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Abstract 

Most organisms possess an ability to differentiate unexpected or surprising sensory 

stimuli from those that are repeatedly encountered. How is this sensory computation 

performed? We examined this issue in the locust olfactory system. We found that odor-

evoked responses in the antennal lobe (downstream to sensory neurons) 

systematically reduced upon repeated encounters of a temporally discontinuous 

stimulus. Rather than confounding information about stimulus identity and intensity, 

neural representations were optimized to encode equivalent stimulus-specific 

information with fewer spikes. Further, spontaneous activity of the antennal lobe 

network also changed systematically and became negatively correlated with the 

response elicited by the repetitive stimulus (i.e. ‘a negative image’).  Notably, while 

response to the repetitive stimulus reduced, exposure to an unexpected/deviant cue 

generated undamped and even exaggerated spiking responses in several neurons. In 

sum, our results reveal how expectation regarding a stimulus is encoded in a neural 

circuit to allow response optimization and preferential filtering. 

 

Introduction 

The ability to adapt is key to the survival of many living organisms1. While this computational 

task appears relatively straight-forward, any solution should satisfy at least two important 

constraints or requirements. First, attenuation of stimulus-evoked responses should not alter 

the identity and the intensity of the repetitive or familiar stimulus. This constraint arises due to 

findings that behavioral preferences for many stimuli vary with intensity2-4. Second, only the 

response evoked by the familiar stimulus should be selectively impeded, and sensitivity to 

novel or unexpected cues should not be compromised. In this study, we explored how the 

locust olfactory system addresses these issues.  

 In the olfactory system, adaptation occurs right at the level of olfactory receptor neurons. 
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Usually, sensory neuron responses to prolonged chemical exposures reduce over the duration 

of that exposure5-9. However, a lengthy time-window of non-exposure to the stimulus, typically 

on the order of tens of seconds, can allow full recovery of the sensory neuron response 

strength3,7,10. Interestingly, such temporal discontinuity in stimulus encounters does not 

prevent the stimulus-evoked responses in downstream centers from diminishing upon 

subsequent encounters of the familiar stimulus11-13. This suggests that information about the 

temporally discontinuous but repetitive stimuli continue to persist even in the absence of 

olfactory sensory neuron input.  

If sensory memory persists in the early olfactory circuits, how does it interfere with 

subsequent responses evoked by the familiar cue that caused this short-term memory? 

Stimulus-specific sensory adaptation can be achieved relatively easily in sensory systems with 

labeled-line coding schemes. However, it becomes particularly challenging in a modality such 

as olfaction where most chemosensory cues are encoded by spatiotemporal patterns of neural 

activities distributed across an ensemble of overlapping sets of neurons14-19. In the vertebrate 

and the invertebrate olfactory systems, each olfactory receptor neuron and their downstream 

targets (projection neurons in invertebrate antennal lobe or mitral/tufted cells in the vertebrate 

olfactory bulb) respond to multiple stimuli 18-24. Conversely, most odors activate an overlapping 

set of neurons in these early processing stages. To add further complexity, the set of neurons 

activated is not static but has been shown to evolve over time. Given this dynamic and 

combinatorial nature of odor-evoked neural representations, how are neural responses to a 

repetitive olfactory stimulus altered? Do alterations of neural response strength upon repetition 

confound encoding of stimulus intensity? More importantly, how does adaptation to a stimulus 

alter processing of other cues? We explored these issues in this study using a model of the 

invertebrate olfactory system.  

 

Results 

Sensory memory of a temporally discontinuous stimulus  

We began by looking at how populations of olfactory sensory neurons and their followers in 

the antennal lobe adapted their responses to a repeatedly encountered odorant (Fig. 1a-b; 4 

s long odor pulses separated by a 60 s inter-pulse interval). Our results indicate that the 

sensory neuron inputs remain stable across multiple repetitions of the same odorant. No 

adaptation to an odorant was observed when the separation between repeats was on the 

order of tens of seconds. However, projection neuron (PN) responses in the downstream 
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antennal lobe substantially reduced over repetitions of such temporally discontinuous stimulus. 

The PN response attenuated after the first encounter of the odorant. These observations 

suggest that the antennal lobe neural network must carry some information about the repeated 

odorant even in the absence of continuous sensory input.  

 Next, we examined whether the response strength attenuation was limited to the 

repeating stimulus alone. To understand this, we used a simple ‘oddball’ paradigm. We 

repeatedly presented one odorant before introducing a ‘catch trial’ (26th trial in a 30-trial block), 

when a ‘deviant’ stimulus was presented. Note that the catch trial happened after many 

exposures to the repeating stimulus. We found that odor-evoked PN responses in the antennal 

lobe tended to increase during the catch trial (Fig. 1c-d). However, the peak response intensity 

was still lower than the ‘unadapted’ response evoked by the same deviant stimulus. Note that 

the unadapted response to an odor is defined here as the response elicited in the first trial 

after a fifteen-minute no-odor ‘reset’ period.  

 In sum, these results indicate that the antennal lobe neural network is the first neural 

circuit in the olfactory pathway where adaptation to a discontinuous but repeating stimulus 

occurs. Further, adaptation to one stimulus appears to impact how other cues are processed 

within the antennal lobe.  

 

Trial-by-trial changes in odor-evoked responses 

Next, we examined how odor-evoked responses in individual PNs changed across twenty-five 

repeated presentations of the same stimulus (Fig. 2a; Supplementary Fig. 2a). We found 

that the odor-evoked neural activity patterns across trials were not a constant but changed in 

a systematic manner for individual PNs. We found that inhibition duration (PN4, PN5), 

response latency (PN2, PN9), response intensity, (PN1, PN6) and reliability (PN4, PN10) all 

varied on a trial-by-trial basis.  

To systematically quantify the trial-to-trial firing pattern changes, we employed a 

neighboring-trial similarity metric25 (Fig. 2b; see Methods). Briefly, to analyze each of the PN 

responses, we first counted the number of spikes in 50 ms non-overlapping time bins for each 

trial. As a result, the PN spiking activity to 4 s stimulus presentation in a given trial resulted in 

an 80-dimensional time series of spike counts. Then, we measured the similarity between 

responses observed in each trial with the mean responses observed in the trials immediately 

preceding and following (for the first and the last trial, we used two trials that immediately 

followed and preceded, respectively). These correlations were computed for each of the 
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twenty-five trials and plotted as a function of trial number (Fig. 2c). Overall, this correlation 

metric resulted in various profiles for a total of 644 neuron-odor combinations.  

To identify the predominant response motifs that characterize trial-to-trial response 

changes, we used an unsupervised clustering analysis. We found that neighborhood-

correlation patterns for all PNs (all PN-odor combinations included) could be categorized into 

five major motifs or clusters (Fig. 2d; see Methods). Interestingly, we found that none of the 

response motifs suggested a monotonic increase (stable response patterns) or decrease 

(unstable response patterns) in the correlation metric over trials. However, in some subset of 

PNs, compared to the initial trials, there was an increase in correlation indicating stabilization 

of PN response patterns in later trials (e.g. cluster 5). In others, there was an overall decrease 

(e.g. cluster 1). Although the changes were more prominent in the first few trials, none of the 

clusters appeared to have fully converged onto steady response patterns even after twenty-

five repeated exposures of the same odorant. We note that the same type of response 

variability was observed for all odorants and intensities tested, (Two-way ANOVA, p>0.05; Fig. 

2d).  

Therefore, we conclude that these systematic changes in PN responses indicate a non-

converging, circuit-level adaptation triggered and sustained by repeated encounters of any 

discontinuous olfactory stimulus.  

 

Adaptation-invariant encoding of odor intensity 

We next examined how the odor-evoked response strength varied across repeated trials of 

the same stimulus. Since the response strength also varies with stimulus intensity, we 

compared the changes due to reduction in intensity with those brought about by repetition. 

Our results indicate that the total spike counts (across all recorded PNs) reduced significantly 

within the first few trials for all odorants at all intensities. In general, the reduction was greater 

at higher intensities. For the two alcohols examined, the difference in spike counts between 

responses elicited at high and low stimulus intensities were maintained even after adaptation 

(Fig. 3a; two left-most panels). On the other hand, spike count differences between two 

different stimulus intensities diminished over trials for the other two odorants used (iaa and 

bzald; Fig. 3a two right-most panels). More importantly, the earlier trials of odor exposures at 

low intensities elicited a stronger response than those evoked during the later trials of the 

same stimulus but at a higher intensity. These results suggest that adaptation may potentially 

confound the representation of stimulus intensity.   
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 Could the information regarding stimulus intensity be robustly encoded in the population 

neural responses? Previous studies have indeed shown the ensemble neural activities cluster 

based on odor identity and intensity20,26. However, this representation of stimulus-specific 

information stabilized only when the first trial responses were not considered. Given that major 

changes in spike counts due to adaptation occurred between the first and second encounters 

of a stimulus, we sought to examine how encoding of stimulus intensity varied before and after 

adaptation (i.e. across all trials). 

To qualitatively understand this, we visualized the high-dimensional neural activities using 

a dimensionality reduction approach. Note that the spiking responses of many neurons 

(pooled across experiments) over time in each trial resulted in a 2-D matrix. The ensemble 

responses across multiple trials were concatenated to create a 3-D data cube (neuron x time 

x trial dimensions). Typically, this data cube is unfolded to a concatenated-matrix before 

performing dimensionality reduction20,24. Instead, we directly performed a 3-D tensor 

decomposition and approximate the data cube as a sum of three rank-one tensors (for a rank 

3 approximation to facilitate visualization; see Methods). This pre-processing step followed by 

regular unfolding the data cube for linear dimensionality reduction, resulted in neural response 

trajectories that captured the trial-to-trial variations in the dataset better than the direct unfold-

then-PCA approach27,28 (Supplementary Fig. 1).  

We plotted the ensemble responses in each 50 ms time bin during the odor presentation 

time window (4 s), and linked them based on the order of their occurrence, to generate trial-

by-trial odor response trajectories (Fig. 3b, c). Note that each trial generated a single loop 

response trajectory after dimensionality reduction. Five such trajectories (shown in blue) 

correspond to the responses evoked by hex in representative trials: 1, 5, 10, 15, 20, and 25. 

Similarly, five 2oct trajectories (red) for corresponding trials are also shown for comparison. 

Note that the response trajectories showed a systematic change from light colors (early trials) 

to darker colors (late trials). Notably, the population responses changed such that the 

trajectories evolved in similar directions, but the length of the trajectory monotonically reduced 

over repeated trials. Similar results were also observed for the other two odorants used in the 

study (Fig. 3c). Furthermore, we found that the basis vectors that best captured variance 

information in the trial dimension showed robust clustering of trials based on stimulus identity 

and intensity (Fig. 3d, e; Supplementary Fig. 2b, c). Hence, these results suggest that 

ensemble neural activity robustly encodes information about both odor intensity and identity 

even though the total number of spikes changes substantially with adaptation.  
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To quantify these observations, we summed the number of spikes over the entire odor 

exposure period (4 s) for each individual PN and compared the projection neurons response 

profiles generated by two different odorants or by the same odorant at two different intensities 

(Fig. 4a-e). We used a correlation-based distance metric to quantify the similarity between 

two population response profiles. We found that the combinatorial PN activity profiles varied 

substantially between odorants and subtly between different concentrations of the same odor, 

(Fig. 4a-c; R < 0.4, for hex vs. 2oct, and iaa vs. bzald vs. R = 0.692 for hex-1% vs. hex-0.1%; 

R = 0.467 for iaa-1% vs. iaa-0.1%). These results suggest that a combinatorial code can retain 

information about odor identity and intensity and is robust to changes that occur due to 

adaptation.  

Further, we examined the effect of adaptation on the combinatorial PN response profiles 

(Fig. 4d, e). We found that the correlation between response profiles changed systematically 

as a function of trial number (note that similarity between response profiles observed in a given 

trial with the first trial of the same stimulus is shown). However, these changes were subtle 

when compared with the changes due stimulus intensity and identity. Therefore, these results 

suggest that the stimulus information, including both odor identity and intensity, can be 

robustly encoded by the combinations of neurons activated even in the presence of neural 

adaptation.  

Note that, the results in Fig. 4d, e were obtained based on comparison with the responses 

obtained in the very first trial. To generalize our conclusion, we performed a hierarchical 

clustering analysis of these combinatorial profiles (again a correlation distance metric was 

used, see Methods; Fig. 4f; Euclidean distance was used in Supplementary Fig. 3 for 

comparison). We found that the ensemble response profiles were grouped first based on odor 

identity followed by intensity. Moreover, within each cluster of the same stimulus (indicated by 

the same color), the leaf nodes of the dendrogram tended to form sub-groups based on the 

trial number. Therefore, we conclude that the systematic changes within each stimulus 

condition only slightly perturbed but did not significantly alter the overall combinatorial profiles.  

In sum, our results reveal that a combinatorial code could encode information regarding 

odor identity and intensity in an adaptation-invariant fashion. Since the same information about 

a stimulus is represented with fewer spikes in the later trials, we conclude that adaptation 

refines the odor codes by making them more efficient.  
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Sensory memory creates a negative image of stimulus-evoked responses 

Our results indicate that the antennal lobe response to a repeating stimulus can reduce even 

when the sensory inputs remain constant. This observation suggests that the sensory memory 

regarding previous encounters of the repeating stimuli must be maintained in the circuit even 

after its termination. We wondered whether the persistence of this memory could manifest in 

other ways. Therefore, we also examined how PN spontaneous activities changed over trials 

(Fig. 5a-c). Note that we analyzed spontaneous activities in 15 s time windows that preceded 

the odor presentation in each of 25 repeated trials of an odorant (Fig. 5b). We found that 

repeated exposure to an odorant altered spontaneous activity of individual neurons in an odor 

specific manner. Nearly two-thirds of the recorded PNs had significant differences in their 

spontaneous firing rates depending on the repeating odorant (Fig. 5c). On the other hand, we 

found that spontaneous activities during two different epochs when the same stimulus was 

repeated were comparable (Fig. 5b). Further when the mean spontaneous firing rate across 

PNs in a given trial was visualized using principal component analysis, we found that each 

odorant at a given intensity formed a distinct cluster of baseline activities (Fig. 5d; 

Supplementary Fig. 4). Hence, these results indicate non-random, odor-specific changes in 

spontaneous PN firings when an odorant is repeatedly encountered.  

 How do these observed changes in spontaneous activities relate to the responses evoked 

by the repeating stimuli? To understand this, we computed correlations between the ensemble 

neural activities in different time bins recorded during a single trial (baseline and odor 

presentation window included; Fig 6a, b). As can be expected, we found that the ensemble 

responses during the odor presentation window were highly correlated amongst themselves. 

No noticeable correlation between the pre-stimulus activities and the odor evoked responses 

were observed in the first trial. However, the ensemble activities in the pre-stimulus time 

window gained a negative correlation during later trials of the same odorant (the prominent ‘†’ 

pattern observable in the later trials). This systematic reduction in correlation between the pre-

stimulus and stimulus-evoked ensemble responses was observed for all four odorants used 

in this study (Fig. 6c, d; left-most panels). Also note that the PN response immediately after 

the termination of the stimulus was the least correlated with the odor-evoked neural activities 

(Fig. 6c, d; middle panels), whereas the PN spiking responses during pre-stimulus and post-

stimulus epochs in a given trial remained highly correlated with one another across trials (Fig. 

6c, d; right most panels). In sum our results reveal that sensory memory about a repetitively 

encountered stimulus persists in the antennal lobe and generates a persistent negatively 
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correlated spontaneous response, i.e. a lingering ‘negative image’ of the stimulus. 

 

Contrast-enhanced response to an unexpected stimulus 

We next wondered whether the network-level adaptation allowed differential processing of 

repetitive vs deviant stimuli. To understand this, we examined the individual and ensemble PN 

responses to the deviant stimulus (Fig. 7a). As indicated in Fig. 1, the response to the 

repetitive stimulus diminished over trials. We observed four main PN response motifs during 

the catch trial (Fig. 7b). Responses for a subset of PNs (cluster 1) to the deviant stimulus 

was stronger during the catch trial compared to the unadapted response of the same stimulus 

(Fig. 7b; catch trial 26 in block 1 vs. trial 1 in block 2). A second cluster consisted of PNs that 

adapted their responses to the repetitive stimuli but recovered their responses during deviant 

stimulus exposure in the catch trial (Fig. 7b – cluster 2). A few neurons that were inhibited by 

target odorants maintained response suppression during the catch trial (Fig. 7b – cluster 3). 

Finally, the fourth cluster included mostly PNs that were non-responsive to both odorants 

(15.52%).  

 To understand whether these response changes were random or facilitated certain 

computations, we again visualized the ensemble activities elicited during each trial (Fig. 7c, 

d). Notably, while the response to the repetitive stimuli systematically diminished across trials 

(i.e. trajectory length shortened), the response to the deviant stimuli during the catch trial were 

stronger than the adapted responses elicited by the same stimuli (i.e. after the first few trials 

of the same stimuli immediately following no-odor reset period). Furthermore, consistent with 

single neuron responses (Fig. 7b), the neural response trajectory during the catch trial moved 

further away from the repetitive stimuli indicating a population-level contrast enhancement of 

neural representation (Fig. 7c, d). Responses to the repeating stimulus, post catch trial, 

increased modestly in response magnitude but still pattern matched well the ensemble activity 

evoked by that stimulus Fig. 7e, f).  

Taken together, these results indicate that repetitive and deviant stimuli are differentially 

processed in this neural network. While the response to the repetitive stimuli is selectively 

suppressed, the ensemble neural activities are altered to emphasize the unique features of 

the deviant stimuli. 
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Two distinct forms of short-term memory  

Finally, we sought to determine what mechanisms may underlie the short-term adaptation 

observed. Consistent with prior findings29,30, we found that repeated exposure of a stimulus 

builds up field potential oscillations in this circuit (Fig. 8a-c). Power in the faster oscillation 

band (~20 Hz) increased rapidly over trials before converging onto a stable state. On the other 

hand, power in the slower oscillation band (~10 Hz) had the opposing trend and decreased 

over trials. Given the importance of recurrent inhibition onto projection neurons for entraining 

oscillations31,32, the strength of this negative feedback could provide a potential mechanism 

for olfactory habituation33,34. We tested this hypothesis by pharmacologically blocking fast 

GABAergic inhibition from local neurons onto projection neurons with picrotoxin. Bath 

application of picrotoxin abolished field potential oscillations (Fig.8d, e), but the decrease in 

firing rates persisted and even became exaggerated after the manipulation (Fig. 8f-h). These 

results indicate that multiple forms of short-term memory may persist in this neural network 

and that facilitation of inhibition does not mediate the reduction of spiking response to a 

repetitive stimulus.   

 

Discussion 

The response elicited by a sensory stimulus often reduces when the same stimuli is repeatedly 

encountered. This form of adaptation is found in most sensory systems26,35-38, and is thought 

to allow humans and other animals to attend to other more salient or novel stimuli in their 

environment1,39-41. However, could diminishing the neural response to the recurring stimulus 

potentially confound other pertinent information about the same adapting stimulus such as its 

intensity or alter how information regarding other stimuli are transmitted? Our results indicate 

that adaptation does not lead to a loss of stimulus-specific information. Although neural 

response strength reduced with repetition, information about odorant identity and intensity 

were more efficiently encoded (i.e. with fewer spikes). Further, adapting to one stimulus altered 

how other stimuli were processed by the neural circuit. The response features that were 

unique to the deviant stimulus were enhanced. 

 Where does the memory of recently encountered stimulus reside? While olfactory sensory 

neuron responses have been shown to diminish upon prolonged exposures, they recover 

when the stimulus exposure is intermittent with large temporal gaps between consecutive 

exposures (Fig. 1a). However, the responses in the second relay center, the antennal lobe, 

continue to diminish even for temporally discontinuous encounters of the recurring stimulus. 
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One reasonable explanation of these results is that the synapses between the olfactory 

sensory neurons and the antennal lobe PNs could depress to mediate adaptation. Our results 

reveal that although PN responses to the repeating odorant reduce, the spiking activity 

recovers to higher response levels when a deviant stimulus is presented, (Fig. 7, cluster 2 

PNs). Therefore, it is possible that sensory input for different odorants are transmitted onto 

PNs through different ORN-PN synapses (i.e. multiglomerular PNs). In addition to recovery 

from inhibition, our results also indicate that some PNs responses to the deviant/unexpected 

stimulus during the catch trial was stronger than the unadapted responses evoked by the 

same stimulus immediately after a 15 min no-odor reset window. These latter results cannot 

be explained by depression of ORN-PN synapses and indicate that some aspects of this short-

term memory reside within the antennal lobe neural network.  

 Consistent with previous findings26, our data also indicate that PN response changes were 

largest in the first few trials. However, we found that most PN spiking responses continued to 

change even after twenty repetitions of the same stimulus (Fig. 2a). While the odor-evoked 

PN spike trains were more consistent or stable in the later trials for a subset of PNs (Fig. 2c, 

cluster 5), the opposite was true for many others (Fig. 2c, cluster 1). As can be expected, 

compared to the individual PN responses, the ensemble response profiles remained relatively 

consistent across trials (Fig. 4d, e). As a result, although the overall response strength 

diminished over trials, the combination of PNs activated robustly encoded both the stimulus 

identity and intensity (Fig. 3). Intuitively, the direction of the PN ensemble response vectors 

changed with and robustly encoded stimulus identity and intensity. However, the length of 

these vectors diminished over trials (as visualized by the length of the trajectories shown in 

Fig. 3b, c; also refer Supplementary Fig. 5a), but did not confound information about stimulus 

intensity. This encoding scheme allowed adaptation-invariant representation of stimulus 

intensity. These results are consistent with earlier findings20, and extend them by including 

both unadapted and adapted responses (i.e. all trials) for analyses. 

 In addition to changes in stimulus-evoked activity, we also found that the spontaneous 

activity in individual PNs changed depending on the identity of the odorant that was repeatedly 

presented (Fig. 5b). The ensemble-level baseline PN responses during two non-overlapping 

epochs when two different odorants were presented resulted in two distinct spontaneous 

activity clusters (Fig. 5d). A prior study had reported the passive exposure to an odorant could 

alter the spontaneous activities such that they become more correlated with the stimulus-

evoked responses. While our results also reveal that the changes in spontaneous PN spiking 
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responses were non-random, we found that they instead became negatively correlated with 

the stimulus-evoked responses during that epoch (Fig. 6). 

 Notably, neural responses that are negatively correlated to a sensory stimulus (referred 

to as ‘negative images’) have been reported in the electrosensory lobe of electric fish42-45 and, 

more recently, in the mice auditory cortex46-48. In these systems, the anti-correlated responses 

allow cancelling sensory signals that arise from the movements generated by the animal, while 

allowing sensitivity to other environmental stimuli. Though functionally different, the analogy 

between these results with the findings of our study are hard to miss. In the antennal lobe, 

short-term memory results in the spontaneous activity becoming negatively correlated with the 

repeatedly exposed stimulus. Though the odor-evoked responses were not eliminated, they 

progressively became less intense, thereby allowing adaptive deemphasizing of sensory input 

generated by a less important stimulus.  

We found that both stimulus-evoked neural activities and spontaneous activities changed 

in consistent manner when the same odorant was repetitively presented in different epochs 

(Supplementary Fig. 2, 4). The spontaneous ensemble PN activities in the very first trial were 

random. However, subsequent evolution after the first encounter with a repetitive stimulus led 

to reduction in correlation between neural activities observed in these two epochs (Fig. 6; 

Supplementary Fig. 4, 5). 

Although the effect of the sensory memory was greater for the repetitive stimulus, it also 

altered the neural response to a deviant/unexpected stimulus (Fig. 7). We observed PNs 

whose response became less intense to the recurring odorant recovered from adaptation. 

More importantly, responses of PNs activated by the deviant/unexpected odor alone became 

stronger. Because of the latter, at a population level, the ensemble neural responses became 

more distinct from that of the repetitive stimulus. Note that this contrast enhancement occurs 

between stimuli and may potentially serve to emphasize the contrast between the 

deviant/unexpected stimulus with respect to the expected one. 

Finally, we investigated the neural basis for this short-term memory. Prior work had shown 

that facilitation of recurrent inhibition onto PNs can explain behavioral habituation in fruit 

flies33,34. Further, enhancement of odor-specific inhibition was hypothesized to create a 

sensory memory that is a ‘negative image’ of the stimulus. This short-term memory can 

selectively impede transmission of a familiar stimulus1. Indeed, our result is largely consistent 

with this idea. Sensory memory of a repetitive stimulus caused the spontaneous activity in the 

network to progressively become negatively correlated with the odor-evoked response 
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(Supplementary Fig. 5b). Further, as shown in prior studies, facilitation of inhibition was 

necessary and sufficient to entrain oscillatory synchronization of neural activity in the antennal 

lobe. However, reduction in total spiking activity persisted even when fast recurrent inhibition 

was pharmacologically abolished. Therefore, our results indicate multiple forms of short-term 

memory may co-exist in the same sensory neural network to facilitate different computations 

and behavioral outcomes.  
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Figure captions: 

Fig. 1: Neural responses to repeated temporally discontinuous stimulus 

(a) Electroantennogram (EAG) measurements for four representative trials are shown in black. 

Signals were baseline aligned and normalized to the peak response of the first trial. Blue 

traces show population-averaged projection neuron (PN) firing rates over time for the 

corresponding trials. PN spike rates were also baseline aligned and normalized to the peak 

response observed during the first trial. The black bar along the x-axis represents odor 

presentation window (4 s). Note that between odor presentations in consecutive trials, there 

is a 60 second inter-stimulus period.  

(b) Peak odor-evoked EAG (black) and population PN firing rate (blue) responses are shown 

as a function of trial number.  

(c) The peak population PN firing rate evoked by a stimulus is shown as a function of trial 

number. Hexanol was repetitively presented during all but the twenty-sixth trial (‘catch trial’) in 

the first 30 trial block. During the ‘catch trial,’ a deviant stimulus (isoamyl acetate; iaa) was 

presented. Following the 30-trial block, no stimulus was presented for 15 minutes to allow the 

antennal lobe circuits to reset. Subsequently, ten trials of isoamyl acetate (iaa) were presented 

after this reset period.  

(d) Similar plot as in panel c, but using apple (app; a complex odorant) as the deviant stimulus. 

 

Fig. 2: Inter-trial neural dynamics are diverse in individual projection neurons.  

(a) Responses of ten representative projection neurons (PNs) to various odorants are shown 

as raster plots (25 trials each). Arrows highlight the systematic changes in stimulus-evoked 

response features across trials: inhibition duration (PN1, PN4, PN5), response latency (PN2, 

PN9, PN10), response intensity (PN2, PN6) and reliability (PN3, PN7, PN8). Spiking activity 

during the entire four seconds of stimulus exposure is shown.  

(b) The neighboring correlation metric used to quantify the changes in spiking response 

patterns over trials is schematically shown. First, for each neuron, the stimulus-evoked spike 

trains elicited in a single trial were binned in non-overlapping 50 ms time windows (e.g. PN5, 

trial number is color coded). For a 4s odor exposure, this generated 80-dimensional vectors 

to characterize the PN response in each trial. The similarity between PN firing activity in a 

given trial and the average of its neighboring two trials (see Methods) was computed, and 

plotted as a function of trial number. 

(c) The neighboring correlation metrics for different PN-odor combinations clustered into five 
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prominent response motifs (see Methods). After this categorization, evolution of the 

correlation coefficient as a function of trial number for each PN-odor combination is shown in 

five separate panels. Representative PNs, whose rasters are shown in panel a, are 

highlighted using darker colors. 

(d) Stacked bar plot summarizing the size of membership for each cluster is shown for each 

odorant used in this study. No significant differences between cluster membership distributions 

were found between stimuli (Two-way ANOVA, p>0.05). 

 

Fig. 3: Ensemble neural activity change systematically over repeated trials 

(a) Total spike counts across all PNs during the entire four seconds of stimulus exposure were 

calculated and plotted as a function of trial number. Each panel reveals the total odor-evoked 

response generated across all recorded PNs to two different intensities of the same stimulus 

(H = 1% by volume, L = 0.1% v/v). The dotted line indicates the minimum spike count observed 

during the 25th trial of higher intensity odor presentations. Two-way ANOVA was used to 

compare the spike counts between different trials and different odorant concentrations (see 

Methods).   

(b, c) Odor-evoked ensemble projection neuron response trajectories are shown after 

dimensionality reduction using a tensor decomposition method (see Methods). For each odor 

pair, the region where the trajectories begin following odor onset (labeled ‘Start’), and the 

direction of response evolution over time are identified (colored arrows). The response 

trajectories of representative trials 1, 5, 10, 15, 20 and 25 are shown by color gradient from 

light (early trials) to dark (later trials).  

(d, e) Information retained (loading elements) in the trial dimension following a 3-rank tensor 

decomposition (see Methods) is plotted as a 3-d plot. Each trial is represented as a symbol 

in this plot. Color scheme same as that used in panels b, c. The solid circle and star symbols 

represent the higher (1%) and lower (0.1%) odorant concentrations, respectively. 

 

Fig. 4: Odor identity and intensity information is maintained across trials. 

(a) Comparison of odor-evoked responses between high and low intensities of hexanol (left 

panel) and isoamyl acetate (right panel). Spiking activities of individual PNs were summed 

over the entire odor presentation window, sorted based on their response to the high-intensity 

presentations, and plotted to reveal the combinatorial response. Mean ± S.D. across the 

twenty-five trials are shown. Correlation coefficients (R) between the high vs low intensity PN 
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response profiles for both odorants are shown in each panel.  

(b) Similar plots as in panel a, but comparing the PN response profiles evoked by different 

odorants presented at the same dilution level. 

(c) Similar plots as in panel a, but comparing the PN response profiles generated by different 

odorants presented at different dilution levels.  

(d) A comparison of combinatorial PN response profiles activated by the same odorant across 

trials (‘o’), same odorant across intensities (‘à’), between different odorants presented at same 

intensity (‘�’) and between different stimuli presented at different intensity levels (‘é’) are 

shown as a function of trial number. Note that similarity with respect to the first trial response 

of that odorant is used for comparisons across trials. For comparisons between odorants and 

intensity levels, similarity with respect to the first trial of hexanol at 1% was computed and 

plotted.   

(e) Similar plot as in panel d, but analyzing responses of a different set of PNs to a different 

pair of odorants (iaa and bzald). For comparisons between odorants and intensities levels, 

similarity with respect to the first trial of isoamyl acetate at 1% was computed and plotted.    

(f) A dendrogram was generated using a correlation distance metric comparing trial-by-trial 

ensemble spiking activities evoked by two different stimuli at two different intensities (see 

Methods). Two major response clusters that correspond to stimulus identity and intensity were 

identified. The number at the leaf node represents the trial number.  

 

Fig. 5: Sensory memory regarding the repeated stimulus persists even in the absence 

of that stimulus 

(a) Raster plots revealing both pre-stimulus (15 s) and stimulus-evoked activities (4 s) of two 

representative projection neurons are shown. Each row corresponds to one trial, and spiking 

activity during twenty-five trials (top-most row – trial 1, bottom-most row – trial 25) are shown. 

The interval between two consecutive exposures to the same odorant was 60 seconds. Note 

that three blocks of twenty-five trials are shown. Between each block, a 15-minute no-odor 

reset window was included. Hexanol was repeatedly presented during the first and third block 

of trials. 2-octanol was repeatedly presented during the second block of trials. A blue or a red 

color shade is used to differentiate the pre-stimulus period preceding the repeated hexanol or 

2-octanol exposures, respectively. Gray box indicates the 4 s when the odor stimulus was 

presented. 

(b) The pre-stimulus spiking activities (first 15 s of each trial) of four representative projection 
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neurons are shown (25 trials in each condition). Note that neurons have distinct pre-stimulus 

activity levels when a different stimulus (2-octanol) is repeatedly encountered. Further, the 

pre-stimulus activity levels are recovered when the same stimulus (hexanol) is repeated during 

different epochs. Each block is separated by a 15-minute no-odor reset window.  

(c) Comparison of total spike counts over the entire pre-stimulus window preceding repeated 

presentation of two different odorants (hex and 2oct). The X-axis corresponds to spike counts 

during the pre-stimulus period when hex was repeatedly presented. The Y-axis corresponds 

to spike counts during the pre-stimulus period when 2oct was repeatedly presented. Mean ± 

s.e.m. over 25 trials is shown for all PNs. Cells in red indicate a significant increase in spiking 

activity preceding 2oct exposures compared to similar epochs preceding hex exposures (P < 

0.05, d.f. = 1, 48, one-way ANOVA; n = 80 PNs). Similarly, cells in blue indicate a significant 

decrease in spike counts for epochs preceding 2oct exposures relative to epochs preceding 

hex exposures, and cells in gray indicate no significant change in their baseline firing rates 

across the two conditions. The inset summarizes the fraction of PNs with a significant increase 

(red) or decrease (blue) in spike counts.  

(d) Pre-stimulus ensemble projection neuron activities were visualized using principal 

component analysis. The average spiking responses over the 15 s pre-stimulus window 

across all PNs in a particular trial (i.e. one high dimensional vector per trial) is shown as a 

color-coded sphere in the plot.  

 

Fig. 6: Pre-stimulus activities are negatively correlated with stimulus-evoked 

responses 

(a) Schematic overview of the correlation analysis. Left panel, each rectangular column 

indicates a vector of ensemble projection neuron spike counts in a 50 ms time bin in one 

specific trial. Ensemble PN vectors during pre-stimulus, stimulus, and post-stimulus 

presentation periods were included in this analysis. Right panel, correlations between PN 

ensemble activity in a given time bin with all other epochs were computed and shown as a 

row in the correlation image. Diagonal pixels correspond to self-correlations. Note that the 

image is symmetric.   

(b) Correlation maps for different trials are shown. The 4 s stimulus presentation period is 

identified using a gray bar. Note that each non-diagonal pixel represents similarity between 

ensemble PN spike counts in one time bin versus those in another time bin. Similarly, one row 

or column represents the correlation between one ensemble PN activity vector with all other 
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ensemble PN vectors. Cooler colors indicate lower correlation and hotter colors indicate higher 

similarity/correlations. Four representative trials are shown. Note that the correlation values 

between pre-stimulus PN spiking activities and odor-evoked spiking responses decrease 

across trials. 

(c) Left, correlations between mean pre-stimulus ensemble PN responses and stimulus-

evoked population PN responses are shown when the same stimulus repeated 25 times with 

a 60 s inter-stimulus interval. Different colors point to different odors and concentrations; 

dotted line indicates results for hexanol repeat block. Middle, similar correlation plots but now 

showing the comparison between stimulus-evoked responses and post-stimulus activities. 

Right, similar plots showing correlation changes over trials between pre-stimulus and post-

stimulus. 

(d) Similar plots as in panel c for a different set of odorant stimuli. 

 

Fig. 7: Contrast enhancement of ensemble responses to the deviant stimulus 

(a) Two blocks of trials were used. First, a block of 30 trials where one odorant (hex) was 

presented in all trials except the 26th trial (the catch trial). During the catch trial, a deviant 

stimulus (iaa or app) was presented. After a 15-minute no-odor reset period, a second block 

of ten trials of deviant stimulus was presented. This was done to determine the unadapted 

(first trial) and adapted (later trials) responses of the same set of PNs to the stimulus used in 

the catch trial.  

(b) Responses of the six representative PNs are shown as PSTHs. Four trials are compared: 

PN response during the first trial of the repetitive stimulus (solid blue traces), PN responses 

during the twenty-fifth trial of the repetitive stimulus (dashed cyan traces), PN responses 

during the ‘catch trial’ (solid red traces), and PN response to the first exposure of the deviant 

stimulus following the 15-minute no-odor reset period (dashed orange traces; 1st trial of block 

2). The PN responses types shown formed three of the main response motifs. The last 

category included PNs with weak or no significant response to both the repetitive and deviant 

stimuli. The fraction of PNs belonging to each cluster is summarized as a bar plot.  

(c, d) Similar trial-by-trial trajectory plots as in Fig. 3. PN ensemble response during each trial 

is shown as a closed loop response trajectory. Ensemble PN response to the repeat stimulus 

is shown in blue (hex; block 1 – trials 1 - 25).  Orange response trajectories are those elicited 

by iaa or app during block 2 trials. The numbers next to the trajectories indicate trial number 

and a color gradient from light to dark is used to indicate early and late trials, respectively. The 
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PN response trajectory elicited by iaa or app during the catch trial (block 1 – 26th trial) is shown 

in red. The black arrows indicate the shift in the direction of PN response trajectories during 

the catch trial.  

(e, f) Trial-by-trial trajectory showing a modest increase in the trajectory length observed 

during the trial immediately following the catch trial (27th trial) when the repetitive stimulus was 

presented again.  

 

Fig. 8: Multiple forms of short-term memory in the antennal lobe 

(a) Local field potential responses evoked by hexanol-1% (filtered between 5 – 55 Hz) are 

shown for a representative subset of twenty-five consecutive trials. Two distinct analysis 

windows (shown on the top of the traces) are identified. Fast oscillation epoch is defined as 

the time segment during the first 500 ms following odor onset, while slow oscillations period 

refers to the duration after 2s of odor onset. The color box indicates the stimulus presentation 

window.  

(b) For the two time-windows identified in panel a, the total power in different frequencies 

were computed and plotted as a function of trial number. The dotted lines indicate a 20-Hz 

frequency band (10-30 Hz for fast oscillations; 5-25 Hz for slow oscillations) that was used for 

further analysis in panel c.  

(c) Standardized power for each trial was calculated by integrating total power over the 

identified frequency band and plotted. To allow comparison, the total power in the frequency 

band was divided by the mean response across 25 trials. n indicates the number of 

experiments. A repeated measure one-way ANOVA was used for testing the significance of 

the reported results. 

(d) Top, a representative LFP recording is shown. The color bar identifies a 4 s window when 

hexanol was presented to the locust antenna. Middle, field potential trace from the same 

antennal lobe after 100 µM picrotoxin bath application is shown. Bottom, LFP traces from the 

same location is shown after picrotoxin wash-out.  

(e) Trial averaged frequency spectrogram is shown for the 4 s hexanol puff before picrotoxin 

bath application (left), during picrotoxin bath application (middle), and after picrotoxin was 

washed out (right). 

(f) Responses of two representative PNs to 4 s hexanol puff before and during picrotoxin bath 

application are shown. 

(g) Summed, unsorted spike counts and normalized summed spike counts (h) during four 
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second stimulus exposure period are plotted as a function of trial number. Blue and red traces 

show the summed spike counts before and after picrotoxin bath application, respectively. 
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Supplementary Methods: 

Odor stimulation: For delivering odorants, we followed a protocol described in our earlier 

work49. Briefly, odorants were diluted in mineral oil to either 1% or 0.1% concentration (v/v) 

and sealed in glass bottles (60 ml) with an air inlet and outlet. A pneumatic picopump (WPI 

Inc., PV-820) was used to displace a constant volume (0.1 L/min) of the static headspace 

above the diluted odor-mineral oil mixture into a desiccated carrier air stream (0.75 L/min) 

directed toward one of the locust’s antennae. A vacuum funnel placed behind the locust 

preparation continuously removed the delivered odors.  

The first set of experiments included multiple blocks, with twenty-five trials each, when 

one odorant at one intensity was repeatedly presented. Each trial in the block included a four 

second stimulus presentation window. The inter-stimulus interval (between trials) was sixty 

seconds. Different odorants at different intensities were repeatedly presented in different 

blocks. A 15-minute window, when no stimulus was presented, separated two consecutive 

blocks of trials. This window was included to reset any short-term memory that may have 

formed due to repeated presentation of the same stimulus26.  

The second set of experiments involved two blocks of trials. The first block of trials 

included 30 trials and the second block consisted of ten trials. In the first 25 trials of block 1, 

hexanol at 1% v/v was repeatedly presented. In the 26th trial, a puff of either isoamyl acetate 

1% v/v or apple 1% v/v (a ‘deviant’ odorant) was presented. In trials 27-30, hexanol at 1% v/v 

was again presented. This was followed by fifteen-minute reset window when no stimulus was 

presented. In the second block of ten trials (trials 31-40), the deviant stimulus was repeatedly 

presented. All inter-stimulus intervals (between trials) were sixty seconds and all odor 

presentations were four seconds long. 

 

Electrophysiology: Young-adult (post-fifth instar) locusts (Schisocerca americana, both male 

and female) were used for electrophysiological experiments. First, the locusts were 

immobilized with both antennae intact. Then the olfactory regions of their brain were exposed, 

desheathed, and superfused with locust saline at room temperature. Extracellular, multiunit 

recordings of projection neurons (PN) were performed with a 16-channel, 4x4 silicon probe 

(NeuroNexus) superficially placed on the antennal lobe. Mushroom body local field potential 

recordings were performed using custom-made twisted-wire tetrodes (nickel-chromium wire, 

RO-800, Kanthal Precision Technology) placed into the mushroom body calyx. Prior to each 

experiment, all probes and tetrodes used were electroplated with gold to obtain impedances 
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between 200 and 300 kΩ. Multiunit PN activity and mushroom body local field potential were 

recorded using a custom made 16-channel amplifier (Biology Electronics Shop; Caltech, 

Pasadena, CA). Signals were amplified with a 10k gain, filtered using a bandpass filter (0.3 to 

6 kHz), and sampled at 15 kHz using a LabView data acquisition system. A visual 

demonstration of the extracellular, multiunit PN recording techniques is available online50. 

 

Electroantennogram: Electroantennogram recordings were made using intact locust 

antenna. Three to four distal antennal segments were cut, and the cut antennae was inserted 

into a micropipette filled with locust saline. An Ag/AgCl wire was inserted at the other end of 

the micropipette to make an electrical contact with the cut antennae. A ground electrode was 

inserted into the contralateral eye. The signals were acquired using a DC amplifier (Brownlee 

Precision). Data were collected at 15 kHz with a custom-made LabVIEW data acquisition 

program from 5 locusts with 25 repeated trials of 1% hexanol (4s stimulus, 60 s inter-pulse 

interval).  

 

Pharmacological Manipulation: The saline bathing the brain was displaced with locust saline 

containing 1mM picrotoxin. Recordings were performed after a 45-minute wait period following 

picrotoxin addition to the bath. Because spike-sorting is not reliable after addition of picrotoxin, 

total spike count was determined by including all detected peaks, without clustering. For 

washout experiments, standard locust saline without picrotoxin was added to the bath at a 

rate of 200 mL/hr for 90 minutes. 

 

Spike sorting: To obtain single-unit PN responses, spike sorting was done offline using the 

best four recording channels and conservative statistical principles51. Spikes belonging to 

single projection neurons were identified as described in an earlier work52. Briefly, the following 

criteria were used to identify single units: cluster separation > 5 noise standard deviations, 

number of cluster spikes within 20 ms < 6.5% of total, and spike waveform variance < 6.5 

noise standard deviations. In total, 283 projection neurons (from 40 locusts) were identified. 

 

Neighborhood correlation analyses: To quantify the systematic changes in individual PN 

spike trains over repeated trials, we first binned the spiking activity in 50 ms non-overlapping 

time bins. This resulted in an 80-dimensional vector of spike counts during the 4 s odor 

presentation period in each trial. The correlation between the spike train vectors in a trial with 
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the average spike train vector of its neighboring two trials was computed as follows:  

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = (,-
./,0)(,234. /,234).

5-5234
                        equation (1) 

where 𝑥7 indicate the neural response vectors in trial i, and 𝑥89: denotes the average of two 

neighboring spike train vectors of trial i-1 and i+1. 𝑥 represents the mean value amongst 

vector components and 𝜎 denotes the standard deviation. 

For the first trial, correlation was computed with the average of the second and third trials. 

The last trial was correlated with the previous two trials. This metric resulted in various 

correlation profiles across trials for a total of 644 neuron-stimulus pairs (shown in Fig. 2c).  

To further categorize response correlation changes across trials, we first smoothed those 

correlation profiles with a five-point moving average filter. Subsequently, a hierarchical 

clustering approach was used to identify distinct groups within similar correlation patterns 

across trials. A cosine similarity metric was used to calculate the pairwise distances between 

neurons, and a furthest neighbor clustering option was used to create the clusters shown in 

Fig. 2c, d. The elbow of a mean-squared-error of approximation was used to determine the 

optimal number of clusters. 

 

Local field potential (LFP) analysis: Raw signals were acquired at 15 kHz sampling rate. 

This was sub-sampled at 1 kHz and digitally filtered (5-55 Hz, 2nd-order Butterworth). Power 

spectra were obtained by fast Fourier transform of the filtered LFP, during two separate epochs 

(0 - 500 ms – fast oscillation window, and 2 - 4 s – slow oscillation window; all temporal window 

calculated from odor onset). The first-time segment revealed power spectrums centered at 

~20 Hz, while the later epoch revealed power spectrums centered around 10 Hz. To allow 

comparison, power spectra computed for each trial were standardized by its mean response 

that was obtained by integrating a 20 Hz band around the peak value (Fig. 8b, between dotted 

lines). Repeated measures one-way ANOVA was used to determine whether there was a 

significant increase or decrease in power across trials. 

 

Tensor-based data decomposition: We first organized neural response data as a three-way 

array (Neuron ×  Time ×  Trials; the stimulus information was also blended into trial 

dimension), and then employed a direct 3-way tensor decomposition approach53. Here, the 3-

d data cube was approximated using three loading matrices, A, B, and C with elements 

𝑎7< (neuron dimension), 𝑏><  (time dimension), and 𝑐@<  (trial dimension). 𝑒7>@  was the 
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residual element (see the equation below). The tri-linear model was found using alternating 

least squares. 

𝑥7>@ = 𝑎7<𝑏><𝑐@<A
<BC + 𝑒7>@      equation (2) 

where 𝑖, 𝑗, 𝑘  denotes the three different dimensions, and 𝐹  indicates the total number of 

factors used for the analysis that was determined by the core consistency diagnostics54. In our 

case, when 𝐹 = 3, the core consistency was above 50 %, while it dropped to below 40% when 

𝐹 = 4 (Supplementary Fig. 1b). Therefore, we used three factors for our data decomposition. 

The basis vectors 𝑐@ across trials in the trial dimension were shown in trial mode plots (Fig. 

3d, e).  

 

Trial-to-trial odor trajectory: For this analysis, we first reconstructed the dataset by 

computing the outer product of the loading matrices that were obtained by the tensor 

decomposition. The reconstructed 3-d tensor was then unfolded into a concatenated matrix 

(i.e. along the trial dimension). After unfolding, the ensemble projection neuron responses 

were arranged as time series data of n dimensions (where n is number of neurons) and m 

steps (the number of 50 ms time bins × the number of trials). Note that only the projection 

neuron activities during the four second stimulus presentation window in each trial were used 

for this analysis. The ensemble projection neuron response vectors (in a given 50 ms time bin) 

were projected onto the three eigenvectors of the response covariance matrix that accounted 

for the most variance in the dataset, using principal component analysis. Finally, the low-

dimensional points were connected in a temporal order to visualize neural response 

trajectories to different stimuli on a trial-to-trial basis. All trajectory plots shown in Fig. 3 were 

generated after smoothing with a 3-point running average low-pass filter. 

 

Similarity of ensemble spiking activities and dendrogram: First, we calculated the 

summed spike counts during the 4 s odor presentation window for each individual projection 

neuron. Then the correlation similarity between two spike count profiles across projection 

neurons was calculated using equation 1. Similarly, in this analysis, 𝑥7 and 𝑥> represent a 

𝑛×1 vector (n = 80 for hex-2oct; n = 81 for iaa-bzald) for trial i and j, respectively. The 

dendrogram was generated by hierarchical clustering of all stimulus identities, intensities, and 

individual trials based on the correlation distance. The dendrogram was created in such a way 

that the furthest pairwise distance between any two samples assigned to an individual cluster 

was minimized. 
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Dimensionality reduction analysis for baseline activities: For this analysis, we simply 

used the linear principal component analysis. We averaged the 15 s pre-stimulus spiking 

activities for each projection neuron in a given trial. This resulted in a n-dimensional vector for 

each trial (n = number of projection neurons recorded). To compare baseline projection neuron 

activities during different pre-stimulus epochs, we concatenated projection neuron firing count 

vectors during these epochs and performed a linear principal component analysis.  The high-

dimensional baseline PN activity vectors in each trial were projected along the leading three 

eigenvectors of the data covariance matrix.  

 

Correlation analysis between baseline and odor-evoked response: Both the pre-stimulus 

and stimulus-evoked activities were binned in 200 ms non-overlapping time bins for each 

individual trial to obtain population neuron response vectors as shown in Fig. 6a. Correlation 

value between two responses vectors then were calculated using equation 1 (here 𝑥7 

represents population neuron response vectors in ith time bin). Each pixel in correlation plot 

(Fig. 6b) indicates the correlation value between two projection neuron spike count vectors. 

Finally, we used correlation values between mean firing rates during different periods to obtain 

correlation values across trials (as shown in Fig. 6c). The mean pre-stimulus ensemble PN 

vector was obtained by taking the mean spiking activities across the entire 15 s pre-stimulus 

period. The mean stimulus-evoked population PN response was obtained by taking the mean 

of the entire 4 s stimulus-evoked responses. The mean post-stimulus activity vector was 

computed by averaging PN responses in a 4 s window starting after 1 s of stimulus termination. 

 

Clustering analysis of firing rates profile across trials (Fig. 7): For each neuron, we 

calculated the mean firing rates during 4 s odor presentation for each trial and concatenated 

them into a 40×1 vector (30 trials from block 1 and 10 trials from block 2). This resulted in 

mean firing rates profiles across trials for a total of 219 neuron-odor pairs. Then, we performed 

a hierarchical clustering analysis using correlation distance to obtain four distinct response 

motifs. The correlation distance between two mean firing rates profiles was calculated as 

follows (here 𝑥7  and 𝑥> represents 40×1 vector for ith and jth neuron-stimulus pair).  

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =
(,-
./,0)(,M

./,N).

5-5234
                    equation (3) 
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Justification of statistical tests:  

All statistical significance tests done in the manuscript were two sided. No statistical methods 

were used to predetermine sample sizes, but our sample sizes are similar to those reported 

in previous publications in the field19,24. 

 Two-way ANOVA test was used to compare the means of columns and rows of the 

observation in a two-dimensional dataset. For Fig.2d, the data in different rows represented 

changes in stimulus conditions, while data in different columns represented changes in cluster 

numbers. Similarly, in the analysis of Fig. 3a, the row factor represented different odor 

intensities, while column factor indicated different trial numbers. The observations for within 

and between groups were assumed to be independent. 

Repeated measures one-way ANOVA was used to assess the significant changes of the 

mean LFP oscillatory power across repeated trials (Fig. 8b, c). The measurement was 

repeated on the same sets of the insects, and data in each group satisfied the normality 

(Jarque-Bera test) and equal variance assumption (Levene’s test). 
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Supplementary Figure Captions: 

Supplementary Figure 1: Tensor-based data decomposition for trial-by-trial analysis of 

ensemble neural response profiles.   

(a) Peristimulus-time histograms (PSTH) are shown for 11 simultaneously collected PNs from 

a single locust antennal lobe. Responses to two odorants at a single concentration are shown: 

iaa (1% v/v dilution) and bzald (1% v/v dilution). Only firing rate responses during the four 

seconds of odor pulse duration are shown for each neuron.  

(b) A three-dimension neural data array can be approximated as a sum of multiple rank-1 

tensors that are obtained through outer product of three loading vectors af (neuron dimension), 

bf (time dimension), and cf (trial dimension) (subscript f ranges from 1 to the total number of 

factors).  

(c) The loading vectors are used to reconstruct the three-way data. This reconstructed data 

cube is unfolded and concatenated with respect to the trial dimension. Subsequently, a 

dimensionality reduction technique (e.g. PCA) is applied for odor response trajectory 

visualization.  

(d) A core consistency diagnostic was used to determine the number of factors to be used in 

the tensor-based decomposition analysis. Here, the core consistency metric was above 80% 

for up to three factors decompositions, but fell below 40% when the factor number was 

increased to four or greater. Therefore, a three-factor decomposition was used for all tensor 

reconstructions in this study.  

(e, f) Odor-evoked ensemble neural spiking activities from a single locust after dimensionality 

reduction using principle component analysis are shown (PCA). Each axis corresponds to one 

of the first three principal components that capture a certain amount of variance in the dataset. 

The odor trajectories generated by iaa and bzald are shown in blue and red, respectively for 

all 25 trials. For those of trial 1, 5, 10, 15, 20, and 25, neural trajectories are highlighted with 

color gradient that goes from light to dark. All trajectories start from a pre-stimulus baseline 

that is labeled ‘Start’. Arrows indicate the direction of response evolution over time. The PCA 

following the tensor-based decomposition method were used to generate odor trajectories in 

panels e, while a direct unfold-then-PCA approach was used to generate results in panel f.  

(g, h, i) Loading vectors obtained from the tensor-based decomposition corresponding to the 

neuron (g), time (h), and trial (i) dimensions are shown.  
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Supplementary Figure 2: Trial-by-trial response changes are reproducible.  

(a) Raster plots of four representative PNs responses to two blocks of trials when the same 

stimulus was presented repeatedly in all 25 trials. A no-odor reset period of greater than 15 

minutes preceded each block of trials. The color box represents 4-s stimulus duration, and the 

arrows in the box indicate the systematic change in individual PN responses.  

(b) Similar plots as in Fig. 3d, e are shown for the repeated block of twenty-five trials (hex 1% 

or iaa 1%) used in this study. Lower concentrations of the same stimulus are shown to allow 

qualitative comparisons with panels shown in Fig. 3d, e. 

 

Supplementary Figure 3: Euclidean distance based analysis of odor identity and 

intensity.  

(a) A comparison of combinatorial PN response profiles activated by the same odorant across 

trials (‘ο’), same odorant across intensities (‘◊’), between the different odorants presented at 

same dilution levels (‘�’) and between different stimuli presented at different intensity levels 

(‘★’) are shown as a function of trial number. Note that compared to results shown in Fig. 4d, 

e where a correlation distance metric was used, here we used a Euclidean distance. 

Comparisons are made with respect to the first trial response of that odorant. For comparisons 

between odorants and across intensities levels, Euclidean distance with respect to the first 

trial of hexanol at 1% was computed and plotted.  

(b) Similar plot as in panel a, but analyzing responses of a different set of PNs to a different 

pair of odorants (iaa and bzald). For comparisons between odorants and intensities levels, 

similarity with respect to the first trial of iaa at 1% was computed and plotted.  

(c) A dendrogram was generated using a Euclidean distance metric comparing trial-by-trial 

ensemble spiking activities evoked by two different stimuli at two different intensities. Two 

major response clusters that correspond to stimulus identity and intensity were identified. The 

number at the leaf node represents the trial number. However, note that for the hexanol and 

2-octanol case, the grouping is first by intensity and then by identity. Also, the early trials of all 

odorants (particularly trials one and two) form a separate sub-cluster. 

 

Supplementary Figure 4: Sensory memory regarding the repeated stimulus persists in 

the baseline response 

Similar plot as Fig. 5d, but pre-stimulus ensemble projection neuron activities when the same 

stimulus is repeated during two different epochs are visualized. The direction in which the 
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baseline activities change in between stimulus exposures is highly reproducible when the 

same stimulus is repeated in different time segments.  

 

Supplementary Figure 5: Schematic representation of the main ideas of the manuscript. 

(a) A schematic showing how odor identity, concentration can be encoded in an adaptation 

invariant manner. The direction of the high-dimensional vector is determined by the 

combination of the neurons activated and the response strength determines the length of the 

vector. Our results indicate that the ensemble of PNs activated changes subtly with stimulus 

intensity and drastically with stimulus identity. Although the response strength reduces upon 

repetition, the combination of PNs activated is maintained.  

(b) A schematic showing how baseline ensemble neural responses changes upon repeated 

stimulus exposure. Without any odor stimulus, there is some inherent variability in the 

ensemble PN baseline response which can be represented as a random walk in the high 

dimensional state space (dotted line). When an odor stimulus is encountered repeatedly, 

ensemble PN baseline changes in a specific direction in the state space. The observed 

changes in the baseline activity are stimulus specific (red and blue arrows). However, note 

that repeated encounters of the same stimulus results in similar shifts in baseline but the 

starting points in the state space are different (indicated using two blue arrows but with 

different starting points). 
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