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Abstract 

 

Electroporation of zygotes represents a rapid alternative to the elaborate pronuclear 

injection procedure for CRISPR/Cas9-mediated genome editing in mice. However, current 

protocols for electroporation either require the investment in specialized electroporators or 

corrosive pre-treatment of zygotes which compromises embryo viability. Here, we describe 

an easily adaptable approach for the introduction of specific mutations in C57BL/6N mice by 

electroporation of intact zygotes using a common electroporator with synthetic CRISPR/Cas9 

components and minimal technical requirement. Direct comparison to conventional 

pronuclear injection demonstrates significantly reduced physical damage and thus improved 

embryo development with successful genome editing in up to 100% of living offspring. 

Hence, our novel approach for Easy Electroporation of Zygotes (EEZy) allows highly 

efficient generation of CRISPR/Cas9 transgenic mice while reducing the numbers of animals 

required. 
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Introduction 

To understand the mechanisms underlying human diseases biomedical research relies 

on the availability of animal models with precise recapitulation of human genetics. To this 

end, state-of-the-art genome editing by use of the CRISPR/Cas system (clustered regularly 

interspaced short palindromic repeats/CRISPR-associated protein) in mouse zygotes has 

enabled the fast and scarless introduction of specific mutations with high efficiency [1-4]. The 

most commonly used CRISPR/Cas system consists of three basic components: the 

endonuclease Cas9, the sequence specific crRNA (CRISPR RNA) and the generic tracrRNA 

(trans-activating crRNA). Naturally occurring as a paired guide RNA (pgRNA) the two 

sequences have been artificially fused to a single guide RNA (sgRNA) molecule for practical 

reasons [3]. At the desired locus, CRISPR/Cas9-mediated DNA double strand breaks are 

either repaired by non-homologous end joining (NHEJ), resulting in random insertions and 

deletions (INDELs) or, if a DNA repair template is provided, by homology directed repair 

(HDR). The latter mechanism can be exploited to introduce site-specific mutations into the 

locus of interest. While CRISPR/Cas9-mediated transgenesis has emerged as the novel 

standard technology for the generation of mouse models, the delivery of the necessary 

components into zygotes still relies on technically demanding and invasive pronuclear 

injection (PNI). Recently, three independent groups demonstrated electroporation of zygotes 

as an alternative delivery route for Cas9 mRNA, guide RNAs and short single-stranded 

oligonucleotides (ssODN) as DNA repair templates for precise CRISPR/Cas9-mediated 

transgenesis [5-7]. Subsequently, electroporation of pre-assembled Cas9/sgRNA 

ribonucleoproteins (RNP) proved to drastically enhance transgenic efficiencies [8, 9]. 

However, several obstacles within the current protocols hinder the broader application of 

electroporation: Firstly, they either require the costly investment in a specialized 

electroporator device, or use corrosive pre-treatment of the embryo by acidic Tyrode’s 
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solution to allow uptake of the CRISPR/Cas9 components. Weakening of the zona pellucida, 

a vital part of the embryo, by acidic Tyrode’s solution compromises embryo viability [10-12] 

while the necessary incubation time of as short as 10 s [7] is challenging to be reproducibly 

applied even for highly experienced users. Furthermore, the batch specific activity of acidic 

Tyrode’s solution [8] challenges its safe and reproducible application. Secondly, synthetic 

guide RNAs have recently become commercially available circumventing laborious 

preparation of in vitro transcribed sgRNA. However, the impact of delivering these synthetic 

guide RNAs by electroporation on embryo viability has not been assessed side-by-side with 

conventional sgRNA. Thirdly, major results optimizing the electroporation conditions are 

based on experiments with zygotes from robust F1 hybrid mice whereas the vast majority of 

research questions demand transgenesis in the more sensitive but most commonly used inbred 

C57BL/6N mice in order to keep the results comparable and reproducible [6, 7, 13-15].   

 To overcome these constraints, we combined the current data on electroporation in 

order to develop an easily adaptable protocol for efficient CRISPR/Cas9-mediated 

transgenesis of C57BL/6N zygotes with minimal technical demand. We aimed to omit any 

treatment weakening the zona pellucida and to establish the protocol on a standard 

electroporation device. Utilization of commercially available CRISPR/Cas9 components, 

most importantly synthetic guide RNAs, further simplified the process and enhanced the 

reproducibility as well as the embryo viability. We found that our improved CRISPR 

electroporation, which we refer to as EEZy (Easy Electroporation of Zygotes), enables the 

introduction of specific mutations as efficient as delivery by conventional PNI while it 

significantly enhances embryo development in vitro and live birth rates in vivo.  Genome 

editing accomplished in up to 100% of the founder mice demonstrate complete penetration of 

zygotes without any weakening of the zona pellucida. Thus, our EEZy approach represents an 

easily adaptable and broadly applicable technique for CRISPR-mediated mouse transgenesis 

which outperforms conventional PNI. 
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Materials and methods 

Ethics statement  

All mouse protocols were in accordance with European, national and institutional 

guidelines and approved by the State Office of North Rhine-Westphalia, Department of 

Nature, Environment and Consumerism (LANUV NRW, Germany; animal study protocol 

AZ 84-02_04_2014_A372). Mice were kept in the specific and opportunistic pathogen free 

animal facility of the CECAD Research Center of the University of Cologne at 22°C (± 2°C) 

and a humidity of 55% (± 5%) under 12 h light cycle with access to water and food ad 

libitum. Mice were anesthetized with ketamine (Ketaset, Zoetis) and xylazine (Rompun, 

Bayer) and euthanized by cervical dislocation. Carprofen (Rimadyl, Zoetis) was used as 

analgesic after surgery. All efforts were made to minimize suffering.  

 

Generation of guide RNAs 

Custom crRNA (IDT, Alt-RTM crRNA) and generic tracrRNA (IDT, 1072532) were 

resuspended to 100 µM in sterile and nuclease-free T10E0.1 buffer (10 mM Tris-HCl, 0.1 mM 

EDTA, embryo-tested water (Sigma, W1503)) prepared as described [16]. 50 µM 

crRNA:tracrRNA complexes (pgRNA) were generated by subjecting equimolar ratios to 95°C 

for 5 min followed by reduction of 5°C/min. sgRNA was generated by T7 RNA polymerase 

mediated in vitro transcription (NEB, E2040S) from the pSpCas9(BB)-2A-GFP (PX458) 

plasmid (Addgene #48138) from Feng Zhang and column purified (Qiagen, 217004). Guide 

RNAs were stored at -80°C. crRNA sequences are listed in S1 Table.  
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Mouse transgenesis 

A step-by-step protocol for EEZy is available on protocols.io 

(dx.doi.org/10.17504/protocols.io.ndzda76). Unless otherwise stated, mouse pre-implantation 

embryos were kept in pre-incubated M16 in a CO2 incubator (5% CO2, 37°C, 95% humidity; 

Labotect C16) or handled in M2 outside the CO2 incubator. M16 and M2 were prepared as 

described [17]. C57BL/6NRj zygotes for electroporation were either directly purchased from 

Janvier Labs (SE-ZYG-CNP) or collected from C57BL/6NRj females. Therefore, 3-4-week-

old donor females (i.e. 12-14 g body weight) were superovulated 72 h prior zygote collection 

by intraperitoneal administration of 5 IU of pregnant mare serum gonadotrophin (ProSpec, 

HOR-272 or Aviva Systems Biology, OPPA01037) followed by 5 IU of human chorionic 

gonadotrophin (Intervet, Ovogest) 48 h later. 0.5 days post coitum (dpc) zygotes were 

collected from the oviducts of donor females upon 1:1 mating with C57BL/6NRj males as 

described in published protocols [17]. If indicated C57BL/6NRj zygotes were collected upon 

in vitro fertilization without using reduced glutathione essentially as described in published 

protocols with the minor modification of using Cook RVFE (Cook Medical, K-RVFE-50) as 

fertilization medium and M16 for post fertilization wash steps instead of human tubal fluid 

media [17]. For electroporation of zygotes Cas9 RNPs were assembled by combining 4 µM 

Cas9 protein (IDT 1074181) with 4 µM of assembled pgRNA and sgRNA, respectively, in 20 

µl Opti-MEM (Thermo Fisher Scientific, 31985062) and incubation for 10 min at room 

temperature. If applicable, 10 µM ssODN (IDT, custom Ultramer Oligo; sequences are listed 

in S1 Table) or 200 ng/µl targeting vector were added. The plasmid targeting vector for 

integration of a splice-acceptor fused Venus reporter in the Gt(ROSA)26Sor locus was a kind 

gift from Ralf Kühn [16]. If indicated, the Cas9 RNPs were generated as a 2x solution (8 µM 

Cas9 protein; 8 µM gRNA) in freshly prepared sterile 2x pre-mix (20 mM HEPES pH7.5 

(Sigma, H3375), 150 mM KCl (Sigma, P9333), 1 mM MgCl2 (Sigma, 63068), 10% glycerol 

(Sigma, 49767) and 1 mM reducing agent TCEP (tris(2-carboxyethyl)phosphine (Sigma, 
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C4706), nuclease-free H2O (Qiagen, 129114)), incubated for 10 min at room temperature and 

add to 20 µM ssODN in 10 µl Opti-MEM. Each Cas9 RNP mix was kept on ice until use. For 

electroporation, zygotes were washed in batch through 5 drops of M2. After wash through 

one drop of Opti-MEM the zygotes were transferred with as little media as possible to 20 µl 

of Cas9 RNP mix. Using a P20 pipette, the entire solution was transferred to a pre-warmed 1 

mm cuvette (BioRad, 1652089) and placed in the BioRad Gene Pulser XCell electroporator. 

Two square wave pulses were applied (30V, 3 ms pulse duration, 2 pulses, 100 ms interval). 

The zygotes were retrieved from the cuvette using a P100 pipette and two flushes of 100 µl 

M16 and transferred to a culture dish (Falcon, 353037) containing 500 µl M16. If indicated 

zygotes were treated with acidic Tyrode’s solution (Sigma, T1788) for 10 s and the reaction 

stopped by adding M2. Zygotes for PNI were exclusively collected from C57BL/6NRj 

females upon natural mating as described above. After visual inspection for the presence of 

two pronuclei zygotes were placed in a paraffin oil covered M2 containing injection chamber. 

Microinjection was performed using an Axio Observer.D1 microscope (Zeiss) and 

microinjector devices CellTram and FemtoJet with TransferMan NK2 micromanipulators 

(Eppendorf). The CRISPR/Cas9 solution was injected into the male pronucleus using 

injection capillaries (BioMedical Instruments, BM100F-10; type PI-1.6). If not stated 

otherwise the CRISPR/Cas9 injection mix was prepared as described for electroporation but 

containing 400 nM gRNA, 200nM Cas9 protein, 30 ng/µl Cas9 mRNA (TriLink, L-6125-20) 

and 500 nM ssODN. Microinjected zygotes were transferred into 500 µl M16 and lysed 

embryos were removed approximately 1 h after injection. On the next day, 2-cell stage 

embryos were transferred unilateral into oviducts of pseudo-pregnant 0.5 dpc RjHan:NMRI 

females or continued to culture until the blastocyst stage at 3.5 dpc.  
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Genotyping analysis 

DNA of individual blastocyst stage embryos was extracted in 10 µl of QuickExtract 

DNA extraction solution (Epicentre, QE09050) in a thermocycler at 65°C for 15 min 

followed by 95°C for 15 min and stored at -80°C until use. Except depicted otherwise, two 

sequential rounds of PCR with Herculase II fusion DNA polymerase (Agilent Technologies, 

600677) were performed according to the manufacturer’s instruction using 2 µl DNA 

template. The primer sequences and thermocycling conditions are listed in S1 Table. For 

restriction fragment length polymorphism (RFLP) assay the PCR amplicons were column 

purified (Macherey-Nagel, 740609.250) or used right away for digestion with the indicated 

restriction enzyme (NEB) and the DNA fragments were analyzed by agarose gel 

electrophoresis. Percentage value of embryos harboring the desired mutation were counted by 

the presence of digested DNA fragments. Ear biopsies were lysed in 75 µl alkaline lysis 

buffer (25 mM NaOH, 0.2 mM EDTA) for 30 min at 95°C followed by 75 µl neutralization 

solution (40mM Tris-HCl). Sanger sequencing of PCR amplicons was performed by the 

Cologne Center for Genomics (CCG). 

 

Statistical analysis 

For calculation of statistical significance, standard deviation and arithmetic mean of 

differences Prism (GraphPad) and Excel (Microsoft) were employed. Box plots were 

generated by Prism. Statistical significance was assessed using a two-tailed, unpaired 

Student’s T-test. Differences were considered significant below a p-value of 0.05. 

 

Results 

In order to establish an easily adaptable protocol for CRISPR/Cas9 electroporation in 

C57BL/6N zygotes we intentionally utilized a standard electroporator (BioRad Gene Pulser 
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XCell). Similar devices are broadly available in biomedical laboratories. Two pulses of 3 ms 

at 30 V were previously demonstrated as the ideal balance between editing efficiency and 

embryo survival for electroporation with this device [8]. We chose to electroporate 4 µM of 

pre-assembled Cas9 RNPs as this concentration does not impact embryo viability and Cas9 

protein has been shown to dramatically outperform Cas9 mRNA electroporation regarding 

transgenic efficiency [8, 9].  

To validate our EEZy approach, we introduced a new BsaI restriction site in the Nphs2 

gene by electroporation of solely commercially available CRISPR/Cas9 components (guide 

RNA, Cas9 protein and ssODN repair templates) and analyzed the genotype of the blastocysts 

by RFLP analysis. In a first set of experiments, we determined whether previously suggested 

additives to the electroporation buffer are necessary to maintain editing efficiency and embryo 

development [8]. We compared the ratio and genotype of developed blastocysts upon EEZy in 

conventional electroporation buffer containing freshly added additives (Opti-MEM 

supplemented with reducing agent TCEP, HEPES, KCl, MgCl2 and glycerol) with blastocysts 

from zygotes electroporated only with commercially available Opti-MEM as electroporation 

buffer. Three independent experiments showed no advantage of electroporation buffer 

additives for transgenesis, analyzed by RFLP analysis (Fig 1A and 1B) and confirmed by 

Sanger sequencing (S1 Fig), and embryonic development (Fig 1C). The consistently high 

HDR-efficiency in these experiments also validated that pre-treatment of zygotes with 

Tyrode’s solution is indeed dispensable for efficient transgenesis in our EEZy approach. In 

confirmation, we detected equally high HDR-efficiencies when we targeted another genetic 

locus (Atp1a1) using our EEZy approach. Pre-treatment of zygotes with acidic Tyrode’s 

solution in this experiment did not enhance insert integration (S2 Fig).   

To circumvent laborious in vitro transcription of sgRNA we next utilized synthetic 

guide RNA consisting of paired crRNA:tracrRNA complexes (pgRNA). The use of these 

commercially available pgRNAs for electroporation has recently been described but their 
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impact on editing efficiency and embryo development compared to conventional sgRNA is 

unknown [18]. We did not detect a significant difference in HDR efficiency between EEZy 

with either sgRNA or pgRNA targeting Nphs2 (Fig 1D). EEZy with sgRNA, however, clearly 

decreased embryo viability in our experiments (Fig 1E). This negative impact on embryo 

development was not observed when we compared the use of these types of guide RNAs in 

PNI (Fig 1F). 

We also assessed whether our EEZy approach is effective for delivery of plasmid 

targeting vectors to generate CRISPR-mediated large genomic integrations as such has not 

been published to date using electroporation. We attempted to integrate a Venus reporter 

transgene by electroporation of Cas9 RNPs targeting the Gt(ROSA)26Sor locus and a plasmid 

vector already successfully used by conventional PNI [16]. Despite several efforts, we could 

not generate blastocysts with integration of the transgene with our approach even though 

INDELs were detected at high frequencies (S3 Fig).  

Zygotes for electroporation can either be collected from donor females upon natural 

mating or generated by IVF from oocytes. The potential of the latter zygotes to reduce 

mosaicism in targeted mice due to the feasibility of transgenesis in early pronuclear zygotes 

has recently been demonstrated [13]. Using our EEZy approach with IVF generated zygotes 

we were able to obtain transgenic embryos with both, high editing efficiency and 

developmental rates (Fig 1G), comparable with zygotes from natural mating. Notably, we did 

not weaken the zona pellucida of IVF zygotes with reduced glutathione which has previously 

been suggested to allow delivery of CRISPR components by electroporation [9]. Taken 

together, our approach is independent of the zygote source and proves that zygotes with intact 

zona pellucida can be edited with high efficiency in a standard electroporator. Consistently, 

we successfully generated living mice with integration of a point mutation in the coding 

region of another gene (Tmem218) employing our EEZy approach (Fig 1H). Sequencing 

revealed HDR editing in up to 92% of the founder mice, with 23% of animals harboring 
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solely the desired mutation (15% biallelic, 8% monoallelic), validating our EEZy approach 

for generation of specific mutant mice in vivo. Strikingly, genome editing occurred in 100% 

of the offspring which proves, once again, that corrosive zona weakening is dispensable 

during EEZy. 

Next, we aimed to test whether our EEZy approach would increase the number of 

embryos amenable to genome editing. Conventional PNI relies on the presence of visible 

pronuclei. In our experience, this fraction represents about 70% of all harvested zygotes (Fig 

2A).  The competency of zygotes without visible pronuclei for genome editing has not yet 

been demonstrated. We electroporated zygotes without visible pronuclei and compared the 

editing efficiency at the Nphs2 gene to the results of zygotes without pre-selection of 

pronuclei. Indeed, the developed blastocysts of either zygote fraction showed similar rates of 

HDR editing (Fig 2B and 2C). However, significantly fewer zygotes without visible pronuclei 

developed into morphologically intact blastocysts (Fig 2D). Hence, electroporation enables, in 

principal, transgenesis of zygotes non-accessible to conventional PNI although embryo 

development seems impaired in this fraction of zygotes.  

Previous studies comparing the impact on embryo viability of CRISPR component 

delivery by electroporation and PNI gained inconsistent results. While most studies clearly 

showed that electroporation outperformed conventional PNI regarding embryo development 

or live birth rate [5, 7, 8, 14] there was also some evidence for mixed outcomes [19, 20]. 

Despite this tendency no statistical hypothesis testing has been possible due to changing 

parameters within the experiments of the individual studies. To systematically assess the 

effect of our EEZy approach on embryo development we compared untreated with 

electroporated zygotes regarding their capacity to form blastocysts in vitro (Fig 3A). Neither 

EEZy per se (Mock) nor EEZy of CRISPR components significantly affected embryo 

development. Next, we directly compared the results of our EEZy approach to transgenesis by 

conventional PNI using the same knock-in strategy for Nphs2 as before. In line with 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 15, 2018. ; https://doi.org/10.1101/281402doi: bioRxiv preprint 

https://doi.org/10.1101/281402
http://creativecommons.org/licenses/by/4.0/


 12 

previously published results, on average 82% of the zygotes survive in our PNI (Fig 3B) [21] 

while about 95% of zygotes were recovered upon EEZy. We have rarely seen immediate lysis 

of zygotes after EEZy which is a known phenomenon upon PNI and responsible for the lost 

zygotes during our PNI (Fig 3B). In contrast, the minor fraction of zygotes lost during EEZy 

only account for embryos which typically cannot be retrieved from the electroporation 

cuvette. Consistent with the assumption that EEZy is less damaging we observed more of the 

recovered zygotes from EEZy to develop to blastocysts as compared to PNI (Fig 3C). The 

combined results of reduced embryo toxicity (Fig 3B) and higher developmental capacity (Fig 

3C) summarized in Fig 3D clearly emphasize the potential of EEZy to significantly lower the 

numbers of zygote donors. Like published before delivery by electroporation does not 

compromise the editing efficiency of the Cas9 RNP in comparison to PNI (Fig 3E and S4 Fig) 

[14, 19]. To confirm the capability of EEZy to reduce animal numbers in vivo we compared 

the number of offspring upon transgenesis at different genetic loci to the results from 

conventional PNI. Consistent with our findings of improved pre-implantation development 

we uniformly gained higher numbers of offspring with EEZy as compared to PNI (Table 1). 

Taken together, our novel EEZy approach enables efficient introduction of specific 

mutations with minimal technical demand and high embryo viability.  

 

Table 1. Live birth rate of offspring upon transgenesis by PNI or EEZy 
 PNI  EEZy 
Project 
type 

Live 
pups (%) 

Transferred 
2-cell 
embryosa  

 Live 
pups (%) 

Transferred 
2-cell 
embryosa  

Knock-in   2 (15%) 13    5 (25%) 20 
Knock-in 25 (40%) 62  10 (45%) 22 
Knock-in   2 (11%) 19  14 (19%) 72 
Deletion   4 (12%) 21  13 (34%) 38 

 a number of 2-cell embryos transferred into delivering foster mice 
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Fig 1. Characterization of EEZy for specific genome editing in intact C57Bl/6N zygotes. 
(A) Representative RFLP analysis for evaluation of the HDR efficiency in Nphs2-targeted 
blastocysts upon EEZy using Opti-MEM with and without additives and (B) quantification of 
the genotypes from three independent experiments. PCR controls from untreated blastocysts 
(WT) and without DNA template (H2O) are depicted. (C) Assessment of embryo development 
from (B) as percentage of developed blastocysts from zygotes after EEZy. (D) Quantification 
of RFLP analysis from Nphs2-targeted blastocysts upon EEZy using sgRNA or pgRNA from 
three independent experiments and (E) assessment of percentage of developed blastocysts 
from these zygotes. (F) Assessment of developed blastocysts after PNI using pgRNA or 
sgRNA targeting Nphs2 from four independent experiments. (G) Quantification of RFLP 
genotyping at the Nphs2 locus and percentage of developed blastocysts after EEZy of zygotes 
obtained by IVF from three independent experiments. (H) Quantification of Sanger 
sequencing of biopsies from Tmem218 transgenic mice generated by EEZy. Data of a total of 
13 mice displaying either solely the desired mutation (HDR), a mixture of the desired 
mutation and INDELs or only INDELs are depicted. Data are means ± standard deviation. 
*p < 0.05, ns = non-significant. N = total number of embryos analyzed. 
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Fig 2. Electroporation of zygotes incompatible with pronuclear injection. (A) Average 
ratio of harvested zygotes from natural mating with visible pronuclei (+) and without visible 
pronuclei (-) from 47 independent experiments. Total number of embryos analyzed was 6368 
and 3314 for zygotes with and without visible pronuclei, respectively. (B) Representative 
RFLP analysis for evaluation of HDR efficiency in Nphs2-targeted blastocysts upon EEZy of 
zygotes without visible pronuclei. PCR controls from untreated blastocysts (WT) and without 
DNA template (H2O) are depicted. (C) Quantification of the genotype from three independent 
experiments using zygotes without visible pronuclei are compared to EEZy of all zygotes 
from the experiments depicted in Fig 1B and 1D, right columns. (D) Percentage of developed 
blastocysts from zygotes after EEZy from (C). Box plot represents median, boxes equal 25 to 
75 percentiles, whiskers include all values. Remaining data are means ± standard deviation. 
***p < 0.001, ns = non-significant. N = total number of embryos analyzed. 
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Fig 3. Embryo toxicity of EEZy as compared to pronuclear injection. (A) Assessment of 
embryo development as percentage of developed blastocysts from zygotes after EEZy. 
Untreated zygotes are compared to zygotes electroporated with Opti-MEM (Mock) or 
CRISPR/Cas9 components targeting the Gt(ROSA)26Sor locus (CRISPR). Data represent 
three independent experiments. (B) Quantification of viable Nphs2-targeted zygotes from four 
experiments immediately after PNI compared to electroporated zygotes and the 
correspondingly developed blastocysts (C). (D) Developed blastocyst calculated from the 
number of zygotes before transgenesis in (B). Quantification of RFLP genotyping from four 
independent experiments for HDR efficiency in blastocysts from zygotes after PNI compared 
to electroporated zygotes from the experiments depicted in Fig 1B and 1D, right columns. 
Data are means ± standard deviation. *p < 0.05, **p < 0.01, ns = non-significant. N = total 
number of embryos analyzed. 
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Discussion 

In this study, we established a novel and facile method to use electroporation for the 

generation of CRISPR/Cas9-based transgenic mouse lines. Basically, this approach uses 

synthetic CRISPR components in a standard electroporation device with intact zygotes either 

from natural mating or from IVF. We demonstrate that zona pellucida weakening is 

dispensable for efficient generation of mutant mice in vivo by our EEZy approach. Pre-

treatment of zygotes by acidic Tyrode’s solution has been initially established to increase the 

permeability of the zona pellucida for large RNA molecules during electroporation and has 

been subsequently shown to be necessary for gene editing using Cas9 mRNA of about 4,500 

nucleotides length [7, 22]. Uptake of small molecules like morpholinos of only 25 nucleotides 

length, however, neither required nor greatly benefited from acidic Tyrode’s pre-treatment of 

zygote prior to electroporation [12]. We accomplished highly efficient gene editing in 

embryos and living offspring by EEZy with Cas9 RNP complexes and small DNA repair 

templates of about 150 nucleotides length. The sufficient permeability of intact zygotes in our 

experiments may be explained by the compact nature of the Cas9 RNP complex in contrast to 

large Cas9 mRNA. Recently, long ssODN repair templates of about 1,500 nucleotides length 

have been successfully used for generation of mutant mice by CRISPR-PNI [23]. Assuming 

low permeability of intact zygotes for large nucleic acids, it is conceivable that zona pellucida 

weakening might still be valuable for electroporation of these long ssODNs. For the same 

purpose, the pulse frequency or duration during EEZy may be increased to facilitate enhanced 

uptake of nucleic acids. Although the current parameters have been identified as the ideal 

balance between editing efficiency and embryo survival previously [8] it has been 

demonstrated that gene editing of difficult targets may benefit from increased pulse 

frequencies or durations. However, in this case lower embryo viability is inevitable [6, 9, 20].  
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  Our results revealed significant less embryo toxicity of synthetic pgRNAs as 

compared to sgRNAs from in vitro transcription during our EEZy approach. In confirmation 

with previous studies we did not detect this difference using conventional PNI [24]. We 

hypothesize that the ten times higher amounts of guide RNA needed during EEZy may 

account for the elevated embryo toxicity of sgRNAs during EEZy. Although it remains 

interesting whether the nature of the sgRNA or traces from its generation are responsible for 

the embryo toxicity our data validate synthetic pgRNAs as less harmful during 

electroporation. While our manuscript was in preparation another group independently used 

synthetic pgRNAs for successful generation of CRISPR/Cas9-mediated mouse mutants via 

electroporation [18]. Although they did not compare pgRNA and sgRNA side-by-side their 

data nicely confirm our finding that synthetic pgRNA is indeed an efficient and safe 

alternative to conventional sgRNA.  

   Successful CRISPR-mediated generation of large genomic integrations by 

electroporation of plasmid targeting vectors into mouse zygotes has not been published to 

date. Interestingly, an equivalent attempt of such integration by electroporation most recently 

also failed in rat zygotes [25]. The data suggested that plasmid vectors do not reach the 

nucleus although they were detected in the cytosol of the embryo upon electroporation. We 

therefore speculate that insufficient permeability of the nuclear membrane may also be 

responsible for the fact that we did not detect any transgene integration upon EEZy with a 

plasmid targeting vector.  

 The presence of visible pronuclei, a requirement for conventional PNI, is 

dispensable for EEZy. Our data demonstrate for the first time that blastocysts from zygotes 

without visible pronuclei display the same HDR editing rates as blastocysts from zygotes with 

visible pronuclei. When performing CRISPR-PNI in our daily routine we therefore 

electroporated this PNI-incompatible zygote fraction to evaluate the guide RNA efficiency for 
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future projects in in vitro blastocyst assays. In these assays targeted zygotes are cultured to the 

blastocyst stage and genotyped by PCR [26].  

 We further found a significantly lower toxicity of our EEZy approach in direct 

comparison to PNI. While delivery of CRISPR components by PNI has been reported to 

induce physical damage, and impede embryo development [21], EEZy had virtually no impact 

on embryo development and subsequently resulted in higher numbers of offspring. These 

findings are in line with published results of improved pre-implantation development from 

B6D2F1 hybrid zygotes [14] and higher live birth rates of inbred C57BL/6J mice from 

zygotes after CRISPR electroporation as compared to PNI [8]. In addition, we show for the 

first time that higher numbers of embryos can be retrieved after electroporation due to less 

acute damage observed during PNI. In fact, we have hardly ever observed immediate lysis of 

embryos employing EEZy which may additionally result from the higher resistance of intact 

zygotes compared to zona pellucida weakened zygotes [12]. Along this line, our data 

demonstrate the potential of EEZy to profoundly decrease animal numbers needed for the 

generation of transgenic mice. Reduction of animal numbers is one of the key aspects of the 

3R principles (Replacement, Reduction, Refinement) for good animal welfare in research 

[27]. During CRISPR-mediated transgenesis, either by electroporation or PNI, animals are 

needed for collecting zygotes and as recipient foster females for the targeted embryos. Due to 

enhanced embryo viability and development EEZy lowers the demand for both, the zygote 

donors and recipient females in comparison to conventional PNI highlighting the value of this 

technique for more humane animal research. 

In summary, with EEZy we established a simplified and easily adaptable 

electroporation procedure using intact C57BL/6N zygotes for highly efficient CRISPR/Cas9-

mediated generation of specific mutant mice with minimal impact on embryo viability. 
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