_01862 |
|------------|---------------------------------------------------------------------------|-------|-------------------------|-------------|-----------------|----------------------|--------------------|-------------------|-------------------|
| group_5448 | 16 glycinetRNA ligase subunit beta                                        | GlyS  | Boryong_00 G<br>679 5   |             |                 | Karp_01999 Kato_0090 |                    | 4 UT176_009<br>43 | UT76-<br>HP_01863 |
| group_5840 | 16 glycinetRNA ligase subunit alpha                                       | GlyQ  | Boryong_00 G<br>678   5 |             |                 | Karp_02000 Kato_0090 |                    | 4 UT176_009<br>42 | UT76-<br>HP_01864 |
| group_5574 | 17 competence protein ComEC                                               | ComEC | Boryong_01 G<br>456 8   |             |                 | Karp_01804 Kato_012: |                    | 5 UT176_018<br>48 | UT76-<br>HP_01293 |
| group_5585 | 18 hypothetical protein                                                   |       | Boryong_01 G<br>875 4   |             |                 | Karp_02242 Kato_0092 |                    | 8 UT176_011<br>40 | UT76-<br>HP_01619 |
| group_5622 | 19 hypothetical protein                                                   |       | Boryong_00 G<br>133 4   |             |                 | Karp 00722 Kato 023  |                    | 0 UT176_020<br>92 | UT76-<br>HP_02218 |
| group_5776 | 2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-<br>19 succinyltransferase | DapD  | Boryong_00 G<br>132 4   |             |                 | Karp 00723 Kato 0239 |                    | 0 UT176_020<br>93 | UT76-<br>HP_02217 |
| group_5656 | 20 MFS transporter permease                                               |       | Boryong_00 G<br>574 8   | ailliam_009 | Ikeda_0161      |                      | TA686_0038         | 8 UT176_001<br>85 | _                 |
|            |                                                                           |       | Boryong_00 G            | Gilliam_009 | lkeda_0161      |                      | TA686_0038         | 8 UT176_001       | UT76-             |
| group_5544 | 20 sodium:pantothenate symporter                                          |       | 573 8<br>Boryong_00 G   |             | Ikeda_0191      | Karp_00352 Kato_004  | TA686_0010         | 86<br>0 UT176_005 |                   |
| group_5684 | 21 SAM-dependent methyltransferase                                        |       | 940 22<br>Boryong_01 G  |             |                 | Karp_00101 Kato_0234 |                    | 53<br>5 UT176_018 | HP_01014          |
| group_5705 | 22 two-component sensor histidine kinase                                  |       | 454 8                   | 1           | 2               | Karp_01806 Kato_012: | 18 2               | 46                | HP_01295          |
| group_6160 | 22 sigma-54-dependent Fis family transcriptional regulator                |       | Boryong_01 G<br>453 8   | <b>10</b>   | 1               | Karp_01807 Kato_012: | 19 3               | 5 UT176_018<br>45 | HP_01296          |
| group_5483 | 22 hypothetical protein                                                   |       | Boryong_01 G<br>452 7   | _           |                 | Karp_01808 Kato_0122 |                    | 5 UT176_018<br>44 | UT76-<br>HP_01297 |
| group_5722 | 23 aspartate aminotransferase                                             | AspC  | Boryong_02 G<br>006 94  |             |                 | Karp_00229 Kato_0010 |                    | 1 UT176_001<br>01 | UT76-<br>HP_00570 |
| ubiG       | 23 Ubiquinone biosynthesis O-methyltransferase                            | UbiG  | Boryong_02 G<br>007 9   |             |                 | Karp_00230 Kato_0010 |                    | 1 UT176_001<br>02 | UT76-<br>HP_00569 |
| group_5723 | 23 ABC transporter                                                        |       | Boryong_02 G<br>008 9   |             |                 | Karp_00231 Kato_0010 |                    | 1 UT176_001<br>03 | UT76-<br>HP_00568 |
| group_5724 | 23 hypothetical protein                                                   |       | Boryong_02 G<br>009 9   |             |                 | Karp_00232 Kato_0016 |                    | 1 UT176_001<br>04 | UT76-<br>HP_00567 |
| group_5900 | 23 coproporphyrinogen III oxidase                                         |       | Boryong_02 G<br>010 98  |             |                 | Karp_00233 Kato_0016 |                    | 1 UT176_001<br>05 | UT76-<br>HP_00566 |
| group_6112 | 23 hypothetical protein                                                   |       | Boryong_02 G<br>011 9   |             |                 | Karp_00234 Kato_0016 |                    | 1 UT176_001<br>06 | UT76-<br>HP_00565 |
| group_5587 | 23 DNA repair protein RecO                                                | RecO  | Boryong_02 G<br>012 0   |             |                 | Karp_00235 Kato_0016 |                    | 1 UT176_001<br>07 | UT76-<br>HP_00564 |
| group_5732 | 24 DNA helicase II                                                        | UvrD  | Boryong_02 G<br>217 1   |             |                 | Karp_01153 Kato_0143 |                    | 9 UT176_014<br>93 | UT76-<br>HP_01067 |
| group_5740 | 25 NAD-glutamate dehydrogenase                                            | GdhA  | Boryong_02 G<br>452 8   |             |                 | Karp_02529 Kato_0070 |                    | 6 UT176_006<br>39 | UT76-<br>HP_00743 |
| group_5739 | tRNA uridine-5-carboxymethylaminomethyl(34) synthesis GTPase<br>25 MnmE   | 2     | Boryong_02 G<br>451 8-  |             | Ikeda_0211<br>5 | Karp_02530 Kato_0070 |                    | 6 UT176_006<br>40 | UT76-<br>HP_00744 |
| group_6137 | 25 recombinase XerC                                                       | XerC  | Boryong_02 G<br>450 8   |             |                 | Karp_02531 Kato_0070 |                    | 6 UT176_006<br>41 | UT76-<br>HP_00745 |
| group_6136 | 25 RNA polymerase-binding protein DksA                                    | DksA  | Boryong_02 G<br>449 8   |             | Ikeda_0211      | Karp_02532 Kato_0070 | TA686_0176         | 6 UT176_006<br>42 | -                 |
| group_6135 | 25 inorganic pyrophosphatase                                              |       | Boryong_02 G<br>448 8   | Gilliam_010 | Ikeda_0211      | Karp_02533 Kato_0070 | TA686_0176         | 6 UT176_006<br>43 |                   |
| group_5415 | 25 DNA polymerase III subunit delta'                                      | HolB  | Boryong_02 G<br>447 8   | Gilliam_010 | Ikeda_0211      | Karp_02534 Kato_0070 | TA686_017          | 7 UT176_006<br>44 |                   |
| group_5922 | 25 ribosomal large subunit pseudouridine synthase                         |       | Boryong_02 G<br>446 8   | Gilliam_010 | Ikeda_0211      | Karp 02535 Kato 0070 | TA686_0177         | 7 UT176_006<br>45 | -                 |
| group_5791 | 26 tetraacyldisaccharide 4'-kinase                                        | ІрхК  | Boryong_00 G<br>218 1   | ailliam_012 | Ikeda_0202      | Karp_00613 Kato_006  | TA686_0025         | 5 UT176_004<br>27 | _                 |
| group_7640 | 26 hypothetical protein                                                   |       | Boryong_00 G<br>219 20  | 6illiam_012 | Ikeda_0202      | Karp_00614 Kato_006  | TA686_0025         | 5 UT176_004<br>28 | -                 |
|            |                                                                           |       | Boryong_00 G            | Gilliam_025 | lkeda_0191      |                      | TA686_0164         | 4 UT176_005       | UT76-             |
| group_5849 | 27 transporter                                                            |       | Boryong_00 G            | Gilliam_025 | Ikeda_0190      | Karp_00104 Kato_0234 | TA686_0164         | 49<br>4 UT176_005 |                   |
| glpE       | 27 hypothetical protein                                                   |       | 934 1<br>Boryong_01 G   |             |                 | Karp_00105 Kato_023  |                    | 48<br>4 UT176_013 | HP_01019<br>UT76- |
| group_5864 | 28 protein translocase subunit SecF                                       | SecF  | 198 2                   |             | 6               | Karp_01854 Kato_016  |                    | 61                | HP_01644          |
|            |                                                                           |       |                         |             |                 |                      |                    |                   |                   |

| group 6057 | 28 ATP/ADP translocase                                             |      |                   | Gilliam_017<br>31 |                 | Karp_01856 Kato_01659 | TA686_0054<br>3 |                 | UT76-<br>HP 01642 |
|------------|--------------------------------------------------------------------|------|-------------------|-------------------|-----------------|-----------------------|-----------------|-----------------|-------------------|
| group_5882 | 29 haloacid dehalogenase                                           |      |                   | Gilliam_016       |                 |                       | TA686_0073      |                 | UT76-<br>HP_00989 |
| group_7708 | 29 DNA gyrase subunit B                                            | GyrB | Boryong_01<br>632 | Gilliam_016<br>58 | lkeda_0094<br>5 | Karp_01022 Kato_01992 | TA686_0073<br>3 | UT176_014<br>07 | UT76-<br>HP_00988 |
| group_5577 | 29 hypothetical protein                                            |      | Boryong_01<br>631 | Gilliam_016<br>57 | Ikeda_0094<br>6 | Karp_01023 Kato_01993 | TA686_0073<br>4 | UT176_014<br>06 | UT76-<br>HP_00987 |
| group_5881 | 29 amino acid permease                                             |      | Boryong_01<br>630 | Gilliam_016<br>56 | lkeda_0094<br>7 | Karp_01024 Kato_01994 | TA686_0073<br>5 | UT176_014<br>05 | UT76-<br>HP_00986 |
| group_5895 | 30 succinate dehydrogenase iron-sulfur subunit                     | SdhB | Boryong_01<br>938 | Gilliam_009<br>45 | lkeda_0220<br>8 | Karp_02372 Kato_02140 | TA686_0023<br>5 | UT176_006<br>89 | UT76-<br>HP_00157 |
| group_6106 | 30 succinate dehydrogenase flavoprotein subunit                    | SdhA | Boryong_01<br>937 | Gilliam_009<br>44 | lkeda_0220<br>9 | Karp_02373 Kato_02139 | TA686_0023<br>6 | UT176_006<br>88 | UT76-<br>HP_00156 |
| group_5586 | succinate dehydrogenase, hydrophobic membrane anchor<br>30 protein | SdhD | Boryong_01<br>936 | Gilliam_009<br>43 | lkeda_0221<br>0 | Karp_02374 Kato_02138 | TA686_0023<br>7 | UT176_006<br>87 | UT76-<br>HP_00155 |
| group_5721 | 30 succinate dehydrogenase, cytochrome b556 subunit                | SdhC | Boryong_01<br>935 | Gilliam_009<br>42 | lkeda_0221<br>1 | Karp_02375 Kato_02137 | TA686_0023<br>8 |                 | UT76-<br>HP_00154 |
| group_5901 | 31 hypothetical protein                                            |      | Boryong_02<br>018 | Gilliam_001<br>08 | lkeda_0135<br>3 | Karp_00239 Kato_00172 | TA686_0120<br>4 | UT176_001<br>13 | UT76-<br>HP_00558 |
| group_6113 | 31 hypothetical protein                                            |      | Boryong_02<br>019 | Gilliam_001<br>09 | lkeda_0135<br>4 | Karp_00240 Kato_00173 | TA686_0120<br>5 | UT176_001<br>14 | UT76-<br>HP_00557 |
| group_8000 | 31 30S ribosomal protein S12                                       | RpsL | Boryong_02<br>020 | Gilliam_001<br>10 | lkeda_0135<br>5 | Karp_00241 Kato_00174 | TA686_0120<br>6 | UT176_001<br>15 | UT76-<br>HP_00556 |
| group_7893 | 31 30S ribosomal protein S7                                        | RpsG | Boryong_02<br>021 | Gilliam_001<br>11 | lkeda_0135<br>6 | Karp_00242 Kato_00175 | TA686_0120<br>7 | UT176_001<br>16 | UT76-<br>HP_00555 |
| group_7759 | 31 elongation factor G                                             | EfG  | Boryong_02<br>022 | Gilliam_001<br>12 | lkeda_0135<br>7 | Karp_00243 Kato_00176 | TA686_0120<br>8 | UT176_001<br>17 | UT76-<br>HP_00554 |
| group_5902 | 31 30S ribosomal protein S1                                        | RpsA | Boryong_02<br>023 | Gilliam_001<br>13 | lkeda_0135<br>8 | Karp_00244 Kato_00177 | TA686_0120<br>9 | UT176_001<br>18 | UT76-<br>HP_00553 |
| group_6017 | 32 50S ribosomal protein L20                                       | RpIT | Boryong_00<br>628 | Gilliam_023<br>47 | lkeda_0090<br>2 | Karp_00926 Kato_01948 | TA686_0083<br>3 | UT176_011<br>65 | UT76-<br>HP_00870 |
| group_7830 | 32 50S ribosomal protein L35                                       | RpmL | Boryong_00<br>627 | Gilliam_023<br>48 | lkeda_0090<br>3 | Karp_00927 Kato_01949 | TA686_0083<br>4 | UT176_011<br>66 | UT76-<br>HP_00871 |
| group_8150 | 32 molecular chaperone HtpG                                        | HtpG | Boryong_00<br>626 | Gilliam_023<br>49 | Ikeda_0090<br>4 | Karp_00928 Kato_01950 | TA686_0083<br>5 | UT176_011<br>67 | UT76-<br>HP_00872 |
| group_5657 | 32 succinyl-diaminopimelate desuccinylase                          | DapE | Boryong_00<br>625 | Gilliam_023<br>50 |                 | Karp_00929 Kato_01951 | TA686_0083<br>6 | UT176_011<br>68 | UT76-<br>HP_00873 |
| group_6033 | 33 DNA translocase FtsK                                            | FtsK | Boryong_00<br>894 | Gilliam_012<br>56 | Ikeda_0043<br>0 | Karp_01269 Kato_01542 | TA686_0058<br>3 | UT176_016<br>46 | UT76-<br>HP_01670 |
| group_5682 | 33 hypothetical protein                                            |      | Boryong_00<br>895 | Gilliam_012<br>57 | Ikeda_0042<br>9 | Karp_01270 Kato_01541 | TA686_0058<br>4 | UT176_016<br>47 | UT76-<br>HP_01669 |
| group_7304 | 33 energy-dependent translational throttle protein EttA            | EttA | Boryong_00<br>896 | Gilliam_012<br>58 | Ikeda_0042<br>8 | Karp_01271 Kato_01540 | TA686_0058<br>5 | UT176_016<br>48 | UT76-<br>HP_01668 |
| group_5348 | 33 hypothetical protein                                            |      | Boryong_00<br>897 | Gilliam_012<br>59 | Ikeda_0042<br>7 | Karp_01272 Kato_01539 | TA686_0058<br>6 | UT176_016<br>49 | UT76-<br>HP_01667 |
| group_6064 | 34 alpha/beta hydrolase                                            |      | Boryong_01<br>286 | Gilliam_016<br>21 | Ikeda_0065<br>5 | Karp_01105 Kato_01727 | TA686_0081<br>1 | UT176_015<br>36 | UT76-<br>HP_00785 |
| group_5701 | 34 iron-sulfur-binding protein                                     |      | Boryong_01<br>285 | Gilliam_016<br>20 | Ikeda_0065<br>4 | Karp_01106 Kato_01726 |                 | 35              | HP_00784          |
| group_5400 | 34 aminotransferase class V-fold PLP-dependent enzyme              |      | 284               |                   | 3               | Karp_01107 Kato_01725 |                 | 34              | HP_00783          |
| group_6063 | 34 cysteine desulfurase                                            |      | 283               |                   | 2               | Karp_01108 Kato_01724 |                 | 33              | HP_00782          |
| group_5868 | 34 iron-sulfur cluster scaffold-like protein                       |      | 282               |                   | 1               | Karp_01109 Kato_01723 |                 | 32              | HP_00781          |
| group_6062 | 34 iron-sulfur cluster assembly accessory protein                  |      | 281               |                   | 0               | Karp_01110 Kato_01722 |                 | 31              | HP_00780          |
| group_5564 | 34 co-chaperone HscB                                               | HscB | 280               |                   | 9               | Karp_01111 Kato_01721 |                 | 30              | HP_00779          |
| group_5867 | 34 molecular chaperone HscA                                        | HscA | 279               |                   | 8               | Karp_01112 Kato_01720 |                 | 29              | HP_00778          |
| group_5563 | 34 (2Fe-2S) ferredoxin                                             |      | 278               |                   | 7               | Karp_01113 Kato_01719 |                 | 28              | HP_00777          |
| group_6072 | 35 electron transporter                                            |      | Boryong_01<br>395 | Gilliam_001<br>96 | Ikeda_0107<br>6 | Karp_01763 Kato_00913 | TA686_0225<br>1 | UT176_011<br>54 | UT76-<br>HP_01631 |

| group_6074 | 36 single-stranded DNA-binding protein                  |        |                   | Gilliam_019       | Ikeda_0083      |                       | TA686_0178      |                 |                   |
|------------|---------------------------------------------------------|--------|-------------------|-------------------|-----------------|-----------------------|-----------------|-----------------|-------------------|
| group_5704 | 36 hypothetical protein                                 |        | 419<br>Boryong_01 | 82<br>Gilliam_015 |                 | Karp_01240 Kato_01363 | 5<br>TA686_0254 | 03<br>UT176_014 | HP_01742<br>UT76- |
| group_6078 | 37 malate dehydrogenase                                 | Mdh    | 520<br>Borvong 01 | 26<br>Gilliam_015 | 3<br>Ikeda 0066 | Karp_01409 Kato_01734 | 1<br>TA686_0254 | 50<br>UT176 014 | HP_01425<br>UT76- |
| group_6077 | 37 permease                                             |        | 519               |                   | 4               | Karp_01410 Kato_01735 |                 | 51              | HP_01426          |
| group_5484 | 37 hypothetical protein                                 |        | 518               | 28                | 5               | Karp_01411 Kato_01736 | 9               | 52              | HP_01427          |
| group_6083 | 38 cytochrome b                                         | СуbВ   | 614               | 91                | 9               | Karp_01467 Kato_01374 | 3               | 60              | HP_01121          |
| group_5878 | 38 ubiquinol-cytochrome c reductase iron-sulfur subunit | PetA   | Boryong_01<br>613 | Gilliam_026<br>90 |                 | Karp_01468 Kato_01373 | TA686_0079<br>2 | UT176_016<br>61 | UT76-<br>HP_01120 |
| group_5486 | 38 hypothetical protein                                 |        | Boryong_01<br>612 | Gilliam_026<br>89 |                 | Karp_01469 Kato_01372 | TA686_0079<br>1 | UT176_016<br>62 | UT76-<br>HP_01119 |
| group_5877 | 38 heme exporter protein B                              | CcmB   | Boryong_01<br>611 | Gilliam_026<br>88 |                 | Karp_01470 Kato_01371 | TA686_0079<br>0 | UT176_016<br>63 | UT76-<br>HP_01118 |
| group_5709 | 38 cytochrome c biogenesis protein CcmA                 | CcmA   |                   | Gilliam_026<br>87 |                 | Karp_01471 Kato_01370 | TA686_0078<br>9 |                 | UT76-<br>HP_01117 |
| group_6087 | 39 2-hydroxyacid dehydrogenase                          |        | Boryong_01<br>640 | Gilliam_016<br>66 | Ikeda_0093<br>7 | Karp_01014 Kato_01984 | TA686_0072<br>5 | UT176_014<br>15 | UT76-<br>HP_00996 |
| group_7914 | 39 cation:proton antiporter                             |        | Boryong_01<br>639 | Gilliam_016<br>65 | Ikeda_0093<br>8 | Karp_01015 Kato_01985 | TA686_0072<br>6 | UT176_014<br>14 | UT76-<br>HP_00995 |
| group_6086 | 39 cation:proton antiporter                             |        | Boryong_01<br>638 | Gilliam_016<br>64 | Ikeda_0093<br>9 | Karp_01016 Kato_01986 | TA686_0072<br>7 | UT176_014<br>13 | UT76-<br>HP_00994 |
| group_5883 | 39 sodium:proton antiporter                             |        | Boryong_01<br>637 | Gilliam_016<br>63 | Ikeda_0094<br>0 | Karp_01017 Kato_01987 | TA686_0072<br>8 | UT176_014<br>12 | UT76-<br>HP_00993 |
| group_5710 | 39 sodium:proton antiporter                             |        | Boryong_01<br>636 | Gilliam_016<br>62 | Ikeda_0094<br>1 | Karp_01018 Kato_01988 | TA686_0072<br>9 | UT176_014<br>11 | UT76-<br>HP_00992 |
| group_8081 | 39 sodium:proton antiporter                             |        | Boryong_01<br>635 | Gilliam_016<br>61 | lkeda_0094<br>2 | Karp_01019 Kato_01989 | TA686_0073<br>0 | UT176_014<br>10 | UT76-<br>HP_00991 |
| group_6098 | 40 hypothetical protein                                 |        | Boryong_01<br>851 | Gilliam_014<br>22 |                 | Karp_02217 Kato_00953 | TA686_0149<br>6 |                 | UT76-<br>HP_01595 |
| group_6107 | 41 S26 family signal peptidase                          |        | Boryong_01<br>941 | Gilliam_009<br>52 | lkeda_0220<br>5 | Karp_00806 Kato_02077 | TA686_0027<br>2 | UT176_008<br>90 | UT76-<br>HP_02017 |
| group_6108 | 41 ribonuclease III                                     | Rnc    | Boryong_01<br>942 | Gilliam_009<br>53 | lkeda_0220<br>4 | Karp_00807 Kato_02076 | TA686_0027<br>3 | UT176_008<br>89 | UT76-<br>HP_02016 |
| group_6121 | 42 nucleoside-diphosphate kinase                        | Ndk    |                   | Gilliam_008<br>55 |                 | Karp_02170 Kato_00743 | TA686_0108<br>1 |                 | UT76-<br>HP_00186 |
| group_6122 | 43 hypothetical protein                                 |        | Boryong_02<br>132 | Gilliam_015<br>67 | Ikeda_0079<br>1 | Karp 01397 Kato 01402 | TA686_0232<br>8 | UT176_017<br>08 | UT76-<br>HP_01343 |
| group_6132 | 44 phospholipase D family protein                       |        | Boryong_02<br>222 | Gilliam_006<br>12 |                 | Karp 01146 Kato 01485 | TA686_0162<br>8 |                 | UT76-<br>HP_01062 |
| group_6754 | 45 elongation factor 4                                  | lepA   | Boryong_01<br>410 | Gilliam_021<br>08 | Ikeda_0083<br>4 | Karp 01242 Kato 01360 | TA686_0136<br>8 | UT176_013<br>01 | UT76-<br>HP 01739 |
| group_5874 |                                                         | PrfA   |                   | Gilliam_021       |                 |                       | TA686_0136      |                 | -                 |
| group_7286 | 46 DNA-binding protein                                  |        |                   | Gilliam_007       | Ikeda_0002      |                       | TA686_0075      |                 | _                 |
|            |                                                         | Cure 1 | Boryong_00        | Gilliam_007       | Ikeda_0002      |                       | TA686_0075      | UT176_006       | UT76-             |
| surA       | 16S rRNA (adenine(1518)-N(6)/adenine(1519)-N(6))-       | SurA   |                   | Gilliam_007       | _               |                       | TA686_0075      | _               |                   |
| group_6007 | 46 dimethyltransferase                                  | David  |                   | Gilliam_007       |                 |                       | TA686_0076      |                 |                   |
| group_5824 |                                                         | RmuC   |                   | Gilliam_007       |                 |                       | TA686_0076      |                 |                   |
| group_5650 | 46 zinc metalloprotease                                 |        |                   | Gilliam_007       |                 |                       | TA686_0076      |                 |                   |
| group_5539 |                                                         | BamA   |                   | Gilliam_007       |                 |                       | TA686_0076      |                 |                   |
| group_5649 | 46 thiol reductase thioredoxin                          |        | Boryong_00        | 15<br>Gilliam_000 |                 |                       | TA686_0237      |                 |                   |
| group_7769 | 47 thioredoxin-disulfide reductase                      | TrxB   | 020<br>Boryong_00 | 24<br>Gilliam_000 | 7<br>Ikeda_0175 | Karp_00011 Kato_00071 | 5<br>TA686_0237 | 64<br>UT176_003 | HP_00026<br>UT76- |
| group_7112 | 47 permease                                             |        | 021               |                   | 8               | Karp_00012 Kato_00070 |                 | 63              | HP_00025          |
| group_5621 | 47 translocation protein ToIB                           | TolB   | 022               |                   | 9               | Karp_00013 Kato_00069 |                 | 62              | HP_00024          |

| group_5775 | 47 dihydrolipoyl dehydrogenase                            | IpdA |                   |                   | Karp_00014 Kato_0 |                     | UT76-<br>HP_00023 |
|------------|-----------------------------------------------------------|------|-------------------|-------------------|-------------------|---------------------|-------------------|
| group_5425 | 47 SAM-dependent methyltransferase                        |      |                   |                   | Karp_00015 Kato_( |                     |                   |
| group_5426 | 47 hypothetical protein                                   |      | Boryong_00<br>025 | Gilliam_000<br>29 | Karp_00016 Kato_( |                     | UT76-<br>HP_00021 |
| group_7894 | 48 type I methionyl aminopeptidase                        | Мар  |                   |                   | Karp_01288 Kato_( |                     |                   |
| group_7905 | 49 ubiquinone biosynthesis protein UbiB                   | UbiB |                   |                   | Karp_01872 Kato_( |                     |                   |
| group_5580 | 49 ubiquinone biosynthesis protein                        | UbiJ |                   |                   | Karp_01873 Kato_0 |                     |                   |
| group_6093 | 49 ribosome maturation factor                             |      |                   |                   | Karp_01874 Kato_0 |                     |                   |
| group_6094 | 49 transcription termination/antitermination protein NusA | NusA |                   | Gilliam_021<br>95 | Karp_01875 Kato_0 | TA686_002<br>1870 1 |                   |
| group_5889 | 49 translation initiation factor IF-2                     | InfB |                   |                   | Karp_01876 Kato_0 |                     |                   |
| group_7895 | 49 ribosome-binding factor A                              | RbfA | Boryong_01<br>800 | Gilliam_021<br>93 | Karp_01877 Kato_( |                     |                   |
| group_7960 | 50 preprotein translocase subunit YajC                    | YajC |                   |                   | Karp_00223 Kato_( |                     |                   |
| group_6110 | 50 protein translocase subunit SecD                       | SecD |                   |                   | Karp_00224 Kato_( |                     |                   |
| group_8117 | 51 peptidase S66                                          |      |                   |                   | Karp_00511 Kato_0 |                     |                   |

| Product                             |                                      | Boryong | Gilliam | Ikeda | Karp | Kato | TA686 | UT176 | UT76 |
|-------------------------------------|--------------------------------------|---------|---------|-------|------|------|-------|-------|------|
| (p)pGpp hydrolase                   |                                      | 37      | 31      | 25    | 40   | 26   | 14    | 16    | 25   |
| (p)ppGpp synthetase                 |                                      | 2       | 2       | 1     | 5    | 1    | 0     | 2     | 2    |
| spoT ppGpp hydrolase                |                                      | 3       | 15      | 7     | 16   | 9    | 11    | 5     | 5    |
| ABC transporter ATP-binding protein |                                      | 1       | 2       | 2     | 2    | 3    | 2     | 1     | 3    |
| Aconitate hydratase A               |                                      | 1       | 1       | 2     | 1    | 2    | 0     | 1     | 1    |
| All ankyrin proteins                |                                      | 43      | 46      | 40    | 58   | 37   | 39    | 37    | 38   |
|                                     | ankyrin                              | 14      | 26      | 18    | 33   | 23   | 21    | 21    | 25   |
|                                     | ankyrin repeat-containing protein    | 13      | 10      | 13    | 11   | 7    | 4     | 10    | 8    |
|                                     | ankyrin repeat-containing protein 09 | 4       | 6       | 3     | 4    | 2    | 8     | 3     | 3    |
|                                     | ankyrin repeat-containing protein 13 | 3       | 1       | 1     | 1    | 1    | 0     | 1     | 1    |
|                                     | ankyrin repeat-containing protein 16 | 9       | 0       | 2     | 7    | 2    | 2     | 1     | 0    |
|                                     | ankyrin repeat-containing protein 17 | 0       | 1       | 1     | 1    | 0    | 4     | 1     | 0    |
|                                     | ankyrin repeat-containing protein 19 | 0       | 2       | 2     | 1    | 2    | 0     | 0     | 1    |
| ATP-binding protein                 |                                      | 48      | 85      | 63    | 99   | 91   | 97    | 44    | 87   |
| Cell division protein FtsB          |                                      | 1       | 2       | 1     | 1    | 1    | 1     | 1     | 1    |
| All conjugal transfer proteins      |                                      | 461     | 532     | 378   | 570  | 502  | 462   | 330   | 481  |
|                                     | conjugal transfer protein            | 166     | 202     | 138   | 242  | 181  | 202   | 137   | 194  |
|                                     | conjugal transfer protein TraA       | 75      | 86      | 60    | 83   | 56   | 64    | 41    | 62   |
|                                     | conjugal transfer protein TraC       | 70      | 50      | 39    | 40   | 65   | 37    | 34    | 61   |
|                                     | conjugal transfer protein TraD       | 1       | 0       | 2     | 2    | 2    | 2     | 0     | 0    |
|                                     | conjugal transfer protein TraG       | 13      | 29      | 21    | 28   | 24   | 25    | 19    | 24   |

|                                              | conjugal transfer protein TraH           | 41  | 37  | 37  | 44  | 52  | 34  | 24  | 41  |
|----------------------------------------------|------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|
|                                              | conjugal transfer protein Tral           | 41  | 62  | 32  | 65  | 48  | 50  | 25  | 33  |
|                                              | conjugal transfer protein TraN           | 46  | 49  | 30  | 38  | 40  | 27  | 36  | 45  |
|                                              | type-F conjugative transfer system pilin |     |     |     |     |     |     |     |     |
|                                              | assembly protein TrbC                    | 0   | 0   | 0   | 2   | 0   | 0   | 0   | 0   |
|                                              | type-F conjugative transfer system       |     |     |     |     |     |     |     |     |
|                                              | protein TraW                             | 8   | 17  | 19  | 26  | 34  | 21  | 14  | 21  |
| deoxyribodipyrimidine photo-lyase            |                                          | 4   | 1   | 1   | 1   | 1   | 0   | 1   | 0   |
| DNA helicase                                 |                                          | 0   | 0   | 1   | 3   | 6   | 0   | 0   | 1   |
| DNA methyltransferase                        |                                          | 27  | 32  | 17  | 29  | 26  | 22  | 17  | 28  |
| DNA polymerase III subunit epsilon           |                                          | 1   | 1   | 1   | 1   | 1   | 2   | 1   | 1   |
| elongation factor Tu                         |                                          | 2   | 2   | 2   | 2   | 2   | 2   | 2   | 2   |
| exodeoxyribonuclease III                     |                                          | 3   | 1   | 4   | 4   | 2   | 1   | 2   | 3   |
| exodeoxyribonuclease VII small subunit       |                                          | 1   | 1   | 1   | 1   | 1   | 2   | 1   | 1   |
| Group II intron-encoded protein LtrA         |                                          | 0   | 0   | 0   | 0   | 0   | 4   | 0   | 0   |
| guanosine polyphosphate pyrophosphohydrolase |                                          | 3   | 2   | 10  | 3   | 9   | 11  | 1   | 5   |
| helix-turn-helix domain-containing protein   |                                          | 3   | 0   | 0   | 0   | 0   | 4   | 0   | 0   |
| histidine kinase                             |                                          | 1   | 8   | 9   | 8   | 13  | 16  | 1   | 9   |
| HNH endonuclease                             |                                          | 4   | 2   | 1   | 32  | 19  | 37  | 0   | 3   |
| hydrolase                                    |                                          | 5   | 13  | 13  | 11  | 20  | 12  | 7   | 14  |
| hypothetical protein                         |                                          | 321 | 250 | 180 | 259 | 241 | 242 | 134 | 188 |
| integrase                                    |                                          | 69  | 77  | 69  | 71  | 92  | 87  | 44  | 82  |

| All transposases                                 |                                | 338 | 602 | 306 | 325 | 242 | 409 | 487 | 242 |
|--------------------------------------------------|--------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|
|                                                  | DDE transposase family protein | 0   | 0   | 4   | 2   | 1   | 3   | 0   | 1   |
|                                                  | IS110 family transposase       | 19  | 8   | 34  | 22  | 14  | 23  | 13  | 5   |
|                                                  | IS5 family transposase ISOt6   | 199 | 157 | 101 | 143 | 85  | 163 | 73  | 87  |
|                                                  | IS630 family transposase       | 26  | 342 | 71  | 27  | 37  | 83  | 316 | 29  |
|                                                  | transposase                    | 94  | 95  | 96  | 131 | 105 | 137 | 85  | 120 |
| lipase LipB                                      |                                | 1   | 1   | 1   | 1   | 1   | 1   | 0   | 2   |
| lysinetRNA ligase                                |                                | 1   | 1   | 1   | 1   | 1   | 2   | 1   | 1   |
| membrane protein                                 |                                | 12  | 27  | 17  | 34  | 25  | 20  | 16  | 22  |
| N-6 DNA methylase                                |                                | 6   | 1   | 0   | 0   | 0   | 0   | 0   | 0   |
| NADP-dependent oxidoreductase                    |                                | 1   | 1   | 2   | 1   | 1   | 1   | 1   | 1   |
| peroxiredoxin                                    |                                | 1   | 2   | 4   | 4   | 7   | 5   | 2   | 2   |
| phosphatidate cytidylyltransferase               |                                | 1   | 2   | 1   | 1   | 1   | 1   | 1   | 1   |
| phosphoribosylaminoimidazolesuccinocarboxamide   |                                |     |     |     |     |     |     |     |     |
| synthase                                         |                                | 1   | 1   | 1   | 1   | 1   | 3   | 2   | 2   |
| polyribonucleotide nucleotidyltransferase        |                                | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 2   |
| preprotein translocase SecA subunit-like protein |                                | 0   | 4   | 2   | 7   | 2   | 9   | 0   | 2   |
| Propionyl-CoA carboxylase beta chain             |                                | 0   | 1   | 2   | 1   | 2   | 0   | 1   | 1   |
| repeat-containing protein D                      |                                | 4   | 0   | 4   | 1   | 2   | 0   | 1   | 1   |
| replicative DNA helicase                         |                                | 47  | 33  | 28  | 40  | 36  | 39  | 17  | 34  |
| reverse transcriptase                            |                                | 58  | 19  | 32  | 5   | 33  | 23  | 2   | 6   |
| RNA-binding protein                              |                                | 3   | 2   | 5   | 10  | 3   | 12  | 4   | 4   |

| sodium:proline symporter           |                                  | 4  | 4  | 7  | 6  | 8  | 5  | 5  | 5  |
|------------------------------------|----------------------------------|----|----|----|----|----|----|----|----|
| TAL effector protein PthXo1        |                                  | 1  | 0  | 3  | 2  | 3  | 0  | 1  | 3  |
| All TPR repeat-containing proteins |                                  | 22 | 40 | 18 | 29 | 37 | 24 | 22 | 27 |
|                                    | TPR repeat-containing protein 03 | 0  | 12 | 6  | 8  | 10 | 7  | 11 | 4  |
|                                    | TPR repeat-containing protein 08 | 22 | 28 | 12 | 21 | 27 | 17 | 11 | 23 |
| tryptophantRNA ligase              |                                  | 2  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |
| UDP pyrophosphate synthase         |                                  | 1  | 2  | 1  | 1  | 1  | 1  | 1  | 1  |

710 Table S6. Repeat gene counts in each strain. Repeat genes were grouped by protein similarity and annotated with the product of the longest

711 gene in the group where annotations differed.

| Sample  | Pseudogenes | Truncated 5' | Truncated 3' | Frameshift |
|---------|-------------|--------------|--------------|------------|
| Boryong | 432         | 219          | 302          | 46         |
| Gilliam | 484         | 262          | 278          | 51         |
| Ikeda   | 257         | 141          | 186          | 38         |
| Karp    | 321         | 105          | 236          | 47         |
| Kato    | 286         | 143          | 178          | 57         |
| TA686   | 453         | 200          | 307          | 50         |
| UT176   | 465         | 107          | 392          | 53         |
| UT76    | 319         | 149          | 203          | 52         |

017631914920352713Table S7. Pseudogenes and causes of pseudogenisation for each strain. The causes are not

714 mutually exclusive, and may sum to greater than the total number of pseudogenes.

|        | 56kDa | 47kDa | MLST | Core genome |
|--------|-------|-------|------|-------------|
| 56kDa  | -     | 10    | 10   | 8           |
| 47kDa  | 10    | -     | 8    | 6           |
| MLST   | 10    | 8     | -    | 10          |
| Core   |       |       |      |             |
| genome | 8     | 6     | 10   | -           |

715 Table S8. Robinson-Foulds distances between phylogenetic trees.