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Distinctive human behaviors from tool-making to language are thought to rely on a uniquely evolved 
capacity for hierarchical action sequencing. Unfortunately, testing of this idea has been hampered by 
a lack of objective, generalizable methods for measuring the structural complexity of real-world 
behaviors. Here we present a data-driven approach for quantifying hierarchical structure by extracting 
action grammars from basic ethograms. We apply this method to the evolutionarily-relevant behavior 
of stone tool-making by comparing sequences from the experimental replication of ~2.5 Mya 
Oldowan vs. more recent ~0.5 Mya Achuelean tools. Results show that, while using the same 
“alphabet” of elementary actions, Acheulean sequences are structurally more complex. Beyond its 
specific evolutionary implications, this finding illustrates the broader applicability of our method to 
investigate the structure of naturalistic human behaviors and cognition. We demonstrate one 
application by using our complexity measures to re-analyze data from an fMRI study of tool-making 
action observation. 

 

Introduction 
For more than 60 years, the serial ordering of behaviour has been a core topic for the 

cognitive and behavioral sciences1,2. Enhanced capacities for complex action sequencing 
support distinctive human behaviors such as language3, imitation4 and tool-use5,6, and are 
fundamental to the flexibility that is a hallmark of human intelligence 7,8. It has been suggested 
that this implies a unitary evolutionary and neural foundation for human cognitive uniqueness 
across domains1,5,6, but this remains controversial9. Although modelling suggests computational 
similarities across behaviours ranging from foraging to language-learning10 empirical 
investigation has been limited by a lack of objective, generalizable methods for describing, 
quantifying, and comparing the sequential structure of diverse, real-world behaviours. In 
Paleolithic archaeology, for example, investigation of long-standing hypotheses about the 
evolutionary relationships between tool-making, language, and cognition have been hampered 
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by the lack of an objective metric for the behavioural complexity of different ancient 
technologies11-13. Here we adopt a data-driven computational approach to this challenge by 
using grammatical pattern recognition algorithms to measure the structural complexity of 
behavioral sequences from modern tool-making replication experiments – effectively extracting 
action grammars for critical survival skills from the human evolutionary past.  

We conducted 17 tool-making replication experiments and coded the behavior 
sequences that were generated (Fig. 1A). This sample includes 5 sequences for which upper 
limb movements and manual joint angles were recorded as part of a previous study14, and 6 for 
which the tools and waste produced were analyzed and compared with actual Paleolithic 
artifacts from the Middle Pleistocene site of Boxgrove, UK15. Building on this and other previous 
research 14-19, we focused our current study on archaeologically documented tool-making 
methods from the early and late Lower Paleolithic, a period that witnessed a nearly 3-fold 
increase in hominin brain size. This allows us to empirically address the over 100 years of 
theorizing linking increasingly complex tool-making with brain evolution and language origins 
5,20-22. The early (Oldowan, ca. 2.5 Mya) technology modeled here comprised the production of 
simple, sharp-edged stone flakes by striking one stone with another. The late (Late Acheulean, 
ca. 0.5 Mya) technology comprised the production of refined, teardrop-shaped “handaxes” 
through intentional shaping. We defined a shared action alphabet, consisting of 7 event types 
encompassing the elementary body movements and object transformations present in every 
sequence of both technologies, and applied two pattern recognition algorithms to the coded 
event sequences: Hidden Markov Modeling (HMM) and k-Sequitur. 

 

Results 

Hidden Markov Modeling. HMM detects probabilistic regularities (hidden states) across 
sequences and can capture the structure of arbitrarily complex sequences given sufficient 
numbers of hidden states. The optimal number of hidden states provides a measure of 
structural complexity. We fitted HMMs to coded event sequences, and computed the Bayesian 
Information Criterion (BIC) across different numbers of hidden states as a measure of model fit. 
BIC reached its minimum (less is better) at 4 hidden states for Oldowan and 6 for Acheulean 
data (Fig 1B), indicating a 50% increase in complexity. These two models perfectly categorized 
the sequences (likelihood greater for correct model, Fig. 1C). The fit was better for both models 
on the simpler Oldowan sequences. The close fit of the Acheulean model to Oldowan data (but 
not vice versa) indicates that the former captures most of the structure of the latter, and that 
Oldowan sequences may be considered a subset of Acheulean sequences.  
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Fig. 1. Hidden Markov Modeling of tool-making action sequences. (A) Oldowan (top) and Acheulean 
(bottom) action sequences were coded using 7 event codes (circled letters, see Materials & Methods). 
Products illustrated to the right. (B) Bayesian Information Criterion values (less is better) across models 
with increasing numbers of hidden states. Red, Oldowan, Minimum =4; Blue, Acheulean, Minimum=6. 
(C) Log-Likelihood values indicating model fit (higher is better) across sequences. Fit for Oldowan 
sequences is better overall; Acheulean model fit to Oldowan data is better than Oldowan model fit to 
Acheulean data. 

 

We therefore used the Acheulean HMM to test for further structure. We obtained the 
most likely hidden state sequences for the Oldowan and Acheulean data and then fitted a 
second, 2-state HMM onto these higher-order sequences (Fig. 2). We found that Acheulean 
sequences oscillate between two superordinate states-of-states (SoS) whereas Oldowan 
sequences remain in one). Thus, Acheulean sequences display an additional level of structure 
not expressed by Oldowan sequences. 

Next, we fit the 6-state Acheulean HMM to Oldowan and Acheulean data and observed 
the probability of actions per hidden state as well as transitions between hidden states. Our 
Oldowan data are characterized by the repetition of one simple action “chunk” consisting a 
relatively invariant sequence of states (3->4->2: Fig. 2A) that essentially corresponds to the  
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Fig. 2. Empirical transition (arrows) and emission (pie charts) matrices of 6-state HMM fitted to all 
Oldowan (A) and Acheulean (D) sequences. Arrow thickness indicates transition probabilities between 
states (values <5% not displayed). Pie chart area indicates probability of an action being performed in 
that state. Oldowan Hidden State 6 accounts for less than 2% of all data points. In the middle are similar 
illustrations of the superordinate "States-of-States” for Oldowan (B) and Acheulean (E) data. At right are 
examples of the running average State of States for Oldowan (C) and Acheulean (D) time-series. Black: 
everything in SoS 1; white: everything in SoS 2. 

 

removal of an individual flake and is entirely captured by SoS1 (Fig. 2B&C). Acheulean 
sequences are more variable (Fig. 2D), reflecting the addition within some flake removal chunks 
of a sub-operation archaeologists refer to as striking platform preparation. This involves 
repeated low-amplitude (see Methods and Supplementary Fig. 1) chipping of striking surfaces 
to alter their sharpness, bevel, and placement relative to the midline. This operation is captured 
at the next level by SoS2 (Fig. 2E). SoS2 is less frequent in the early stages of our sequences (Fig. 
2F) which is consistent with the presence of an initial “roughing out” stage in handaxe 
manufacture prior to more refined shaping 23.  Introspection by experienced tool-makers12,17,24  
has previously suggested that platform preparation increases the complexity to Paleolithic 
action organization, but it has not previously been possible to test this intuition objectively or 
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to quantify the magnitude of increase in a generalizable way. Our HMM method thus captures 
meaningful (i.e. goal directed) regularities in stone tool-making in a data-driven way that: 1) 
derives structure rather than imposing it, 2) respects the real variability underlying ideal 
characterizations, 3) enables objective quantification of grammatical complexity, and 4) is 
readily adaptable to the study of other sequential behaviors. 

The Chomsky hierarchy in Formal Language Theory (FLT) describes a series of 
increasingly powerful and inclusive computational systems, or grammars, differentiated by 
their memory resources 1,25. A simple Markov chain is a memoryless probabilistic system 
equating to a regular (finite-state) grammar that does not permit long distance dependencies. 
HMMs are dynamic Bayesian networks that asymptotically approximate supra-regular context-
free grammars (with unbounded memory) through the progressive addition of hidden states. 
The increase we observed in the optimal number of hidden states from Oldowan to Acheulean 
thus provides a measure of increased grammatical complexity and memory requirements 
without positing infinite capacity. This modeling approach is consonant with the view that 
finite-state, probabilistic, and parallel computational models are cognitively and 
neurobiologically realistic 7,25-27. Others, however, contend that human cognition is in fact 
characterized by constitutively hierarchal processing using supra-regular resources and that 
humans have a tendency to employ such context-free solutions even when they are not 
actually necessary 28,29. 

Context-free grammar fitting. We therefore pursued a second approach by fitting context-free 
grammars (CFGs) to the tool-making sequences. FLT employs terminal symbols (in our case 7 
event types) and non-terminal symbols (re-write rules expandable to terminal and/or non-
terminal symbols) to generate strings. Whereas regular grammars and HMMs are driven by 
local relationships between symbols, CFGs capture nested dependencies of theoretically infinite 
length and depth. The standard algorithm to extract CFGs, Sequitur 30, creates a new rule as 
soon as a symbol pair is observed twice in a sequence and repeats this pair-wise aggregation, 
adding new levels of superordinate rules until the complete sequence is described. This makes 
Sequitur powerful but liable to detect a high number of spurious (occurring <3 times) rules in 
the variable sequences generated by real human behavior. We therefore developed an 
algorithm, k-Sequitur, requiring a pair to occur k-times before generating a rule. Increasing k 
makes the grammar discovery process less sensitive to infrequent pairs and less prone to 
creating rules from noise. 

In agreement with our HMM results, CFG extraction found Oldowan grammars to be a 
less complex sub-set of Acheulean grammars. Rule inference from combined Oldowan and 
Acheulean samples identified multiple rules that occur only in Acheulean sequences 
(Supplementary Fig. 2) and showed that the frequency of Acheulean-only rules increases at 
higher levels (0 at level 2, 1 at Level 3, 2 at Level 4, 5 at Level 5). No Oldowan-only rules were 
identified, even when rule inference was restricted to the Oldowan data set. CFG extraction 
achieved substantial compression of both Oldowan and Acheulean sequences (Fig. 3A), 
however the rate (inverse slope) of Acheulean compression was more than twice as great (7.69 
vs. 2.94). This indicates that Acheulean sequences have more structure for rule-based 
compression, in a ~2:1 ratio paralleling our HMM finding of two Acheulean SoS vs. one  
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Fig. 3. Effect of Sequitur compression on sequence length (A) and entropy (B). 

 

Oldowan. Each post-compression Acheulean element (rule or terminal symbol) contains more 
information (measured as Shannon entropy: Fig. 3B), yet Acheulean grammars still require 
more non-terminal symbols (rules) to achieve a comparable fit to the data. These compression 
results are robust over increasing k values (Supplementary Fig. 3). CFGs can parse regular 
strings, so fitting CFGs to our sequences in this way does not imply that supra-regular resources 
are required. It does show that the greater complexity and depth of Acheulean sequences is 
robust even assuming such resources. 

Further inspection of CFG results reveals that the greater complexity of Acheulean 
sequences is due to long strings of repeated percussions, the removal of which eliminates 
Oldowan/Acheulean differences in compression rate (Supplementary Fig. 4). These strings 
comprise the same repeated, low-amplitude chipping of striking platforms (Supplementary Fig. 
1) extracted as SoS2 in our HMM analysis and corresponding to the tool-making operation 
known as platform preparation15. HMM and CFG methods thus converge, not only to quantify 
the greater complexity of Acheulean sequences, but also to extract a key technological element 
of the instrumental structure of Acheulean tool-making that largely accounts for this difference.  

 

Discussion 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 13, 2018. ; https://doi.org/10.1101/281543doi: bioRxiv preprint 

https://doi.org/10.1101/281543
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

Results indicate that our grammar extraction methods are able to discover the instrumental 
structure of behavior directly from the correlational structure of action sequences coded using 
a minimalistic and objective ethogram, without requiring subjective functional or intentional 
interpretations by the observer. These methods are easily generalizable to other behaviors and, 
in the specific case of Paleolithic tool-making, provide new means to investigate the 
archaeological record of technological change and variation. By using a single elementary action 
alphabet it is possible to consider variation within as well as between different types of tool-
making in strictly equivalent terms, treating behavioral variation as a source of information 
rather than noise and avoiding problematic assumptions regarding the behavioral reality these 
archaeologically-constructed types. 

Our specific findings focus attention on the emergence of platform preparation 
techniques during later Acheulean times15 as one key indicator of increasing technological 
complexity. Modern experimental tool-makers have identified platform preparation as an 
important technique enabling production of the large, relatively thin flakes needed to thin 
("refine") a handaxe without a disproportionate decrease in breadth31. Behavioral variation 
across modern knappers at different levels of expertise reveals that platform preparation is a 
difficult technique to master in application15, even if its function is clearly understood. Expert 
intuitions regarding the behavioral and cognitive complexity 12,17,24 of platform preparation 
have motivated the proposal that its emergence and spread in Late Acheulean (~780 - 400,000 
years ago) times may be related to the rapid encephalization that also occurred during this 
time15 (see Supplementary Discussion). 

Neuroimaging results have consistently linked Late Acheulean style handaxe-making 
with the right Inferior Frontal Gyrus (rIFG). This includes evidence of increased functional 
activation during action execution17,32 and observation18, as well as structural remodeling of 
underlying white matter in response to tool-making training19. To date, these findings have 
been interpreted using reverse inference from known functions of rIFG, including especially its 
involvement in the cognitive control functions of inhibition33 and action updating34 that are 
critical to response selection during multi-component behavior35. Direct manipulation through 
transcranial magnetic stimulation confirms the causal role of rIFG in such selection36. We have 
argued19,37 that this domain-general computational function unifies superficially diverse 
evidence of rIFG involvement in tasks ranging from fine motor control and manual sequence 
learning to linguistic processing of syntactic violations and perturbations. Combined with 
evidence that rIFG connections to parietal cortex via the 3rd branch of the Superior Longitudinal 
Fasciculus (SLFIII) are evolutionarily expanded in humans37 and plastically remodeled by tool-
making training19, this interpretation provides functional, archaeological, and neuroanatomical 
grounding for longstanding hypotheses of tool-language co-evolution5,6,20,21,38,39. However, such 
reverse inference from observed activation to implied mental process is potentially problematic 
given the likelihood that any particular brain region might support multiple functions40. This is 
ameliorated to some extent by defining “function” in terms of underlying computational roles 
rather than specific behavioral tasks, but nevertheless remains an issue. One strategy to 
address this concern, is to strengthen the basis for reverse inference by more rigorously 
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defining the task context41 although this can be quite difficult for naturalistic behaviors like 
stone tool-making. 

In fact, neuroimaging studies of stone tool-making17,18,32, have largely been limited to 
categorical comparisons between abstracted tool-making types that do not dissect the 
contribution of specific behaviors, like platform preparation, that are variably involved across 
particular instances. Artificial tasks designed to isolate such elements of stone tool-making have 
provided insight into the demands of specific behavioral components42,43, but this approach 
sacrifices ecological validity and cannot address real-world behaviors that necessarily differ on 
multiple dimensions at the same time. For example, similar challenges confront attempts to 
study language as it is actually used by people to communicate rather than in the form of 
controlled laboratory manipulations44-46. In the current case, it is not possible to control lower-
level kinematic, geometric, and visual features of stone tool-making without also altering the 
higher-level action structure that emerges from them and seriously compromising the basis for 
analogy with real, archaeologically-documented behaviors. An alternative approach, developed 
here,  is to derive behavioral models which make specific neuro-cognitive processing 
predictions that are testable against brain data46.  

To illustrate this approach, we used HMM and CFG grammar extraction to measure the 
complexity of action sequences in Oldowan and Acheulean video stimuli from a published fMRI 
study of tool-making action observation18. In common with tool-makers in the current study, 
the demonstrator recorded in these stimuli was instructed to emulate handaxes from the 
Acheulean site of Boxgrove. Comparative artifact analyses have confirmed that tool-making 
methods in both studies closely approximate actual Paleolithic behavior at Boxgrove, 
specifically including the use of platform preparation15. To generate a continuous complexity 
measure from HMM, we used the difference in likelihood (measured by Akaike Information 
Criterion, see methods) between more (6 state) and less (4 state) complex models fit to the 
stimulus sequences. For CFG, we simply used the compression ratio. In both cases, increasing 
complexity is indicated by lower values, so we expected a negative correlation with BOLD 
response in subjects attempting to parse the structure of observed sequences.   

Results (Fig. 4) suggest that HMM and CFG capture partially overlapping stimulus processing 
demands. Interestingly, differences appear related to sensory modality. Increasing HMM 
complexity uniquely recruits occipitotemporal and parietal portions of a dorsal attention 
network 47 responsible for the intentional allocation of visual attention whereas unique CFG 
response occurs in somatosensory cortex of the right parietal operculum, plausibly reflecting 
vicarious tactile processing 48. An interesting direction for future work might be to investigate 
why these different computational approaches appear to map to different sensory modalities.  

The conjunction of the two covariates reveals regions of left parietal operculum and rIFG 
(pars opercularis) that are specifically responsive to stimulus complexity irrespective of 
measurement method. This is generally consistent with the well-documented involvement of  
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Fig. 4. Covariance of BOLD response with tool-making stimulus behavioral complexity. Outlines 
corresponding to areas yielding significant negative correlation with the CFG (purple) and HMM (yellow) 
covariates describing action sequence complexity. Heatmap clusters represent the minimum of these 
two correlations where they overlap voxel-wise in the right pars opercularis of the inferior frontal gyrus 
(right). 

 

ventral frontoparietal cortex in naturalistic stone tool-making17,18,49 and specifically supportive 
of the functional interpretation of rIFG response to handaxe production presented above. 
Importantly, this finding is independent of experimental condition (Oldowan, Acheulean) and 
thus strengthens the inference that it is indeed continuous variation in behavior complexity, 
rather than some other confounding difference between stimulus types, that is driving the 
response. To further strengthen this inference, future research should combine grammar 
extraction methods presented here with kinematic recording and eye-tracking to 
simultaneously explore brain response to multiple dimensions of behavioral variation. Such 
methods have already been applied to demonstrate that experimental Oldowan and Acheulean 
tool-making (including 5 sequences used here for grammar extraction) do not differ in 
manipulative complexity as measured by the statistics of manual joint movements14.  

The remarkable expressive power of human language derives from an ability to recombine a 
relatively small set of discrete units into a vast array of meaningful structures 3,29. At the outset 
of the Cognitive Revolution, Lashley 2 used the example of language to argue that all skilled 
behavior (and associated neural activity) is organized in this hierarchical fashion. This insight 
that was subsequently applied to the specific case of stone tool-making by Holloway5. Sixty-odd 
years later, however, we are still struggling with what Lashley (p. 122) identified as the 
“essential problem of serial order”: defining the “generalized schemata of action which 
determine the sequence of specific acts” that he termed “the syntax of the act.” Here we 
developed objective and generalizable methods for defining and quantifying these structures 
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(action grammars) along with their neural correlates from raw behavioral data. While the 
detailed kinematics of hand actions to produce a tool vary from trial to trial considerably, we 
found an invariant hierarchical structure underpinning performance. Our analytical approach 
does not postulate the existence of such “action grammars” a priori, but instead identifies them 
from raw behavioral data using machine learning techniques, showing that even with the same 
alphabet of actions qualitatively more complex artefacts can be produced by using measurably 
more complex action grammars. In addition to the method’s broad utility for the behavioral and 
social sciences, the finding that our automatic identification of action grammars maps to 
distinct neural correlates offers the potential for novel quantitative approaches to the 
hierarchical structure of behavior across applications from dexterous prosthetics 50, to the 
training of surgeons 51 and human-like AI 52.   

 

Methods 
 

Tool Replication. Tool replication was performed by two expert stone tool-makers (knappers) 
with decades of experience. The research was approved by the University College London 
Research Ethics Committee [0603/001] and each participant provided written informed 
consent. All experiments were video-recorded, including 9 instances of Oldowan knapping and 
8 instances of Acheulean knapping. In each experiment, a piece of flint was worked until either 
completely exhausted (Oldowan) or successfully shaped into a refined handaxe (Acheulean). Six 
of the handaxes produced in these experiments have previously been described and compared 
to archaeological examples for the Middle Pleistocene site of Boxgrove 15. Kinematics from a 
different subset  of the experiments (3 Oldowan, 2 Acheulean) have been published 14. 
 

Experimental replication is a long-established research method in archaeology, especially 
with respect to flaked stone technology 53.  Our tool-making experiments drew upon this 
background to model simple flake production (cf. “Oldowan”, “Mode 1”, “Mode C”54, here 
termed "Oldowan" ) and refined handaxe shaping (cf. “Later Acheulean handaxe”, “Mode 2”, 
“Mode E2” 54, here termed "Acheulean"). Previous experimentation has shown that a wide 
range of Oldowan forms may be replicated through hard-hammer free-hand percussion without 
intentional core shaping 55, whereas other techniques (e.g. bipolar, passive hammer) produce 
diagnostic  traces that are less common in the archaeological record 56. Although there is some 
evidence of structured reduction strategies in the Oldowan (e.g. preference for unifacial vs. 
bifacial flaking 57) it is possible to produce most or all Oldowan forms through unstructured (cf. 
“mindless” 58 or “least effort” 55) flaking. We thus instructed our subjects to knap Oldowan 
experiments in an opportunistic fashion, following the definition of “simple debitage” provided 
by 59. For Acheulean experiments, subjects were instructed to produce “refined” Acheulean 
handaxes of the kind known from the site of Boxgrove (with which subjects were familiar). This 
included the use of soft hammers and simple platform preparation (faceting), both of which are 
attested in the Boxgrove archaeological collection 15. Experimental handaxes produced were 
comparable in refinement and debitage morphology to those from Boxgrove 15. 
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Paleolithic tool-making occurred over a vast time period and many millions of square miles, 
and encompasses substantial variation that could not be included in our experiments. The 
methods we did select are considered broadly representative of early and late Lower Paleolithic 
technology, and details of the production techniques employed match those documented in 
specific archaeological collections. We thus consider our training protocol to be both generally 
representative and specifically accurate in re-creating Paleolithic tool-making action sequences. 
 
Event Coding. We defined an action alphabet consisting of 7 event types encompassing the 
elementary body movements and object transformations present in every sequence of both 
technologies. Events were transcribed from video-recordings using Etholog 2.25 60. Events were 
defined as follows: 
 
A) Percussion: Striking core with percussor (hammerstone or antler billet). 
B) Target Change: A change in the location of percussion on the core. 
C) Grip Shift Core: Movement of the hand grasping the core. 
D) Grip Shift Tool: Movement of the hand grasping the percussor. 
E) Inversion: Flipping over the core without otherwise reorienting. 
F) Flake detach: Removal of a flake (judged to be) > 20mm. 
G) Tool Change: Exchange of one percussor for another. 
 

This provides a minimalistic alphabet intentionally designed to limit the need for subjective 
interpretation and to avoid building prior hypotheses (e.g. ref. 12) into the coding scheme. In 
particular, any attempt to infer the intention of the knapper (e.g. identifying a flake detachment 
as “preparatory” or “thinning”) was avoided. Much richer description of knapping actions in 
terms of technological function is both possible and informative (e.g. ref 61), but was not in line 
with our aim to develop a data-driven and generalizable method. The coding scheme was 
developed through pilot work with the MRI stimulus videos (Table 1 in ref. 18) to be complete 
(every action on the core or percussor is coded), exclusive (no action could have two codes), 
and unambiguous. While the actual alphabet used here is specific to stone tool-making, this 
approach to coding could be generalized to any sequential behavior. 
 

During transcription, we recorded an eighth event type, “Light Percussion” (Figure Extended 
Data Fig. 1), which was not subsequently employed in analysis. This event was defined as 
“Striking core with percussor using small amplitude arm movements not intended to detach 
flakes > 20mm” and was omitted because: 1) it required interpretation, 2) it did not occur in 
Oldowan sequences, and 3) it might be ambiguous with the Percussion event. Thus, we treated 
all instances of “light percussion” simply as percussion. However, this gesture – typical of a 
technical operation known as “striking platform preparation” – was rediscovered by our HMM 
and Sequitur analyses based purely on sequential structure (see SI), thus providing a validation 
of our minimalistic coding and data-driven approach. 
 
Hidden Markov Modeling. We fit Hidden Markov Models (HMM) to the action sequences using 
the Baum-Welch algorithm implemented in Kevin Murphy’s Bayes’ Net Toolbox.  As the 
algorithm is very sensitive to the initial estimates of the transition and emission matrices, we fit 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 13, 2018. ; https://doi.org/10.1101/281543doi: bioRxiv preprint 

https://doi.org/10.1101/281543
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

each data set 1000 times for each number of states by randomly varying the initial condition 
and only picked the HMM with the highest log-likelihood. To compare HMMs with different 
number of hidden states with each other, we computed the Bayesian Information Criterion 
(BIC) which gives a measure of model fitness penalised by the number of free parameters in the 
model. 
 

From the 6 state Acheulean HMM we obtained the most likely state-sequences through the 
Oldowan and Acheulean action sequences by using the Viterbi algorithm. To investigate 
whether the obtained hidden state sequence, contained more structure, we fitted a second, 2-
state HMM onto the state sequences. As previously described, 1000 runs were performed to 
obtain the best-fitting HMM. Using the Viterbi algorithm again gives rise to a hidden state 
sequence within the hidden state sequences, a hidden “States of States” (SoS) sequence.  
 
Deterministic context-free grammar fitting. Any stochastic regular grammar can be 
represented by a uniquely corresponding HMM where outputs correspond to terminal symbols. 
Left regular stochastic grammars - because they are strictly equivalent to first order Hidden 
Markov Models - can only model phenomena with very short memory. Stochastic Context-Free 
Grammars represent a super-set of stochastic grammars which can feature long term memory 
and very hierarchical organization.  
 

Sequitur 30 is a recursive algorithm that infers a hierarchical structure in the form of a 
context-free grammar from a sequence of discrete symbols. The Sequitur algorithm constructs 
a grammar by substituting repeating symbol digrams in the given sequence with new rules and 
therefore produces a concise representation of the sequence. The algorithm works by scanning 
a sequence of terminal symbols and building a list of all the symbol pairs which it has read. 
Whenever a second occurrence of a pair is discovered, the two occurrences are replaced in the 
sequence by a non-terminal symbol, the list of symbol pairs is adjusted to match the new 
sequence, and scanning continues. If a pair's non-terminal symbol is used only in the just 
created symbol's definition, the used symbol is replaced by its definition and the symbol is 
removed from the defined nonterminal symbols. Once the scanning has been completed, the 
transformed sequence can be interpreted as the top-level rule in a grammar for the original 
sequence. The rule definitions for the non-terminal symbols which it contains can be found in 
the list of symbol pairs. Those rule definitions may themselves contain additional non-terminal 
symbols whose rule definitions can also be read from elsewhere in the list of symbol pairs. 
 
For example: 
 
Input sequence: the little cat chases the mouse the little cat catches the mouse the big cat 
chases the little cat the little cat runs away from the big cat 
 
Compressed sequence: r2 chases r3 r2 catches r3 r5 chases r2 r2 runs away from r5 
 
Grammar: 
– Root -> r2 chases r3 r2 catches r3 r5 chases r2 r2 runs away from r5 
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– r2 -> the little cat  (used 4 times) 
– r3 -> the mouse  (used 2 times) 
– r5 -> the big cat  (used 2 times) 
 

We ran Sequitur on each sequences in both the Acheulean and the Oldowan data sets and 
enumerated all the rules found across both data sets. After inferring rules from the combined 
Acheulean and Oldowan data set, we found that some rules only occurred in Acheulean 
sequences (Extended Data Fig. 2).  
 

The Sequitur algorithm reduces the length of the sequences by replacing terminal symbol 
strings with aggregating rule strings. This compresses the sequence by reducing its redundancy.  
Figure 3A shows that sequences in our Oldowan and Achuelean samples share common 
compressible structure within samples but are distinct across samples.  This is indicated by the 
fact that their pre and post-compression lengths are linear and have distinct slopes. Linear 
regression fit for Acheulean data is R2= 0.9852 with slope = 0.13; for Oldowan data R2=0.9982 
and slope = 0.34. The inverse slope on this plot corresponds to the data compression rate 
through rule extraction.  
 

Sequitur as a compression algorithm is loss-less, in that reverse applying the rules recovers 
the original sequence error free, and thus the same information is communicated by fewer 
symbols. This contrasts with the hidden states of the HMM that only capture probabilistically a 
higher order structure. A Sequitur compressed sequence must have more information per 
character and this gain in information density can be quantified using Shannon’s entropy 
measure. Shannon’s entropy is computed directly as the log probability of each symbol 
averaged over all symbols. A sequence with equally probable use of all symbols has the highest 
entropy, while a sequence using only a single symbol has an entropy of 0. Entropy thus 
measures how unpredictable a symbol is. We plotted the pre and post compression entropies 
in Figure 3B. Pre-compression entropy of Acheulean sequences is considerable lower than that 
of Oldowan sequences due to the much higher frequency of percussion events. However, post-
compression entropy is considerably higher for Acheulean sequences than Oldowan sequence. 
Thus, pre-compression Acheulean elements (rules + symbols) carry less information than 
Oldowan elements whereas after compression the reverse is true. 
 
fMRI covariates. In order to generate covariates for fMRI analysis it was necessary to produce 
continuous measures of complexity for the 20 seconds video stimuli. For HMM, we first applied 
the method described above to each stimulus and then evaluated how well the stimulus was 
explained by the two respective (Acheulean 6 hidden state vs. Oldowan 4 hidden state) HMM 
models. Sequence length was both short and variable (stimuli were controlled for time rather 
than number of actions), so we employed the Akaike Information Criterion [AIC] which, unlike 
BIC, is not directly dependent on sample size in order to avoid confounding sequence length 
with model likelihood. Differences in AIC between models indicate the relative strength of 
evidence in their favor. Because our models differ in complexity, this difference provides a 
continuous measure of how complex (i.e. Acheulean-like vs. Oldowan-like) each short stimulus 
sequence is compared to models derived from our entire corpus. As a lower AIC indicates a 
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more probable model, decreasing values for Acheulean – Oldowan AIC indicate increasing 
stimulus complexity and we predict a negative correlation with BOLD response measured by 
fMRI. 
 

For CFG, we applied the same deterministic grammar extraction approach discussed above. 
However, in our main analysis, sequitur was applied separately to each sequence. To generate a 
CFG covariate comparable to our HMM AIC metric, it was necessary to generate a global set of 
rules derived over the entire corpus to which individual stimuli could be compared. We thus 
fitted sequitur to the complete set of all sequences in one run. This provided us with a sequitur 
parse using compressed rules for the entire corpus. We then broke down the compressed rules 
and matched them to the individual stimulus sequences and computed the basic metrics (as for 
the long sequences) for these matched compressed sequences. The compression ratio for each 
stimulus provides a straightforward measure of complexity, we used post- over pre-
compression values so that our CFG metric would parallel our HMM metric in matching 
decreasing values with increasing complexity and predicting negative correlation with BOLD. 
 
fMRI Analyses. Experimental paradigm and participants were presented ref. 18. Briefly, 10 
Naïve, 10 Trained and 5 Expert subjects observed 20-second videos of an expert demonstrator 
performing two tool-making methods of differing complexity and antiquity: the simple 
‘Oldowan’ method documented by early tools 2.5 million years ago; and a more complex ‘Late 
Acheulean’ method used to produce refined tools 0.5 million years ago. In the present SPM 
analysis, the two categories of tool-making were defined as two conditions, and complexity 
scores (HMM and CFG) were added as covariates describing each stimulus in two individual 
subject analyses.  
 

The effect of these covariates combined across the two categories of stimuli were entered 
in two multisubject analyses across the 20 non-expert participants, thresholded at p < 0.05 FDR-
corrected at the cluster level (Fig. 4). Experts were omitted due to a small sample size 
insufficient to properly assess confounding expertise and automaticity effects62,63. To confirm 
the overlap in left parietal and right frontal cortices between the two analyses, a conjunction 
(“&”) was calculated between the T-maps describing the voxels yielding significant negative 
correlation with the two covariates. This analysis yielded two clusters, one in the left parietal 
operculum and one in the posterior part of the right inferior frontal gyrus corresponding to the 
pars opercularis according to the Anatomy toolbox 64. 
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Supplementary Information 
 

 
       A       B 
Supplementary Figure 1. The light percussion involved in striking platform preparation (light 
blue) involves many rapid, low amplitude blows (B) when compared to more forceful percussion 
aimed at flake detachment (dark blue). Light percussion is achieved with wrist movements that 
keep the hand close to the core compared to the elbow swings deployed in forceful percussion 
(A). 
 

 
Supplementary Figure 2. Relative frequency of rule appearance across all Oldowan (blue) and 
Acheulean (red) sequences. Red arrows indicate rules occurring only in Acheulean sequences. 
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Supplementary Figure 3. Effect of k-Sequitur compression on sequence length (A, B) and 
entropy (C,D) for increasing values of k. 
 
 

 
Supplementary Figure 4. Effect of Sequitur compression after removing repeated percussions. 
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Supplementary Discussion: Archaeological Implications 

Technological complexity is a fundamental concept in Paleolithic archaeology used to 
infer everything from cognitive abilities to ecological adaptations and rates of cultural 
evolution, but has remained poorly defined and impossible to measure in an objective and 
generalizable way1. As a result, interpretations are often driven by qualitative and/or 
idiosyncratic comparisons between named stone-tool “industries” like the Oldowan and 
Acheulean that are themselves analytic constructs subsuming a wide range of actual behavioral 
variation2. The Acheulean, for example, spans 1.5 million years of human evolution on three 
continents. Although its appearance has long been viewed as a major transition in hominin 
cognitive evolution3, more specific links between variation in archaeologically-observable 
techniques, inferred behavioral complexity, and evolving neurocognitive mechanisms over this 
vast swath of time and space have remained elusive.  

Our current findings focus attention on platform preparation as a key indicator of 
increasing technological complexity. On an abstract level, platform preparation it is a simple 
repeat to criterion rule; the difficulty lies in learning to concretely identify the correct criteria 
for starting and stopping. In other words, it is a problem of learning (through lengthy practice) 
to perceive subtle properties of the core (e.g. relations between platform convexity, depth, 
edge angles and core surface morphology4) that influence fracture patterns, and then selecting 
and applying contextually appropriate actions to modify and exploit these properties. To be 
successful, knapping actions must also conform to very specific kinematic parameters – for 
example by meeting but not exceeding the kinetic energy required for initiation of the intended 
fracture5. Required energy is in turn a function of the relations between core properties, 
themselves potentially manipulable through platform preparation, and the size and shape of 
the desired flake as determined by more distal knapping goals. Thus, the production of effective 
knapping action sequences requires a tight integration across multiple levels of organization, 
from the kinematic details of individual blows to the superordinate goals toward which these 
blows are directed, as well as the ability to flexibly switch between the various sub-goal states 
that define these relations as the tool-making process unfolds. 

The actual Paleolithic use of platform preparation to achieve these ends was confirmed 
in a study of handaxe production waste from the ~500,000 year old site of Boxgrove, UK6. 
Platform preparation has also been reported in the context of a different technology (blade 
production) at the similarly-aged site of Kathu Pan 1 in South Africa7. Such research follows 
well-established experimental archaeology methods for the reconstruction of past behavior by 
using experimental replication to generate expectations that are testable against actual 
archaeological materials8. To date, however, assessment of the cognitive implications of such 
reconstructed behaviors has been largely reliant on informal and qualitative interpretation. 
Neuroimaging studies of experimental tool-making offer the prospect of a more rigorous and 
empirical approach but face significant challenges of their own, including especially the 
difficulty of dealing with complex naturalistic behaviors like knapping.    

For example, a recent study using functional near-infrared spectroscopy found that rIFG 
response during experimental handaxe-making was modulated by the presence/absence of 
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linguistic instruction during training9, which was manipulated by presenting identical training 
videos with or without sound. The authors concluded that rIFG activity likely reflected use of 
inner speech by the linguistically-instructed group rather than the demands of response 
selection. However rIFG is not one of the cortical regions typically associated with inner 
speech10, and an alternative explanation is that differential training yielded different learning 
outcomes11,12 with rIFG responding to overt differences in task performance. Consistent with 
the latter, the authors do report differences in mean flake shape and relative platform size in 
debitage produced by the two groups. Properly testing such alternatives will require detailed 
description and quantification of actual subject behavior. While this is challenging for multi-
component, real-world tasks like stone tool-making, grammar extraction using HMM and/or 
CFG does provide a promising method for data-driven parameterization of the structural 
complexity hypothesized to drive rIFG response. 
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