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Abstract8

Motivation: Low-frequency DNA mutations are often confounded with technical artifacts from9

sample preparation and sequencing. With unique molecular identifiers (UMIs), most of the sequencing10

errors can be corrected. However, errors before UMI tagging, such as DNA polymerase errors during11

end-repair and the first PCR cycle, cannot be corrected with single-strand UMIs and impose fundamental12

limits to UMI-based variant calling.13

Results: We developed smCounter2, a UMI-based variant caller for targeted sequencing data and14

an upgrade from the current version of smCounter. Compared to smCounter, smCounter2 features15

lower detection limit at 0.5%, better overall accuracy (particularly in non-coding regions), a consistent16

threshold that can be applied to both deep and shallow sequencing runs, and easier use via a Docker17

image and code for read pre-processing. We benchmarked smCounter2 against several state-of-the-art18

UMI-based variant calling methods using multiple datasets and demonstrated smCounter2’s superior19

performance in detecting somatic variants. At the core of smCounter2 is a statistical test to determine20

whether the allele frequency of the putative variant is significantly above the background error rate, which21

was carefully modeled using an independent dataset. The improved accuracy in non-coding regions was22

mainly achieved using novel repetitive region filters that were specifically designed for UMI data.23

Availability: The entire pipeline is available at https://github.com/qiaseq/qiaseq-dna under MIT24

license.25
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1 Introduction28

Detection of low-frequency variants is important for early cancer diagnosis and is a very active area of29

research. Targeted DNA sequencing generates very high coverage over a specific genomic region, therefore30

allowing low-frequency variants to be observed from a reasonable number of reads. However, distinguishing31

the observed variants from experimental artifacts is very difficult when the variants’ allele frequencies are32

near or below the noise level. Providing an error-correction mechanism, unique molecular identifiers (UMIs)33

have been implemented in several proof-of-concept studies [1–6] and used in translational medical research34

[7–9]. In these protocols, UMIs (short oligonulceotide sequences) are attached to endogenous DNA fragments35

by ligation or primer extension, carried along through amplification and sequencing, and finally identified36

from the reads. Sequencing errors can be corrected by majority vote within a UMI family, because reads37

sharing a common UMI and random fragmentation site should be identical except for rare collision events38

[10] or errors within the UMI sequences. DNA polymerase errors occurring during DNA end repair and early39

PCR cycles (particularly the first cycle), however, cannot be corrected because all reads in the UMI would40

presumably carry the error. Although PCR error rates are low (10−4 − 10−6, depending on the enzyme and41

types of substitution), they impose fundamental limits to UMI-based variant calling.42

A two-step UMI-based variant calling approach that first constructs a consensus read with tools like43

fgbio [11] and then applies one of the conventional low-frequency variant callers [12] to the consensus reads44

has been implemented in [3, 13]. In addition to the two-stage method, three UMI-based variant callers,45

DeepSNVMiner [14], smCounter [15], and MAGERI [16], are publicly available. DeepSNVMiner relies on46

heuristic thresholds to draw consensus and call variants. By default, a UMI is defined as “supermutant” if47

40% of its reads support a variant and two supermutants are required to confirm the variant. smCounter48

was released in 2016 by our group and reported above 90% sensitivity at fewer than 20 false positives per49

megabase for 1% variants in coding regions. smCounter’s core algorithm consists of a joint probabilistic50

modeling of PCR and sequencing errors. MAGERI is a collection of tools for UMI-handling, read alignment,51

and variant calling. The core algorithm estimates the first-cycle PCR errors as a baseline and calls variants52

whose allele frequencies are higher than the baseline level. MAGERI reported 93% area under curve (AUC)53

on variants with about 0.1% allele frequencies.54

In this article, we present smCounter2, a single nucleotide variant (SNV) and short indel caller for UMI-55

based targeted sequencing data. smCounter2 offers significant upgrades from its predecessor (smCounter)56
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in terms of algorithm, performance, and usability. smCounter2 adopts the widely popular Beta distribution57

to model the background error rates and Beta-binomial distribution to model the number of non-reference58

UMIs. An important feature of smCounter2 is that the model parameters are dynamically adjusted for59

each input read set. In addition, smCounter2 uses a regression-based filter to reject artifacts in repetitive60

regions while retaining most of the real variants. The algorithm improvements help to push the detection61

limit down to 0.5% from the previously reported 1% and increase the sensitivity and specificity compared to62

other UMI-based methods (two-step consensus-read approach and smCounter), as shown in Section 3. For63

ease of use, smCounter2 has been released with a Docker container image that includes the complete read64

processing (using reads from a QIAGEN QIAseq DNA targeted enrichment kit as an example) and variant65

calling pipeline as well as all the supporting packages and dependencies.66

2 Methods67

2.1 smCounter2 workflow68

smCounter2’s workflow (Fig. 1) begins with read processing steps that 1) remove the exogenous sequences69

such as PCR and sequencing adapters and UMI, 2) identify the UMI sequence and append it to the read70

identifier for downstream analyses, and 3) remove short reads that lack enough endogenous sequence for71

mapping to the reference genome. The trimmed reads are mapped to the reference genome with BWA-72

MEM, followed by filtering of poorly mapped reads and soft-clipping of gene-specific primers. A UMI with73

much smaller read count is combined with a much larger read family if their UMIs are within edit distance of74

1 and the corresponding 5’ positions of aligned R2 reads are within 5 bp (i.e. at the random fragmentation75

site). After UMI clustering, the aligned reads (BAM format) are sent for variant calling. Like many variant76

callers, smCounter2 walks through the region of interest and processes each position independently. At77

each position, the covering reads go through several quality filters and the remaining high-quality reads are78

grouped by putative input molecule (as determined by both the clustered UMI sequence and the random79

fragmentation site). A consensus base call (including indels) is drawn within a UMI if ≥ 80% of its reads80

agree. The core variant calling algorithm is built on the estimation of background error rates, i.e. the81

baseline noise level for the data. A potential variant is identified only if the signal is well above that level82

(Section 2.2, 2.3). The potential variants are subject to post-filters, including both traditional filters such as83

strand bias and novel model-based, UMI-specific repetitive region filters (Section 2.4). Finally, the variants84

are annotated with SnpEff [17] and SnpSift [18] and output in VCF format.85
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2.2 Estimation of background error rates86

Estimating the background error rates is one of the commonly used strategies in somatic variant calling.87

EBCall [19] and shearwater [20] assume that each site has a distinctive error rate (predominantly sequencing88

errors) that follows a Beta distribution. LoLoPicker [21] estimates site-specific sequencing error rates as89

fixed values. For UMI-tagged data, background errors can come from base mis-incorporation by DNA90

polymerase during end repair and the first-cycle PCR reaction, oxidation damage to DNA bases during91

sonication shearing and probe hybridization [6, 22], UMI mis-assignment, misalignment, and polymerase92

slippage (often in repetitive sequences), etc. iDES [6] characterizes the site-specific background error rates93

in duplex-sequencing data using Normal or Weibull distributions. The limitation of these algorithms is94

the requirement of many control samples for the site-specific error modeling. As an alternative, MAGERI95

[16] assumes a universal Beta distribution for all sites, which may result in lower accuracy compared to96

site-specific error modeling, but as a trade-off requires only one control sample, if the UMI coverage is high97

enough to observe the background errors and enough sites are covered to reveal the full distribution of error98

rates.99

smCounter2 takes similar experimental and modeling approaches as MAGERI with important modifica-100

tions. To obtain high-depth data for error profiling, we sequenced 300ng of NA12878 DNA within a 17kbp101

region using a custom QIAseq DNA panel. After excluding the known SNPs (Genome in a Bottle Con-102

sortium [23]), we calculated the error rates by base substitution at each site assuming any non-reference103

UMIs are background errors. The calculation process is explained in Supplementary Materials, Section 1.104

We observed notable variation across different base substitutions and that transitions were more error prone105

than transversions (Fig. 2a). We used the Beta distribution to fit the observed error rates (R fitdistrplus106

[24], Fig. 2b). The quantile plot indicates good fit in general and underestimation of the tail, possibly due107

to outliers (Fig. 2c). We prepared two versions of error models, one excluding singletons (UMIs with only108

one read pair) and the other including singletons, to accommodate deep and shallow sequencing depths.109

For read sets with mean read pair per UMI (rpu) ≥ 3, smCounter2 drops singletons to reduce errors and110

uses the error model without singletons. For read sets with rpu < 3, smCounter2 keeps some or all single-111

tons (Supplementary Materials, Section 3) to avoid losing too many UMIs and uses the error model with112

singletons.113

As a distinctive feature of smCounter2, the Beta distribution parameters are adjusted for each dataset to

account for the run-to-run variation. Because the true variants are unknown in the application dataset, we

conservatively assumed that all non-reference alleles with VAF below 0.01 are background errors. The low

DNA input in most applications impose another challenge in that few of the applications generate enough
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site-wise UMI coverage for any meaningful update of the error rate distribution. Fortunately, sufficient UMIs

can usually be obtained by aggregating the target sites to accurately estimate the mean. Therefore, we only

adjust the mean of the Beta distribution to equate the panel-wise mean and leave the dispersion unchanged

(Fig. 2d). In specific, the adjusted Beta parameters are

a∗ = µ∗
(
µ∗(1− µ∗)

σ2
− 1

)
(1)

b∗ = (1− µ∗)

(
µ∗(1− µ∗)

σ2
− 1

)
, (2)

where µ∗ is the mean error rate of the current data and σ2 is the variance of the error rate from our control114

sample. The adjusted distribution Beta(a∗, b∗) has a mean of µ∗ and variance of σ2.115

Background errors are sensitive to enrichment chemistry and DNA polymerase. The error pattern we116

observed in QIAseq DNA panels agrees with that in other PCR enrichment studies [25, 26] but differs from117

hybridization capture studies [6, 22] where A>C and G > T errors are dominant. Also, certain high-fidelity118

DNA polymerases have been shown to generate tens- or hundreds-fold lower error rates [25]. Therefore, we119

did not attempt to build a universal error model by pooling data from multiple experiments with different120

polymerases as MAGERI did, but instead suggest users who run hybridization capture protocols or use non-121

QIAseq enrichment chemistry to build their own error profile (a script is provided in the Github repository).122

Limited by sequencing resources, we were unable to obtain adequate site-wise UMI depth to model base123

substitutions with low error rates, including all transversions and some transitions. This deficit had several124

impacts on our modeling procedure. First, we had to assume that all transitions followed the distribution of125

G>A (second highest) and all transversions followed the distribution of C>T (higher than all transversions).126

This conservative configuration ensured that the error rates were not under-estimated, but also prevented us127

from reaching the theoretical detection limit. Second, we were unable to model the indel error rates because128

1) indel polymerase errors occur more frequently in repetitive regions, and our panel did not include enough129

such regions, 2) there are countless types of indels and we cannot model the errors by each type, and 3)130

indel polymerase error rates are on average lower than base substitution and we lacked the UMI depth to131

observe enough of them. Again, we conservatively assumed that indel error rates followed the distribution132

of G>A. Third, because the error rates are very low, zero non-reference UMIs were observed at some sites,133

especially in low enrichment regions. Depending on the percentage of such sites, we either imputed the zeros134

with small values or used a zero-inflated Beta distribution (a mixture of Beta distribution and a spike of135

zeros) instead of Beta.136
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2.3 Statistical model for variant calling and detection limit prediction137

We treated variant calling as a hypothesis testing problem, where the null hypothesis (H0) is that all non-138

reference UMIs are from background errors and the alternative hypothesis (Ha) is that the non-reference139

UMIs are from the real variant. We assume that there are n UMIs covering a site and k of them have the same140

non-reference allele. Under H0, k follows a Binomial distribution Bin(n, p) where p is the background error141

rate. If p follows the Beta distribution with the adjusted parameter Beta(a∗, b∗), the marginal distribution of142

k given n, a∗, b∗ is Beta-binomial. If a zero-inflated Beta distribution is used, k has a non-standard marginal143

distribution. To compute the p-value, we first simulated random samples of {pi, i = 1, . . . , I} according144

to the distribution being used. Then for each pi we computed PBin(K ≥ k|n, pi) based on the Binomial145

distribution. The p-value represents the probability of observing ≥ k non-reference UMIs at a wild-type site146

(Fig. 2e) and is approximated by147

P = I−1
I∑

i=1

PBin(K ≥ k|n, pi) ≈
∫ 1

0

PBin(K ≥ k|n, p)f(p|a∗, b∗)dp = PBeta−bin(K ≥ k|n, a∗, b∗). (3)

To avoid extremely small fractions, smCounter2 reports Q = min(200,− log10 P ) as the variant quality score.148

The choice of variant calling threshold depends on the tolerance of false positive rate because if the model149

fits perfectly, the specificity would equal to 1 minus the p-value threshold. By default, smCounter2 aims150

for ≤ 1 false positives per megabase, which is equivalent to a threshold of P ≤ 10−6 or Q ≥ 6. We will151

show in Section 3 and Supplementary Materials that this threshold works well for datasets with deep and152

shallow UMI coverage and for variants with a range of VAFs (0.5, 1, 5% and germlines). The only exception153

is that, if 0.5-1% indels are of interest, we recommend lowering the Q-threshold to 2.5 to account for the154

overestimation of indel error rates.155

Under this framework, the site-specific detection limit (sDL, the minimum allele frequency to exceed156

the P-value threshold) is a decreasing function of the UMI depth. It also depends on the type of variant157

because transitions have higher background error rates than transversions and indels. We estimate that the158

sDL of transitions is higher than transversions and indels on by about 0.001, or 0.1% in allele frequency.159

We denote P (n, k, t) as the p-value given UMI depth n, non-reference UMI count k, and the type of variant160

∈ {Ti, Tv+indel}. P (n, k, t) can be computed by Equation (3). The sDL is denoted as arg mink{P (n, k, t) <161

threshold}/n and can be computed numerically. Importantly, the predicted sDL is the observed allele162

frequency that often deviates from the true allele frequency in the sample due to random enrichment bias.163

If we loosely define the overall detection limit as the minimum true allele frequency that the variant caller164

can detect with good sensitivity and specificity, the overall detection limit is usually higher than sDL. Based165

6

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 14, 2018. ; https://doi.org/10.1101/281659doi: bioRxiv preprint 

https://doi.org/10.1101/281659
http://creativecommons.org/licenses/by-nc-nd/4.0/


on our calculation, the theoretical detection limit of a QIAseq DNA panel is around 0.5% when UMI depth166

is between 2,000 and 4,000. This detection limit was confirmed experimentally by sequencing a sample with167

known 0.5% variants (Fig. 2f).168

2.4 Repetitive region filters based on UMI efficiency169

Repetitive regions such as homopolymers and microsatellites are enriched in non-coding regions where vari-170

ants can have important functions from regulating gene expression to promoting diseases [27]. Unfortunately,171

these regions are a major source of false variant calls due to increased polymerase and mapping errors. For172

instance, polymerase slippage (one or more bases of the template are skipped over during base extension)173

occurs more frequently at homopolymers and results in false deletion calls. Reads may be incorrectly mapped174

to similar regions or mis-aligned if they do not span the whole repetitive sequence, both causing false vari-175

ant calls. Conventional variant callers apply heuristic filters to remove false calls. For example, Strelka176

[28] rejects somatic indels at homopolymers with ≥ 8nt or di-nucleotide repeats with ≥ 16nt. Recent177

haplotype-based variant callers such as GATK HaplotypeCaller [29] perform local de novo assembly to avoid178

mapping/alignment errors in repetitive regions. However, these methods were developed for non-UMI data.179

smCounter2 includes a set of repetitive region filters that are specifically designed for UMI data. The180

filters were inspired by the observations that 1) UMIs of the false variants tend to have lower read counts181

and more heterogeneous reads compared to UMIs of real variants, and 2) reads of the false variants are more182

likely to contradict with their UMIs’ consensus allele (usually wild-type), whereas reads of the real variants183

are likely to agree with their UMIs. We used the term “UMI efficiency” to describe these distinctions (Fig.184

3a) and quantified the UMI efficiency with four variables: 1) vafToVmfRatio, the ratio of allele frequencies185

based on reads and UMIs; 2) umiEff, the proportion of reads that are concordant with their respective UMI186

consensus; 3) rpuDiff, difference of read counts between variant UMIs and wild-type UMIs, adjusted by the187

standard deviations; and 4) varRpu, mean read fragments per variant UMI.188

We trained and validated a logistic regression model to distinguish real homopolymers indels from arti-189

facts. We focused our resources on this repetitive region subtype because during development, we observed190

that homopolymer indels were the main contributor of false positives. We combined data from several191

UMI-based sequencing experiments to assemble a training set with 255 GIAB high confidence homopolymer192

indels with allele frequencies from 1 to 100% and 386 false positives that would otherwise be called with-193

out the filters. In addition to the UMI efficiency variables, we included sVMF (VAF based on UMI) and194

hpLen8 (binary variable indicating whether the repeat length ≥ 8) as predictors. We found that varRpb and195

vafToVmfRatio were the two most important predictors in terms of explained log-likelihood (Fig. 3b). We196
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chose the cutoff on the linear predictors to target on the highest sensitivity while maintaining 99% specificity197

using the R package OptimalCutpoints [30]. The model and cutoff were applied to two independent datasets198

N13532 and N0261, both containing 0.5% variants. N13532 had 41 real homopolymer indels and 122 false199

positives with Q ≥ 2.5. The predictive model achieved 39.0% sensitivity, 96.7% specificity, and 0.868 area200

under the curve (AUC). N0261 had 39 real homopolymer indels and 42 false positives with Q ≥ 2.5. The201

predictive model achieved 71.8% sensitivity, 95.2% specificity, and 0.910 AUC (Fig. 3c).202

For other subtypes of variants and repetitive regions, we used heuristic thresholds as filters due to lack of203

training data. The model parameters and default thresholds are presented in the Supplementary Materials.204

3 Results205

3.1 Training and validation datasets206

To develop the statistical model and fine-tune the parameters, we did multiple sequencing runs using reference207

materials NA12878 and NA24385, both of which have high-confidence variants released by GIAB (v3.3.2 used208

for this study). We mixed small amounts of NA12878 DNA into NA24385 based on the amount of amplifiable209

DNA measured by QIAseq DNA QuantiMIZE assay to simulate low-frequency variants. The modeling of210

background error rates was based on M0466, a high-input, deep-sequencing run that reached over 45,000211

UMI coverage per site. The selection of variant calling threshold and refinement of filter parameters were212

based on N0030, N0015, and N11582. N0030 was generated by sequencing 2% mixture of NA12878 on213

a QIAseq custom DNA panel of 194 cancer-related genes (catalog number CDHS-13026Z-10867). N0015214

was based on 10% mixture of NA12878 on a custom panel focusing on non-coding regions (catalog number215

CDHS-13244Z-3587). Both datasets were also used for the development of smCounter and described in [15].216

N11582 was generated with pure NA24385 using QIAseq Human Inherited Disease Panel (catalog number217

CDHS-14433Z-11582). The main purpose of this dataset was to confirm smCounter2’s ability to call germline218

variants. Finally, to develop the repetitive region filters, we generated N0164 by pooling reads from 6 libraries219

with 1, 2.5, 5, 10, 15, and 20% NA12878 admixtures on a custom panel that targeted homopolymer indels.220

After development, we tested smCounter2 on independent datasets without any modification to the221

algorithm and parameters. The first test data N13532 was generated with 1% mixture of NA12878 because222

the predicted detection limit of our assay’s detection was around 0.5% (Section 2.3). To minimize bias,223

we designed a new 228-gene custom panel that did not overlap with any of the training datasets (catalog224

number CDHS-13532Z-10181). Because N13532 did not have enough heterozygous NA12878 indels (164 in225

the panel, 49 in coding regions), we designed a new panel to capture 269 indels (naive from the training sets226
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and N13532, catalog number CDHS-13907Z-562) and sequenced the 1% NA12878 admixture using that panel227

to generate the second test data N0261. Strictly speaking, both datasets were not completely independent228

from the training data because the same DNA samples were used. Therefore, we prepared the third test229

data M0253 by mixing Horizon Dx’s Tru-Q 7 reference standard (verified 1.3%-tier variants) with Tru-Q 0230

(wild-type) at 1:1 ratio. The Horizon sample was sequenced using QIAseq Human Actionable Solid Tumor231

Panel (catalog number DHS-101Z).232

The datasets involved in this study are summarized in Table 1.233

3.2 Benchmarking 0.5% variant callling performance using mixed GIAB sam-234

ples235

We benchmarked smCounter2 against four state-of-the-art UMI variant calling algorithms (fgbio+MuTect,236

fgbio+VarDict, MAGERI, and smCounter) on N13532, which contained 0.5% NA12878 variants. The first237

two algorithms represent the two-step approach discussed in Section 1. We first constructed consensus reads238

from the aligned reads (BAM file) using fgbio’s CallMolecularConsensusReads and FilterConsensusReads239

functions and then applied two popular low-frequency variant callers, MuTect [31] and VarDict [32], on the240

consensus reads. MAGERI and smCounter are two representative UMI-aware variant callers. The results241

(Fig. 4), stratified by type of variant (SNV and indel) and genomic region (all, coding, and non-coding),242

were measured by sensitivity and false positives per megabase (FP/Mbp, or 106(1 − specificity)) at several243

thresholds. smCounter2 outperformed the other methods in all categories. In coding regions, smCounter2244

achieved 92.4% sensitivity at 12 FP/Mbp for SNVs and 84.4% sensitivity at 7 FP/Mbp for indels (Table 2).245

In non-coding regions, smCounter2 was able to maintain comparable accuracy for SNVs (83.3% sensitivity246

at 4 FP/Mbp), but produced lower sensitivity (56.8%) and higher false positive rate (42 FP/Mbp) for indels.247

In the indel-enriched dataset N0261, smCounter2 produced consistent sensitivity (81.4% in coding and 61.3%248

in non-coding) and seemingly higher FP/Mbp (0 in coding and 114 in non-coding). However, FP/Mbp in249

N0261 was based on a very small target region (45kbp) and therefore provides a less accurate specificity250

estimate.251

We did not show MAGERI’s performance in Fig. 4 because it is unfair to compare MAGERI with252

smCounter2 using QIAseq data. MAGERI’s error model is based only on primer extension assays from a253

mix of DNA polymerases including several high-fidelity enzymes [26], while smCounter2’s error model is254

specific to the entire QIAseq targeted DNA panel workflow, including DNA fragmentation, end repair and255

PCR enrichment steps. Because the MAGERI error model does not include errors introduced at the typical256

DNA fragmentation and end repair process (their assays do not have those steps), MAGERI’s background257
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error rates are lower than those in smCounter2. For example, the mean error rate of A>G and T>C used258

by MAGERI is 6.3 × 10−5 per base (https://github.com/mikessh/mageri-paper/blob/master/error_259

model/basic_error_model.pdf) and about 3 × 10−4 per base for smCounter2 (Fig. 2a). Therefore, with260

QIAseq data, MAGERI will produce more false positives due to underestimation of the error rate. We261

included MAGERI’s ROC curve in Fig. S2 to illustrate the point that the error models are specific to each262

NGS workflow and need to be empirically established for different workflows.263

We used the default setting for smCounter and adjusted the parameters of fgbio, MuTect, and VarDict264

based on our experience of working with them. However, given the infinite parameter space, we cannot claim265

that the results reported here reflect their optimal performance. Several variant calling thresholds were used266

to investigate the sensitivity-specificity trade-off and draw the ROC curves. For fgbio+MuTect, we used267

MuTect’s likelihood ratio score (LOD score) as threshold. For fgbio+VarDict, we set VarDict’s minimum268

allele frequency (-f). For MAGERI, we did not use the seemingly obvious threshold “Q-score” because they269

were not allowed to exceed 100 for computational reasons, and even a Q-score of 100 was overly sensitive and270

generated too many false calls. Instead, we held Q-score constant at 100 and varied the number of reads in a271

UMI (-defaultOverseq). The parameters and thresholds used in this study are listed in the Supplementary272

Materials, Section 3.273

3.3 Detecting ≥ 1% variants in (possibly) shallow sequencing runs274

smCounter2 achieved good sensitivity on 1, 5, 50, and 100% variants as well (Table 2, datasets N0030,275

N0015, N11582). The biggest advantage for smCounter2 was in non-coding regions due to the repetitive276

region filters. Compared to smCounter, for 1% non-coding variants, smCounter2’s sensitivity increased277

from 75.2 to 94.5% for SNVs and from 23.5 to 70.6% for indels (Fig. S3). For 5% non-coding variants,278

smCounter2’s sensitivity increased from 95.1 to 99.3% for SNVs and from 58.2 to 79.4% for indels (Fig. S4).279

For 50 and 100% non-coding variants, smCounter2’s sensitivity increased from 89.0 to 97.7% for SNVs and280

from 42.2 to 75.6% for indels (Fig. S5). Both smCounter2 and smCounter outperformed fgbio+MuTect and281

fgbio+VarDict on 1 and 5% variants in all categories. For germline variants, however, smCounter2 had lower282

sensitivity for non-coding indels compared to fgbio+HaplotypeCaller (75.6% vs. 88.9%). This demonstrated283

the advantage of a haplotype-based strategy in difficult regions. Other than for non-coding indels, the two284

methods achieved comparable accuracy in other categories.285

To test smCounter2’s robustness under low sequencing capacity, we in silico downsampled N0030 to 80,286

60, 40, 20, and 10% of reads to mimic a range of sequencing and UMI depths. smCounter2 outperformed287

other methods in all sub-samples (Fig. S6-S10). The downsample series also demonstrated that smCounter2’s288

10

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 14, 2018. ; https://doi.org/10.1101/281659doi: bioRxiv preprint 

https://doi.org/10.1101/281659
http://creativecommons.org/licenses/by-nc-nd/4.0/


constant threshold can maintain consistently low false positive rates for SNV across a range of UMI depths289

(Fig. 5). In contrast, smCounter’s default threshold must move linearly with the UMI depth to maintain a290

certain level of false positive rate. Similarly, MuTect’s threshold based on the likelihood ratio needs to be291

adjusted for datasets with varying read depth. smCounter2’s invariant threshold allows users to apply the292

default setting to a wide range of sequencing and sample input conditions.293

It is important to note that the results described in Section 3.2 and 3.3 are measured over GIAB high294

confidence region. smCounter2’s performance in GIAB-difficult regions is unknown, both absolutely and295

in comparison to other variant callers. We also note that the results in Section 3.3 are based on training296

datasets only. We have not tested smCounter2 on independent 1% or above variants.297

3.4 Detecting complex cancer mutations using Horizon Tru-Q samples298

The performance data described so far were based on diluted NA12878 or pure NA24385, all of which con-299

tained germline variants. To test smCounter2 on low-frequency cancer mutations, we sequenced the Tru-Q 7300

reference standard (Horizon Dx) that contained verified 1.0% (and above) onco-specific mutations. The sam-301

ple was diluted 1:1 in Tru-Q 0 (wildtype, Horizon Dx) to simulate 0.5% variants. For this dataset (M0253),302

smCounter2 detected 32 out of 36 SNV/MNVs (88.9%) and narrowly missed the only deletion (Q=2.49 for303

threshold of 2.5). Because not all variants in the Tru-Q samples are known, we cannot evaluate specificity304

using this dataset. The list of variants in this dataset, along with the observed VAF and smCounter2 results,305

can be found in Supplementary File Ground_truth_variants.xlsx.306

The Tru-Q sample contains some complex multi-allelic variants that are challenging for variant callers307

that are not haplotype-aware. For example, there are four variants A>C, A>T, AC>CT, and AC>TT308

at one position (chr7:140453136, GRCh37) and a C>T point mutation at the next position. smCounter2309

detected the three SNVs but failed to recognize the two MNVs.310

4 Discussion311

In this paper, we described smCounter2, the next version of our UMI-based variant caller. Compared to312

the previous version of smCounter, smCounter2 features lower detection limit, higher accuracy, consistent313

threshold, and better usability. smCounter2 pushed the detection limit of QIAseq targeted DNA panels314

down to 0.5% and achieved over 92% sensitivity for SNVs and 84% for indels in coding regions, at the cost315

of about 10 false positives per megabase. This result was significantly better than smCounter and other316

state-of-the-art UMI-based variant callers we benchmarked. smCounter2 achieved a lower detection limit317

because the background error rates were accurately estimated for specific base incorporation errors. The318
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statistical model allows smCounter2 to quantify the deviation from real variants to the background errors319

using p-values. Therefore, the ambiguous variants whose allele frequencies are close to the background error320

rates can be called by smCounter2 with reasonable confidence. Importantly, 0.5% is a not an algorithm321

limit, but rather a chemistry limit. We believe that smCounter2 can achieve even lower detection limits for322

other chemistry with lower background error rate.323

smCounter2 has higher accuracy than its predecessor for both SNVs and indels, in both coding and non-324

coding regions, for both deep and shallow sequencing runs, and for both low-frequency (≥ 0.5%) and germline325

variants. The accuracy improvement is due to the modeling of background error rates and, particularly in326

non-coding regions, UMI-based repetitive region filters. The filters catch false positives in the repetitive327

regions that pass the p-value threshold but have low “UMI efficiency”, a novel concept that we have proved to328

be useful in distinguishing real variants from artifacts. Particularly for indels in homopolymers, smCounter2329

employs a logistic regression classifier that was trained and validated with separate datasets.330

smCounter2 has a more consistent variant calling threshold (Q ≥ 2.5 for 0.5-1% indels and Q ≥ 6 for other331

cases) that is independent from the UMI depth, unlike smCounter or MuTect whose optimal threshold must332

move with the UMI or read depth. This is because smCounter evaluates potential variants by the number333

of non-reference UMIs, while smCounter2 evaluates potential variants by the proportion of non-reference334

UMIs. Moreover, because smCounter2 performs a statistical test at each site, UMI depth has already been335

accounted for in the p-value. A higher UMI depth will result in better power of detection without raising the336

threshold. The consistent threshold makes it easier to benchmark smCounter2 with independent datasets.337

As pointed out by [12], benchmarking studies face the challenge of tuning the variant callers for different338

datasets.339

smCounter2 is also easier to use than smCounter. The read-processing code has been released together340

with the variant caller, making smCounter2 a complete pipeline from FASTQ to VCF. Some users may prefer341

to use their own read-processing script because read structures may differ from protocol to protocol. These342

users can run the variant caller only with the BAM file as input, if UMIs are properly tagged in the BAM.343

smCounter2 is released as a Docker container image so that users do not need to install the dependencies344

manually.345

smCounter2 has advantages over other UMI-based variant callers as well. Compared to the two-stage ap-346

proach, smCounter2 requires less tuning and achieves better detection accuracy with low-frequency variants.347

In contrast to MAGERI’s strategy of pooling data from several polymerases, smCounter2’s error model is348

developed using a single dataset with very deep coverage. Library preparation method and DNA polymerase349

have a large impact on the background error rates. Therefore we believe that profiling the errors per indi-350

vidual polymerase and protocol is a better approach. Furthermore, smCounter2 adjusts the error model for351
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each individual dataset, making it a Bayesian-like procedure where the final error model is determined by352

both the prior knowledge and the data.353

smCounter2 has several limitations. First, the error model is specific to the QIAseq targeted panel354

sequencing protocol, which uses integrated DNA fragmentation plus end repair process and single primer355

PCR enrichment. Without further tests, we are less certain if the error model holds for other types of library356

preparation and enrichment protocols. We are more certain, however, that our error model would not fit the357

data generated by hybridization capture enrichment due to distinct base errors from hybridization chemistry.358

We have released the modeling code and encourage users, who want to use smCounter2 on non-QIAseq panel359

data, to re-estimate the background error rates if datasets with sufficient UMI depth are available. Second,360

limited by resources, we were not able to generate data with enough UMI depth to accurately estimate361

the transversion and indel error rates. This deficit prevented the variant caller from reaching the assay’s362

theoretical detection limit. However, as we continue to generate data, we will update the error models363

with more precise parameters. Third, the germline indel calling accuracy, especially in non-coding regions,364

is lower than the two-step approach of fgbio+HaplotypeCaller. Although smCounter2 has very efficient365

repetitive region filters, it still adopts a base-by-base variant calling strategy and relies on the mapping,366

which is error-prone in repetitive regions. Haplotype-aware variant callers such as HaplotypeCaller are more367

effective in repetitive and variant-dense regions because they perform local assembly and no longer rely on the368

local reference genome alignment information. Fourth, smCounter2 has difficulty in handling very complex369

variants. For example, it failed to report all minor alleles of the complex, multi-allelic variant in Section370

3.4. This can potentially be solved by including haplotype-aware features. We have not tested smCounter2’s371

reliability in detecting variants with 3 or more minor alleles, partly because these variants are not observed372

frequently. By default, smCounter2 reports bi- and tri-allelic variants only. Fifth, the benchmarking study373

was based on reference standards. We have not demonstrated smCounter2’s performance using real tumor374

samples and therefore cannot claim clinical utility. We hope smCounter2 will be used in both translational375

and clinical studies and look forward to feedback from users.376

5 Additional files and availablity of data377

Ground_truth_variants.xlsx contains high-confidence heterozygous NA12878-not-NA24385 variants (GIAB378

v3.3.2) in N13532, N0261, N0030, N0015, high-confidence NA24385 variants in N11582, and verified Tru-Q 7379

variants in M0253. Dataset_download_URLs.xlsx contains the download URLs for the FASTQ and BAM380

files on Google Cloud Platform. Code and supporting files for background error modeling and benchmarking381

against GIAB ground truth set are available at https://github.com/qiaseq/smcounter-v2-paper.382
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Figures482

Figure 1: smCounter2 workflow. Rectangular boxes represent the data files and elliptical boxes represent
steps of the pipeline. Users can choose to run the whole pipeline from FASTQ to VCF or run the variant
calling part only from BAM to VCF.
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Figure 2: Underlying model of smCounter2. a Background error rates for each type of base change, averaged
across the panel of M0466. b Modeling of the background error rates using the Beta distribution. The
histogram shows the frequency of observed G>A error rates in M0466. The red curve is the density of the
fitted Beta distribution. c Quantile plot to check the goodness-of-fit of the G>A error rate modeling. The
observed and fitted quantiles form a 45 degree line in most places, indicating perfect fit. The tail skews
towards “observed”, indicating under-estimation of the extremely high error rates. This may simply be
explained by outliers, or suggests that a distribution (or mixed distributions) with heavier tail is needed. d
An real example of parameter adjustment. The red curve is the originally fitted Beta distribution. The blue
curve is the adjusted error model with the mean of the input data (N13532) and the original variance. e
Illustration of the variant calling p-value. The density curve is a hypothesized Beta-binomial distribution.
The vertical line indicates the observed non-reference UMI counts. The area of the shaded region is the
p-value. f Detection limit prediction and confirmation. The purple and blue curves are the predicted site-
wise detection limit for Ti and Tv/indels respectively. The dots are the true variants in N13532 (outliers
with extremely low UMI depth or high allele frequency excluded). For the dots, the y-axis represents the
observed allele frequencies. Round dots are the variants detected and triangle dots are the ones not detected,
concentrated in the low enrichment regions.
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Figure 3: Training and testing of the homopolymer indel filter. a Illustration of UMI efficiency. The UMI
on the left has perfect efficiency because all reads contributed to the consensus. The UMI on the right has
low efficiency because two reads in red disagree with the majority and thus are wasted. smCounter2 requires
80% agreement to reach a consensus, so the entire UMI would be dropped and the other three reads would
be wasted as well. b Relative importance of each predictor ranked by the explained variation minus the
degree of freedom. The read pairs per variant UMI (varRpu) and the ratio between allele frequencies by read
and by UMI (vafToVmfRatio) are the two variables with the most predictive power. The plot is generated
with R rms package. c ROC curves of the logistic regression classifier. The black curve is for the training
data that combined all true and false homopolymer indels in N0030, N0015, N11582, and N0164. The blue
and red curves are for two test datasets N13532 and N0261, respectively. The dots represent the actual
sensitivity and specificity at the cutoff, which is consistent in all three datasets.
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Figure 4: Benchmarking smCounter2, smCounter, fgbio+MuTect, fgbio+VarDict on 0.5% variants in
N13532. The performance is measured by false positives per megabase (x-axis) and sensitivity (y-axis),
stratified by type of variant (SNV and indel) and region (coding, non-coding, and all). The ROC curves
are generated by varying the threshold for each method: Q-score for smCounter2, prediction index for sm-
Counter, likelihood ratio for MuTect, and minimum allele frequency for VarDict. MuTect does not detect
indels so is not included in the indel comparison.
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Figure 5: Default thresholds of smCounter and smCounter2 at different UMI depths and associated false
positive rates, based on the downsample series of N0030. smCounter’s threshold moves linearly with the UMI
depth and is determined using an empirical formula y = 14 + 0.012x. smCounter2’s threshod is constant at
6. The false positive rates for SNV are well controlled (between 5 to 13 FP/Mbp, represented by the point
size) using both methods.
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Tables483

Table 1: Key statistics of the datasets used for training and testing of smCounter2.

Dataset Purpose Sample Target re-
gion (bp)

Mean
UMI
depth

Mean
read pairs
per UMI

VAF (%) SNVs indels

M0466 training 0.2%
NA12878

17,859 45,335 3.2 0.1 87 0

N0030 training 2%
NA12878

1,032,301 3,612 8.6 1 363 56

N0015 training 10%
NA12878

406,846 4,825 8.5 5 4,412 369

N11582 training 100%
NA24385

1,094,204 479 2.6 50 or 100 729 49

N0164 training 1-20%
NA12878

66,661 3,692 11.5 0.5-10 237 177

N13532 test 1%
NA12878

928,315 4,040 7.6 0.5 293 164

N0261 test 1%
NA12878

45,299 3,384 13.8 0.5 5 269

M0253 test 50% HDx
Tru-Q 7

38,370 4,980 13.0 ≥ 0.5 36 (with
MNPs)

1
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Table 2: smCounter2 performance in detecting 0.5, 1, 5, and 50-100% variants, stratified by type of variant
(SNV and indel) and genomic region (coding and non-coding). The metrics were generated with the default
thresholds (Q ≥ 2.5 for indels in N13532, N0261, M0253 and Q ≥ 6 for all other cases). The allele frequency
and the purpose of the dataset are displayed under the dataset name. All performance metrics are measured
on GIAB high-confidence regions only, the sizes of which are presented in the last column.

Dataset Region Type TP FP FN TPR(%) FP/Mbp PPV(%) HC size(bp)

N13532 coding SNV 171 7 14 92.4 12 96.1 591,154

(0.5%, test) indel 38 4 7 84.4 7 90.5 591,154

non-coding SNV 90 1 18 83.3 4 98.9 259,162

indel 67 11 51 56.8 42 85.9 259,162

N0261 coding indel 35 0 8 81.4 0 100.0 6,119

(0.5%, test) non-coding indel 138 4 87 61.3 114 97.2 35,172

M0253 all SNV/MNV 32 - 4 88.9 - - 38,370

(0.5-30%, test) indel 0 - 1 0.0 - - 38,370

N0030 coding SNV 214 5 4 98.2 7 97.7 694,189

(1%, training) indel 36 1 3 92.3 1 97.3 694,189

non-coding SNV 137 3 8 94.5 13 97.9 236,687

indel 12 3 5 70.6 13 80.0 236,687

N0015 coding SNV 528 0 4 99.2 0 100.0 35,718

(5%, training) indel 9 0 1 90.0 0 100.0 35,718

non-coding SNV 3851 7 29 99.3 24 99.8 297,805

indel 285 13 74 79.4 44 95.6 297,805

N11582 coding SNV 421 2 0 100.0 3 99.5 682,483

(50-100%, indel 4 0 0 100.0 0 100.0 682,483

training) non-coding SNV 301 1 7 97.7 4 99.7 269,761

indel 34 1 11 75.6 4 97.1 269,761
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