










Figures482

Figure 1: smCounter2 workflow. Rectangular boxes represent the data files and elliptical boxes represent
steps of the pipeline. Users can choose to run the whole pipeline from FASTQ to VCF or run the variant
calling part only from BAM to VCF.
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Figure 2: Underlying model of smCounter2. a Background error rates for each type of base change, averaged
across the panel of M0466. b Modeling of the background error rates using the Beta distribution. The
histogram shows the frequency of observed G>A error rates in M0466. The red curve is the density of the
fitted Beta distribution. c Quantile plot to check the goodness-of-fit of the G>A error rate modeling. The
observed and fitted quantiles form a 45 degree line in most places, indicating perfect fit. The tail skews
towards “observed”, indicating under-estimation of the extremely high error rates. This may simply be
explained by outliers, or suggests that a distribution (or mixed distributions) with heavier tail is needed. d
An real example of parameter adjustment. The red curve is the originally fitted Beta distribution. The blue
curve is the adjusted error model with the mean of the input data (N13532) and the original variance. e
Illustration of the variant calling p-value. The density curve is a hypothesized Beta-binomial distribution.
The vertical line indicates the observed non-reference UMI counts. The area of the shaded region is the
p-value. f Detection limit prediction and confirmation. The purple and blue curves are the predicted site-
wise detection limit for Ti and Tv/indels respectively. The dots are the true variants in N13532 (outliers
with extremely low UMI depth or high allele frequency excluded). For the dots, the y-axis represents the
observed allele frequencies. Round dots are the variants detected and triangle dots are the ones not detected,
concentrated in the low enrichment regions.
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Figure 3: Training and testing of the homopolymer indel filter. a Illustration of UMI efficiency. The UMI
on the left has perfect efficiency because all reads contributed to the consensus. The UMI on the right has
low efficiency because two reads in red disagree with the majority and thus are wasted. smCounter2 requires
80% agreement to reach a consensus, so the entire UMI would be dropped and the other three reads would
be wasted as well. b Relative importance of each predictor ranked by the explained variation minus the
degree of freedom. The read pairs per variant UMI (varRpu) and the ratio between allele frequencies by read
and by UMI (vafToVmfRatio) are the two variables with the most predictive power. The plot is generated
with R rms package. c ROC curves of the logistic regression classifier. The black curve is for the training
data that combined all true and false homopolymer indels in N0030, N0015, N11582, and N0164. The blue
and red curves are for two test datasets N13532 and N0261, respectively. The dots represent the actual
sensitivity and specificity at the cutoff, which is consistent in all three datasets.
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Figure 4: Benchmarking smCounter2, smCounter, fgbio+MuTect, fgbio+VarDict on 0.5% variants in
N13532. The performance is measured by false positives per megabase (x-axis) and sensitivity (y-axis),
stratified by type of variant (SNV and indel) and region (coding, non-coding, and all). The ROC curves
are generated by varying the threshold for each method: Q-score for smCounter2, prediction index for sm-
Counter, likelihood ratio for MuTect, and minimum allele frequency for VarDict. MuTect does not detect
indels so is not included in the indel comparison.
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Figure 5: Default thresholds of smCounter and smCounter2 at different UMI depths and associated false
positive rates, based on the downsample series of N0030. smCounter’s threshold moves linearly with the UMI
depth and is determined using an empirical formula y = 14 + 0.012x. smCounter2’s threshod is constant at
6. The false positive rates for SNV are well controlled (between 5 to 13 FP/Mbp, represented by the point
size) using both methods.
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Tables483

Table 1: Key statistics of the datasets used for training and testing of smCounter2.

Dataset Purpose Sample Target re-
gion (bp)

Mean
UMI
depth

Mean
read pairs
per UMI

VAF (%) SNVs indels

M0466 training 0.2%
NA12878

17,859 45,335 3.2 0.1 87 0

N0030 training 2%
NA12878

1,032,301 3,612 8.6 1 363 56

N0015 training 10%
NA12878

406,846 4,825 8.5 5 4,412 369

N11582 training 100%
NA24385

1,094,204 479 2.6 50 or 100 729 49

N0164 training 1-20%
NA12878

66,661 3,692 11.5 0.5-10 237 177

N13532 test 1%
NA12878

928,315 4,040 7.6 0.5 293 164

N0261 test 1%
NA12878

45,299 3,384 13.8 0.5 5 269

M0253 test 50% HDx
Tru-Q 7

38,370 4,980 13.0 ≥ 0.5 36 (with
MNPs)

1
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Table 2: smCounter2 performance in detecting 0.5, 1, 5, and 50-100% variants, stratified by type of variant
(SNV and indel) and genomic region (coding and non-coding). The metrics were generated with the default
thresholds (Q ≥ 2.5 for indels in N13532, N0261, M0253 and Q ≥ 6 for all other cases). The allele frequency
and the purpose of the dataset are displayed under the dataset name. All performance metrics are measured
on GIAB high-confidence regions only, the sizes of which are presented in the last column.

Dataset Region Type TP FP FN TPR(%) FP/Mbp PPV(%) HC size(bp)

N13532 coding SNV 171 7 14 92.4 12 96.1 591,154

(0.5%, test) indel 38 4 7 84.4 7 90.5 591,154

non-coding SNV 90 1 18 83.3 4 98.9 259,162

indel 67 11 51 56.8 42 85.9 259,162

N0261 coding indel 35 0 8 81.4 0 100.0 6,119

(0.5%, test) non-coding indel 138 4 87 61.3 114 97.2 35,172

M0253 all SNV/MNV 32 - 4 88.9 - - 38,370

(0.5-30%, test) indel 0 - 1 0.0 - - 38,370

N0030 coding SNV 214 5 4 98.2 7 97.7 694,189

(1%, training) indel 36 1 3 92.3 1 97.3 694,189

non-coding SNV 137 3 8 94.5 13 97.9 236,687

indel 12 3 5 70.6 13 80.0 236,687

N0015 coding SNV 528 0 4 99.2 0 100.0 35,718

(5%, training) indel 9 0 1 90.0 0 100.0 35,718

non-coding SNV 3851 7 29 99.3 24 99.8 297,805

indel 285 13 74 79.4 44 95.6 297,805

N11582 coding SNV 421 2 0 100.0 3 99.5 682,483

(50-100%, indel 4 0 0 100.0 0 100.0 682,483

training) non-coding SNV 301 1 7 97.7 4 99.7 269,761

indel 34 1 11 75.6 4 97.1 269,761
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