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Abstract21

Characterizing animal space use is critical to understand ecological relationships. Despite22

many decades of using radio-telemetry to track animals and make spatial inference, there are23

few statistical options to handle these unique data and no synthetic framework for modeling24

animal location uncertainty and accounting for it in ecological models. We describe a novel25

azimuthal telemetry model (ATM) to account for azimuthal uncertainty with covariates and26

propagate location uncertainty into ecological models. We evaluate the ATM with commonly27

used estimators in several study design scenarios using simulation. We also provide illustra-28

tive empirical examples, demonstrating the impact of ignoring location uncertainty within29

home range and resource selection analyses. We found the ATM to have good performance30

and the only model that has appropriate measures of coverage. Ignoring animal location un-31

certainty when estimating resource selection or home ranges can have pernicious effects on32

ecological inference. We demonstrate that home range estimates can be overly confident and33

conservative when ignoring location uncertainty and resource selection coefficients can lead34

to incorrect inference and over confidence in the magnitude of selection. Our findings and35

model development have important implications for interpreting historical analyses using36

this type of data and the future design of radio-telemetry studies.37

Introduction38

Understanding animal space-use and its implications for population and community dynam-39

ics is a central component of ecology and conservation biology. The need to understand40

animal spatial relationships has led to the increasing refinement and utility of telemetry de-41

vices (Millspaugh et al. 2001). Traditional telemetry data were solely collected using VHF42

(“very high frequency”) radio signals to track individual animals with radio tags; VHF radio-43

telemetry started around the mid-1960s and is still often employed. These data are collected44

by observers recording azimuths in the direction of the radio signal from known locations.45

Modern telemetry data are often collected using Argos satellites, aerial location finding (i.e.,46
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via fixed-winged aircraft), or the global positioning system (GPS). While newer forms of47

telemetry data are often collected, radio-telemetry devices are still relatively inexpensive.48

They also typically have low energy requirements, which allows for miniaturized and long-49

lasting devices to be fixed to small and volant animals for obtaining high spatial resolution50

data with minimal risk to incurring costs on survival and movement (Ponchon et al. 2013).51

More so, digital VHF is quickly becoming an important way to monitor the movements of52

small-bodied species at regional scales (Loring et al. 2017).53

It is well recognized that spatial locations from telemetry devices are not without54

error and estimation uncertainty (Frair et al. 2004; Patterson et al. 2008). Observed locations55

contain measurement errors, or deviations between the recorded telemetry location and the56

true location of the animal. The magnitude of these deviations and the shape or structure57

of spatial location uncertainty is often specific to the type of telemetry technology (Costa58

et al. 2010) and the environmental conditions (Frair et al. 2004; White and Garrott 1990).59

Failing to account for location uncertainty can have important impacts on spatial analyses60

of animal resource selection (Montgomery et al. 2010), distribution (Hefley et al. 2014), and61

movement modeling (Hooten et al. 2017); location uncertainty may sometimes be modeled62

as a multivariate Gaussian process, but is often more complex (Costa et al. 2010).63

Recent model developments focusing on satellite-based telemetry data (e.g., GPS,64

Argos) have highlighted the importance of appropriately characterizing location uncertainty65

and synthetically incorporating this uncertainty, using hierarchical modeling techniques, into66

ecological process models (e.g., RSF: Brost et al. 2015; Movement analyses: Buderman et al.67

2016). Developments addressing the unique issues of azimuthal telemetry data do not exist;68

there have been few model developments to improve animal location estimation or uncer-69

tainty in the recent decades (Lenth 1981; Guttorp and Lockhart 1988). Standard practice is70

to analyze azimuthal data using a maximum likelihood estimator (MLE) or weighted MLE71

(M-estimators) to reduce the influence of outliers. These estimators are implemented in the72

software LOCATE (Nams 2000) and LOAS (Ecological Software Solutions LLC, Sacramento,73
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California). Spatial location estimates are then commonly used in a secondary ecological74

model, in which the location uncertainty is ignored and possibly unreported, the magnitude75

of the uncertainty is used to define the scale of inference rather than the ecological question,76

and location estimates are often omitted (Saltz 1994; Withey et al. 2001; Montgomery et al.77

2010). These approaches raise several concerns.78

Foremost is that these practices degrade ecological inference by disregarding un-79

certainty, excluding data, or altering their scale of inference. Second, uncertainty from80

Lenth’s MLE or M-estimators are commonly defined using confidence ellipses based on the81

assumption of asymptotic normality (White and Garrott 1990). Assuming the uncertainty82

is strictly elliptical (e.g., multivariate Gaussian) may be overly restrictive and thus misrepre-83

senting the true uncertainty. This is suggested from empirical evidence that 95% confidence84

ellipses of Lenth’s MLE or M-estimators cover the true location much less than 95% of the85

time (between 39% and 70%; White and Garrott 1990). There are also concerns raised by86

Lenth (1981) over the validity of the variance-covariance matrix of the M-estimators. Lastly,87

there are additional improvements that could add flexibility in how researchers approach the88

design of radio-telemetry studies. For example, Lenth’s estimators cannot estimate locations89

or a measure of uncertainty when only two azimuths are collected. It is also not uncommon90

for the estimator to fail with three or more azimuths, resulting in the use of a secondary91

estimator (i.e., a component-wise average of all azimuthal intersections) that has no measure92

of uncertainty or robust statistical properties.93

Furthermore, it is well known that radio-signal direction can be influenced by many94

factors, including vegetation, terrain, animal movement, observer experience, and the dis-95

tance between the observer and the animal (White and Garrott 1990; Millspaugh et al. 2001).96

To accommodate these factors, standard practice has been to test observers taking azimuths97

on known locations of a radio-signal to experimentally quantifying telemetry error. This98

error can then be applied to estimate location uncertainty via error polygons and confidence99

ellipses (Withey et al. 2001). If field trials obtain data across known influencing factors, a100
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model can be developed to incorporate variation in telemetry error for these conditions (Pace101

and Weeks 1990). However, field trials will always be limited in their ability to anticipate102

all combinations of influential factors when collecting radio-telemetry data. Also, there are103

inconsistent recommendations in the literature regarding how best to estimate location un-104

certainty (White and Garrott 1990; i.e., Error polygons vs Lenth’s confidence ellipses). We105

developed an approach that accommodates pre-existing data sources, where field trials may106

not be available; if these data are available, it could be incorporated.107

We developed hierarchical azimuthal telemetry models (ATM) that estimate ani-108

mal locations with uncertainty, which can be synthetically propagated into spatial ecological109

models. We first describe a novel Bayesian ATM, which models azimuthal uncertainty using110

covariates. We evaluate the ATM and Lenth’s estimators under a variety of study designs.111

Model development is motivated by a telemetry study on the threatened Gunnison sage-112

grouse (Centrocercus minimus ; Rice et al. 2017), which we use to setup the simulation and113

explore observer effects using the ATM. Second, we develop hierarchical spatial models for114

azimuthal data, including an RSF and home range analysis, which we fit to the Gunnison115

sage-grouse data; see Appendix S1 for species background information and study details.116

We examine how ignoring location uncertainty can affect ecological inference through these117

empirical examples, but also more generally by conducting an RSF simulation.118

Azimuthal Telemetry Model (ATM)119

Suppose that multiple individuals (l = 1, ..., L) are fitted with a radio-transmitter and are120

subsequently relocated on certain days (i = 1, ..., Nl). For each relocation, an observer121

records a set of azimuths (θlij; j = 1, ..., Jli) at known locations zlij ≡ (z1lij, z2lij)
′ to estimate122

the individual’s spatial location, µli ≡ (µ1li, µ2li)
′. We consider the observer locations as a123

fixed part of the study design and the azimuthal data observed with some uncertainty, which124

can be described by a circular probability distribution. We use the von Mises distribution125

and a trigonometric link function to relate the true animal location with the data,126
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Observation Process: θlij ∼ von Mises(θ̃lij, κlij)

Link Function: θ̃lij = tan−1
(
µ2li − z2lij
µ1li − z1lij

)
.

(1)

Uncertainty in the azimuthal data is controlled by the concentration parameter κ, in which127

larger values indicate less uncertainty (Appendix S2: Fig. 1), which can be modeled via128

covariates (e.g., observer effects; defined by the matrix wlij) in a hierarchical structure that129

accommodates unmodeled heterogeneity based on variance parameter σ2
κ, as log(κlij) ∼130

N(w′lijβ, σ
2
κ). Using this framework, we can include covariates that have been hypothesized131

to effect azimuthal uncertainty, but have not been able to be explicitly modeled in previous132

studies, such as distance effects between the animal and observer, or even terrain complexity.133

To complete the Bayesian model formulation, we specify priors for our unknown134

parameters. Commonly used priors are β ∼ N(µβ,Σβ) and σ2
κ ∼ IG(ασ, βσ). The prior135

for µli may be specified a number of ways, including multivariate Gaussian. However, to136

increase computational efficiency when fitting the model, it is advantageous to define an137

upper bound to the distance for which a telemetered individual can be detected. Otherwise,138

in cases where a limited number of azimuths are available or azimuths do not intersect139

(e.g., parallel azimuths), a multivariate Gaussian distribution will allow the uncertainty to140

theoretically propagate over an infinite spatial domain. In what follows, we specify a fixed141

maximum distance from each observer location to the animal location, using radius r. We142

also define a diffuse prior density for each spatial location as the union of all circles of the143

jth observer location with radius r where v are coordinates (x, y) in the spatial domain,144

µli ∼ Unif

(
Jli⋃
j=1

{
v | ‖v − zlij‖22 ≤ r2

})
. (2)

The precision of animal location estimates largely depends on the number of azimuths and145

whether these azimuths intersect each other. Example location estimates and associated146

uncertainty demonstrate the flexibility of the ATM in fitting azimuthal data with one or147

more intersecting or non-intersecting azimuths (Figs. 1 and Appendix S2: Fig. 2). Using148

6

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 13, 2018. ; https://doi.org/10.1101/281584doi: bioRxiv preprint 

https://doi.org/10.1101/281584


Gunnison sage-grouse telemetry data from two observers, we fit the ATM to investigate149

possible observer differences in κ; the model was fit using a Markov chain Monte Carlo150

(MCMC) algorithm written in R (Appendix S3). We found observer one was generally more151

precise than observer 2 (Fig. 2). This demonstrates how we can accommodate general and152

specific forms of heterogeneity in κ, which was not previously possible with other methods.153

Simulation154

We evaluated the performance of the ATM and Lenth’s MLE and M-estimators (Andrews155

and Huber) along with a simple component-wise average of intersections. We did so by156

simulating data under two common radio-telemetry study designs (road and encircle) and a157

more variable approach (random). The random design placed observers at any combination158

of angles from each other and to the animal location. The road design constrains observer159

locations to a linear feature, thus limiting the angular differences among azimuths. Lastly,160

the encircle design placed observer locations such that they encircled the animal location.161

For each design, we considered scenarios of 3 or 4 azimuths per location and moderate and162

high azimuth uncertainty (κ = 100 or 25, respectively). The distances between observer and163

animal locations were drawn by randomly selecting empirical distances estimated from the164

Gunnison sage-grouse data (Appendix 2: Fig. S3). Simulation algorithms are provided in165

Appendix S3 and available R code. The ATM, assuming a homogeneous κ, was fit using166

MCMC. Lenth’s MLE and M-estimators were fit using Lenth’s original algorithms (Lenth167

1981; see R code). Lenth’s MLE was also fit using the R package ‘sigloc’ (Sergey 2014), which168

does not use the algorithm suggested by Lenth (1981), but a quasi-Newton optimization169

algorithm which Lenth (1981) suggested avoiding.170

Across scenarios, we found that locations were typically estimated from all models171

and estimators, except for sigloc, which had a success rate from 52 to 99%, depending172

on the scenario (Table 1). The ATM and simple average of intersections always produced173

a location estimate. Point estimates were more accurate under the encircle study design174

and under moderate azimuthal uncertainty; accuracy improved 1.5 to 2.5 times with four175
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azimuths compared to three. For all scenarios, point estimates were mostly similar among176

the different models and estimators. However, sigloc was less accurate than the others under177

the random and road designs when azimuthal uncertainty was high. The most important178

difference we found was that of coverage of the true value. All approaches produced relatively179

poor coverage (0.3 to 0.6, range) except for the ATM, which proved to be slightly below180

nominal coverage (≈ 90% coverage of true value).181

Hierarchical spatial models for azimuthal data182

Resource Selection Analysis183

Given our new telemetry data model, we can now analyze our estimated animal spatial184

locations using any ecological process model. To make inference on the relative selection of185

spatial resources for the population of radio-tagged individuals, we use a spatial point process,186

assuming independence among spatial locations (Hooten et al. 2017). Let x be a vector of187

covariates associated with location µli and individual availability defined by the function fA188

and availability coefficients θ. Individual-level selection coefficients (γ) are realizations from189

a population-level selection process with mean and covariance (µγ,Σγ, respectively; Hooten190

et al. 2017). For multiple individuals, the hierarchical RSF model is specified as,191

Inhomogeneous point-process: [µli|γ,θ] ≡ exp(x′(µli)γ)fA(µli,θ)∫
exp(x′(µ)γ)fA(µ,θ)dµ

,

Individual-level coefficients: γ ∼ N(µγ,Σγ)

Priors: µγ ∼ N(µ0,Σ0), Σ−1γ ∼Wish((Sν)−1, ν).

(3)

We fit the ATM-RSF model to each of a subset (six individuals) of Gunnison sage-grouse192

during the summer months (16 July to 30 September, from 2005 to 2009). We use these193

individuals as exemplars to compare estimated regression coefficients from the ATM-RSF194

with estimates from the same RSF, but we assumed location estimates from Lenth’s MLE195

are known without uncertainty. We include six common spatial variables used in RSF anal-196

yses for Gunnison sage-grouse (Appendix S1; Rice et al. 2017): road density, distance to197

8

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 13, 2018. ; https://doi.org/10.1101/281584doi: bioRxiv preprint 

https://doi.org/10.1101/281584


highway, distance to wetlands, distance to conservation easements, elevation, and vegetation198

classification (i.e., grassland, agriculture). In addition to including both categorical and con-199

tinuous spatial covariates, the variables include a highly variable topographic variable and200

more smoothly continuous measures of distance to features. The structure of each type and201

how variable values are from neighboring locations could differently impact RSF inference202

by the scale and shape of animal location uncertainties (Montgomery et al. 2011).203

We assumed uniform spatial availability for an individual animal. To demonstrate204

the differences in inference, we defined the spatial extent of the availability in two ways: 1)205

using the convex hull of all locations (µli) and 2) defining a larger study area region. The206

first focuses on a second-order selection process within an individual’s area of use (Johnson207

1980), while the second is a first-order selection process within the broader landscape. In208

addition to producing fundamentally different inference for resource selection, the location209

uncertainty affects each differently. For the study area region, resource selection is subject210

to only location uncertainty, whereas for convex hull availability, resource selection is subject211

to both location and availability uncertainty.212

As expected, resource selection depends on how we measure resource availability213

and whether we include location uncertainty (Fig. 3a, Appendix S4: Figs. 1-5). For example,214

road density is negatively selected at the study area region, but is slightly positively selected215

at the home range (Fig. 3a). Additionally, elevation is positively selected at the study216

area region, but is selected in proportion to availability (i.e., 95% credible interval includes217

zero) at the home range level. We found that properly accounting for location uncertainty218

does not always increase parameter uncertainty (Fig. 3a, Appendix S4: Figs. 1-5). Across219

individuals, we found the categorical vegetation variables were most affected by incorporating220

location uncertainty, such that including location uncertainty shifted the probability density221

more negative, even changing the inference and interpretation of the amount of evidence for222

selection of grasslands to avoidance of grasslands under the study area availability definition.223

The continuous variables were largely not affected when including location uncertainty, likely224
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due to small location uncertainty relative to the adjacent spatial variability in covariate225

values. Lastly, an advantage of the hierarchical ATM-RSF model is that selection coefficients226

can inform the location estimation to where individuals were and were not likely to be on227

the landscape, thus reducing location uncertainty (Fig. 3b).228

For a more general understanding, we conducted a simulation to explore the con-229

nection among location uncertainty, covariate spatial heterogeneity, and ecological inference230

in RSF analyses. Previous work has demonstrated this to be the case (Montgomery et al.231

2011); we further this understanding by examining how varying levels of spatial autocorrela-232

tion of a continuous and categorical covariate at different sample sizes and spatial resolution233

effects RSF coefficients when incorporating and ignoring location uncertainty, compared to234

knowing the true locations. Specifically, we simulated animal location data (Nlocations = 50,235

200) that coincide with covariate values of low, moderate, and high spatial autocorrelation,236

defined using a Gaussian random field (covariates at 25 m or 100 m resolution; Appendix237

S5). Observations were three azimuths per location, simulated under a random design (Ap-238

pendix S3), with moderate azimuthal uncertainty (κ = 50). We fit these data with 1) the239

ATM-RSF, and 2) a typical RSF model that used location estimates from Lenth’s (1981)240

MLE, ignoring location uncertainty. We compare coefficient estimates from these approaches241

across simulations with that of fitting an RSF where the true locations are known, providing242

a reference to the best case scenario for these data.243

We found that differences in regression coefficients among approaches increased as244

spatial autocorrelation in the covariate value decreased (thus, higher spatial heterogeneity;245

Fig. 4). This was the case for both sample sizes and spatial resolutions, however, there was246

much greater uncertainty with datasets of 50 locations, compared to that of 200. Under all247

conditions, accounting for location uncertainty results in intervals overlapping the credible248

interval based on true locations to a higher degree compared to ignoring location uncertainty249

(Fig. 4). The difference between the ATM-RSF coefficients and those when an RSF model is250

fit with the known locations reflect our findings that the ATM does not always estimate loca-251
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tions with the highest posterior density centered on the true location (with high uncertainty252

in κ; Table 1); instead, the true location is often captured in the 95% posterior isopleth.253

While we found that incorporating location uncertainty improves our inference about RSF254

regression coefficients, compared to ignoring location uncertainty, further improvement can255

be gained by decreasing our azimuthal uncertainty (κ) or increasing our certainty in animal256

location by taking many more azimuths (Table 1). Lastly, we found little difference among257

coefficients due to the spatial resolution of covariates (25 m vs 100 m); the most pronounced258

change was that covariates with high spatial autocorrelation and a lower resolution (100 m)259

led to similar coefficient estimates regardless of location uncertainty compared to those with260

high resolution covariates (25 m; only at the high sample size of N = 200).261

Home range262

Another common use of telemetry data is to estimate the home range area of individuals.263

This has often been done using a convex hull or non-parametric kernel density estimation264

(Hooten et al. 2017). We can propagate location uncertainty using the ATM by treating265

the home range estimate as a derived quantity. For a given individual that was relocated266

n times within a season, we can estimate their seasonal home range for the kth iteration of267

MCMC using the 95% isopleth of the kernel function,268

f̂(c) =

∑n
i=1 g((c1 − µ(g)

1i )/b1)g((c2 − µ(k)
2i )b2)

nb1b2
, (4)

evaluated at locations of interest c ≡ (c1, c2)
′, choice of kernel function g(·), and bandwidth269

parameters b1 and b2. The result is a posterior distribution of the 95% home range isopleth,270

which could be used to further derive a posterior distribution of the home range area, thus271

fully incorporating all uncertainties in our estimate.272

We fit the ATM and derived a convex hull and kernel density home range for273

individual Gunnison sage-grouse for different seasons (breeding and summer) across all years274

of available data. We compare these results with home range estimates using estimated275

locations from Lenth’s MLE, thus ignoring location uncertainty. Regardless of home range276
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estimator, we found the spatial arrangement of the Gunnison sage-grouse home range was277

often different depending on whether location uncertainty was considered (Fig. 3c, Appendix278

S6). Ignoring location uncertainty often leads to overly small home range area estimates when279

compared to the estimate obtained when incorporating uncertainty. The contiguity of the280

kernel density home range was often affected by location uncertainty. Without taking into281

account location uncertainty, comparing home range area estimates across individuals could282

lead to highly biased inferences.283

Conclusion284

Our model developments have important implications for interpreting historical radio-telemetry285

data analyses and to the future designs of these studies. While state-of-the-art tracking tech-286

nologies (e.g., GPS) are increasingly used, animal telemetry via VHF radio is still widely287

used and will likely continue due to its low cost and miniaturization (Ponchon et al. 2013);288

digital VHF is increasingly used to study small-bodied migratory birds (Loring et al. 2017).289

The development of the ATM addresses several complicating factors when dealing290

with azimuthal data. Foremost is that our model appropriately characterizes azimuthal291

telemetry uncertainty and allows this uncertainty to synthetically be propagated into spatial292

models. Appropriately accounting for uncertainties in ecological inference is needed to ensure293

appropriate inference (Brost et al. 2015; Hobbs and Hooten 2015; Figs. 3, 4). The ATM294

illustrates that the magnitude and shape of location uncertainty from azimuthal telemetry295

data is complex and highly variable. Previous methods have led to over confidence in the296

precision of animal locations, the certainty in resource selection, and the size of home ranges.297

The ATM overcomes the issue of limited experimental field trials by allowing298

telemetry uncertainty to be directly modeled, thus accounting for telemetry uncertainty299

in location estimates. If the goal is to minimize location uncertainty, we found that it is300

prudent to encircle the animal, as well as obtain more than three azimuths (Fig. 4d, Table301

1, Appendix S2: Fig. 3). However, the optimal study design will ultimately depend on302

the questions being considered (e.g., home range vs RSF study); researchers can pair the303
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ATM with spatial models to identify optimal study designs that minimize logistical costs304

and maximizing model performance, something that was not previously possible.305

We found the effects of location uncertainty on ecological inference is not straight-306

forward. Our RSF investigation demonstrated how location uncertainty affect on parameter307

estimates depends on the definition of availability (Hooten et al. 2013), whether covariates308

were categorical or continuous, and the degree of spatial autocorrelation in the covariate.309

Our simulation clarified that incorporating location uncertainty helps reduce bias in RSF co-310

efficients across all levels of covariate spatial autocorrelation. Furthermore, our home range311

results suggest that previous studies that ignored location uncertainty could have been overly312

conservative in their estimate of home range areas; ignoring location uncertainty can have313

pernicious effects in terms of the shape and size of home range estimates.314
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Table 1. Comparing the ATM, the average azimuth intersections (simple), and Lenth’s (1981) maximum likelihood estimator (MLE;374

Lenth) and M-estimators (Andrews, Huber). ‘sigloc’ uses an alternative optimization for the MLE.375

Encircle κ = 100 κ = 25
simple sigloc Lenth Huber Andrews ATM simple sigloc Lenth Huber Andrews ATM

nθ = 3

nµ̂ 600 597 600 600 600 600 600 581 598 600 600 600
d0.5 (m) 22.4 20.8 20.5 20.4 20.4 21.0 45.3 43.6 42.7 42.8 43.5 42.8

Coverage – 0.430 0.432 0.432 0.433 0.888 – 0.422 0.425 0.423 0.435 0.858

nθ = 4

nµ̂ 600 539 600 600 600 600 600 470 592 595 599 600
d0.5 (m) 9.9 9.3 8.7 8.7 8.8 8.7 19.2 19.6 17.5 17.6 17.4 17.5

Coverage – 0.575 0.592 0.585 0.592 0.923 – 0.553 0.542 0.538 0.541 0.917

376

Random κ = 100 κ = 25
simple sigloc Lenth Huber Andrews ATM simple sigloc Lenth Huber Andrews ATM

nθ = 3

nµ̂ 600 533 595 593 593 600 600 439 564 561 566 600
d0.5 (m) 32.6 32.2 25.1 25.1 25.3 25.0 62.9 75.1 54.2 53.4 53.7 55.6

Coverage – 0.403 0.418 0.417 0.417 0.883 – 0.328 0.348 0.348 0.352 0.850

nθ = 4

nµ̂ 600 454 594 594 598 600 600 367 573 573 579 600
d0.5 (m) 14.2 13.0 9.9 10.0 9.9 10.0 25.3 34.0 19.5 19.6 20.0 20.3

Coverage – 0.559 0.581 0.567 0.572 0.920 – 0.526 0.560 0.550 0.556 0.912

377

Road κ = 100 κ = 25
simple sigloc Lenth Huber Andrews ATM simple sigloc Lenth Huber Andrews ATM

nθ = 3

nµ̂ 600 499 593 593 597 600 600 409 573 571 576 600
d0.5 (m) 56.7 44.4 39.0 39.0 38.5 40.5 95.5 110.4 85.1 84.6 83.9 86.4

Coverage – 0.397 0.418 0.418 0.412 0.877 – 0.296 0.316 0.310 0.312 0.822

nθ = 4

nµ̂ 600 443 600 600 600 600 600 316 592 593 595 600
d0.5 (m) 53.8 33.4 26.9 27.7 28.1 26.5 90.3 83.5 54.6 54.8 55.2 55.8

Coverage – 0.580 0.618 0.595 0.588 0.923 – 0.487 0.561 0.543 0.545 0.883

378

Notes : Random/encircle/road are telemetry study designs. κ is a von Mises distribution parameter. nθ and nµ̂ are the number of379

observer locations per animal location and estimated locations, respectively. d0.5 is the median of the Euclidean distance between the380

estimated and true animal location. Coverage is the number of 95% isopleths that contained the trueµ out ofnµ̂.381
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Figure 1. Illustrative examples of animal location estimates from the azimuthal telemetry model382

(ATM) and Lenth (1981) maximum likelihood estimator (κ= 25). The union of the circles are a383

uniform prior probability density for the spatial location. The inset is the posterior distribution384

fromtheATMatisoplethsof10,25,50,75,and95%. Plotswithoutasiglocestimateoruncertainty385

ellipse are due to estimation failure.386

387

Figure2. Posteriordistributionsofestimatedobservereffectsonazimuthaltelemetryuncertainty388

(left,κ)and individual locationκ (right; circlesaremediansof theposteriordistributionandbars389

are 95% credible intervals) for Gunnison sage-grouse data in 2009.390

391

Figure 3. a) Resource selection coefficients for Gunnison sage-grouse; points are posterior medi-392

ans, thick and thin lines are 50% and 95% credible intervals, respectively. b) Posterior samples393

of Gunnison sage-grouse data fit with the ATM-RSF (heterogenous landscape) and only the394

ATM (homogenous landscape). c) Home range distribution and area estimates for an individual395

Gunnison sage-grouse via kernel estimation (left) and convex hull (right) where spatial location396

uncertainty is incorporated via the ATM or ignored using Lenth (1981) estimation. The vertical397

line is thehomerangeareaestimatewhenusingLenth(1981)estimationandlocationuncertainty398

is ignored.399

400

Figure 5. Simulation results of coefficient estimates from an RSF that incorporates location un-401

certaintyviatheATM,Lenth’s(1981)maximumlikelihoodestimateswhere locationuncertainty402

is ignored, and when the true spatial locations are known with complete certainty. Coefficient403

point estimates correspond to a continuous and categorical variable (γ1, γ2, respectively) under404

low to high autocorrelation. Thick and thin lines are 50 and 95% credible intervals,respectively.405

The top row (a, b) used high spatial resolution covariates (25 m) and the bottom row (c, d) used406

low spatial resolution covariates (100 m). The columns differ in the size of the simulated dataset:407

50 or 200 locations.408
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