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Abstract

Recordings of extracellular electrical, and later also magnetic, brain signals have been the dominant tech-
nique for measuring brain activity for decades. The interpretation of such signals is however nontrivial, as the
measured signals result from both local and distant neuronal activity. In volume-conductor theory the extracel-
lular potentials can be calculated from a distance-weighted sum of contributions from transmembrane currents
of neurons. Given the same transmembrane currents, the contributions to the magnetic field recorded both
inside and outside the brain can also be computed. This allows for the development of computational tools
implementing forward models grounded in the biophysics underlying electrical and magnetic measurement
modalities.

LFPy (LFPy.readthedocs.io) incorporated a well-established scheme for predicting extracellular poten-
tials of individual neurons with arbitrary levels of biological detail. It relies on NEURON (neuron.yale.edu) to
compute transmembrane currents of multicompartment neurons which is then used in combination with an
electrostatic forward model. Its functionality is now extended to allow for modeling of networks of multicompart-
ment neurons with concurrent calculations of extracellular potentials and current dipole moments. The current
dipole moments are then, in combination with suitable volume-conductor head models, used to compute non-
invasive measures of neuronal activity, like scalp potentials (electroencephalographic recordings; EEG) and
magnetic fields outside the head (magnetoencephalographic recordings; MEG). One such built-in head model
is the four-sphere head model incorporating the different electric conductivities of brain, cerebrospinal fluid,
skull and scalp.

We demonstrate the new functionality of the software by constructing a network of biophysically detailed
multicompartment neuron models from the Neocortical Microcircuit Collaboration (NMC) Portal (bbp.epfl.ch/nmc-
portal) with corresponding statistics of connections and synapses, and compute in vivo-like extracellular po-
tentials (local field potentials, LFP; electrocorticographical signals, ECoG) and corresponding current dipole
moments. From the current dipole moments we estimate corresponding EEG and MEG signals using the four-
sphere head model. We also show strong scaling performance of LFPy with different numbers of message-
passing interface (MPI) processes, and for different network sizes with different density of connections.

The open-source software LFPy is equally suitable for execution on laptops and in parallel on high-
performance computing (HPC) facilities and is publicly available on GitHub.com.
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1. Introduction1

Ever since the 1950s, electrical recordings with sharp electrodes have been the most important method for2

studying in vivo activity in neurons and neural networks [Li and Jasper, 1953]. In the last couple of decades,3

however, a host of new measurement methods has been developed and refined. One key development is4

the new generation of multicontact electrodes allowing for high-density electrical recordings across cortical5

laminae and areas, and the accompanying resurgence of interest in the low-frequency part of the extracellular6

signal, the ’local field potential’ (LFP) [Buzsáki, 2004; Buzsáki et al., 2012; Einevoll et al., 2013]. The LFP is7

a population measure reflecting how dendrites integrate synaptic inputs, insight that cannot be obtained from8

measurement of spikes from a handful of neurons [Einevoll et al., 2013]. Many new optical techniques for9

probing cortical activity have also been developed. Of particular interest is two-photon calcium imaging, which10

can measure the action potentials of individual neurons deep into cortical tissue [Helmchen and Denk, 2005],11

and voltage-sensitive dye imaging (VSDI), which measures the average membrane potential across dendrites12

close to the cortical surface [Grinvald and Hildesheim, 2004]. These add to the more established systems-level13

methods such as electroencephalography (EEG, Nunez and Srinivasan [2006]), which measures electrical14

potentials at the scalp, and magnetoencephalography (MEG, Hämäläinen et al. [1993]) which measures the15

magnetic field outside the head.16

A standard way of analyzing such neurophysiological data has been to look for correlations between17

measurements and how the subject is stimulated or behaves. For example, most of what we have learned18

about neural representation of visual information in visual cortex has come from receptive-field studies where19

the correlation between measured spikes and presented visual stimuli is mapped out [Hubel and Wiesel,20

1959]. The same approach has been used to map out the receptive fields for other sensory modalities (sound,21

touch, etc.), objects and celebrities [Quiroga et al., 2005], or the spatial location of the animal [O’Keefe and22

Dostrovsky, 1971; Hafting et al., 2005].23

This purely statistical approach has limitations, however. For one, it only provides estimates for the neural24

representation and gives no direct insight into the circuit mechanisms giving rise to these representations.25

Secondly, the receptive field is inherently a linear measure of activity [Dayan and Abbott, 2001] and can-26

not in general capture non-linear network dynamics. The receptive field in primary visual cortex depends,27

for example, strongly on stimulation of the surrounding regions of visual space, an inherently non-linear ef-28

fect [Blakemore and Tobin, 1972]. For other cortical measurements, such as the LFP or VSDI, a statistical29

analysis is further complicated by the fact that the signals reflect activity in neuron populations rather than30

individual neurons [Petersen et al., 2003; Einevoll et al., 2013]. This makes commonly-used statistical signal31

measures such as power spectra, correlation, coherence, and functional connectivity difficult to interpret in32

terms of activity in neurons and networks [Einevoll et al., 2013].33

An alternative approach to a purely statistical analysis is, following in the tradition of physics, to formulate34

candidate hypotheses precisely in mathematics and then compute what each hypothesis would predict for the35

different types of measurements. Until now candidate cortical network models have typically only predicted36

spiking activity, thus preventing a proper comparison with measurements other than single-unit and multiunit37

recordings. To take full advantage of all available experiments, there is a need for biophysics-based forward-38

modeling tools for predicting other measurement modalities from candidate network models [Brette and Des-39

texhe, 2012], that is, develop software that faithfully models the various types of measurements themselves.40

To facilitate the forward-modeling of extracellular potentials, both LFPs and spikes (i.e., either single-unit or41

multi-unit activity (MUA)), we developed LFPy (LFPy.readthedocs.io, Lindén et al. [2014]), a Python tool using42

the NEURON simulator [Carnevale and Hines, 2006] and its Python interface [Hines et al., 2009].43

LFPy implements a well-established forward-modeling scheme where the extracellular potential is com-44

puted in a two-step process [Holt and Koch, 1999; Lindén et al., 2014]: First, the transmembrane currents of45

multicompartment neuron models are computed using NEURON. Second, the extracellular potential is com-46

puted as a weighted sum over contributions from the transmembrane currents from each compartment with47

weights prescribed by volume-conductor theory for an infinite volume conductor. In LFPy these functions are48

provided by a set of Python classes that can be instantiated to represent the cell, synapses, stimulation de-49
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vices and extracellular electric measurement devices. By now this forward-model method has been used in a50

number of studies, for example to model extracellular spike waveforms [Holt and Koch, 1999; Gold et al., 2006,51

2007; Pettersen and Einevoll, 2008; Pettersen et al., 2008; Franke et al., 2010; Schomburg et al., 2012; Thor-52

bergsson et al., 2012; Reimann et al., 2013; Ness et al., 2015; Hagen et al., 2015; Miceli et al., 2017; Cserpán53

et al., 2017], LFP signals [Pettersen et al., 2008; Lindén et al., 2010, 2011; Gratiy et al., 2011; Makarova et al.,54

2011; Schomburg et al., 2012; Łęski et al., 2013; Reimann et al., 2013; Martín-Vázquez et al., 2013, 2015;55

Głąbska et al., 2014; Mazzoni et al., 2015; Tomsett et al., 2015; Sinha and Narayanan, 2015; Taxidis et al.,56

2015; Hagen et al., 2016; Głąbska et al., 2016; Ness et al., 2016; Hagen et al., 2017] and recently axonal57

LFP contributions [McColgan et al., 2017]. Some of these used LFPy to predict extracellular potentials [Łęski58

et al., 2013; Lindén et al., 2014; Hagen et al., 2015; Tomsett et al., 2015; Mazzoni et al., 2015; Ness et al.,59

2015, 2016; Hagen et al., 2016, 2017; Miceli et al., 2017], while in Heiberg et al. [2016] LFPy was used to60

construct a small-world LGN network without predictions of extracellular potentials. Further, in Uhlirova et al.61

[2016] LFPy was used to compute neuronal membrane potentials.62

Here we present a substantially extended version of LFPy, termed LFPy2.0, including several new fea-63

tures, that is, support for (i) simulations of networks of multicompartmental neuron models, (ii) computation64

of LFP/MUA with anisotropic electrical conductivity, (iii) computation of LFP/MUA in the presence of step-65

wise varying electrical conductivity (such as at the interface between cortical gray matter and white matter),66

(iv) computation of ECoG signals (i.e., electrical potentials recorded at the cortical surface), (v) computation67

of EEG signals, and (vi) computation of MEG signals, see illustration in Fig. 1. To illustrate the computation of68

these measures by LFPy2.0 we show in Fig. 2 the LFP, EEG and MEG signals generated by a single synaptic69

input onto a single pyramidal neuron. As both electric and magnetic signals sum linearly, the recorded signals70

in real applications will stem from the sum of a large number of such contributions.71

The manuscript is organized as follows: In Methods we first review the biophysical forward-modeling72

scheme used to predict extracellular potentials in different volume-conductor models. Then we describe cal-73

culations of current dipole moments and corresponding calculation of EEG and MEG signals. We further74

describe new LFPy classes and corresponding code examples for set-up of networks, the implementation of75

an example network using available data and biophysically detailed cell models from the Blue Brain Project’s76

Neocortical Microcircuit Collaboration (NMC) Portal, and various technical details. In Results we investigate77

the outcome of our example parallel network simulation and corresponding measurements, and assess par-78

allel performance of LFPy when running on HPC facilities. In Discussion we outline implications of this work79

and discuss possible future applications and developments of the software.80

2. Methods81

2.1. Multicompartment modeling82

2.1.1. Calculation of transmembrane currents83

The origin of extracellular potentials is mainly transmembrane currents [Buzsáki et al., 2012; Einevoll84

et al., 2013], even though diffusion of ions in the extracellular space alone also can give rise to such poten-85

tials [Halnes et al., 2016]. In the presently (and frequently) used forward modeling approach, these trans-86

membrane currents are obtained from spatially discretized multicompartment neuron models [De Schutter87

and Van Geit, 2009] which allow for high levels of biophysical and morphological detail. Such models have88

historically been used to model spatiotemporal variations in the membrane voltages V m(x, t), where x de-89

notes the position along an unbranched piece of dendritic cable. From this cable theory it also follows that90

the transmembrane current density, that is, the transmembrane current per unit length of membrane, for any91

smooth and homogeneous cable section is given by [Koch, 1999]:92

im(x, t) =
1

ri

∂2V m(x, t)

∂x2
, (1)

3
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Figure 1: Illustration of measurement signals computed by LFPy2.0. The figure illustrates the EEG, ECoG, LFP/MUA (linear multi-
electrode) and MEG recordings of electrical and magnetic signals stemming from populations of cortical neurons. Here three separate
cortical populations are depicted. EEG electrodes are placed on the scalp, ECoG electrodes on the cortical surface, while the LFP and
MUA both are recorded by electrodes placed inside cortex. In MEG the tiny magnetic fields stemming from brain activity is measured by
SQUIDs placed outside the head. The MUA signal, that is, the high-frequency part of the recorded extracellular potential inside cortex,
measures spikes from neurons in the immediate vicinity of the electrode contact, typically less than 100 µm away [Buzsáki, 2004; Pet-
tersen and Einevoll, 2008; Pettersen et al., 2008]. The ’mesoscopic’ LFP and ECoG signals will typically contain information from neurons
within a few hundred micrometers or millimetres from the recording contact [Einevoll et al., 2013], while the ’macroscopic’ EEG and MEG
signals will have contributions from cortical populations even further away [Nunez and Srinivasan, 2006; Hämäläinen et al., 1993].
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Figure 2: Illustrations of forward model, dipole approximation, EEG and MEG model. A Illustration of forward-modeling scheme
for extracellular potentials from multicompartment neuron models. The gray shape illustrates a 3D-reconstructed neuron morphology
and the equivalent discretized multicompartment model. A single synaptic input current isyn(t) (red triangle, inset axes I) results in a
deflection of the membrane voltage throughout the morphology, including at the soma (Vsoma(t), inset axes II). LFPy allows for computing
extracellular potentials φ in arbitrarily chosen extracellular locations r (inset axes III) from transmembrane currents (Imn (rn, t)), as well
as the radial and tangential components of the current dipole moment p (black arrow, inset axes IV). Compartments are indexed n,
rn denote compartment positions. The image plot shows the extracellular potential in the xz-plane at the time of the largest synapse
current magnitude (t = 2.25 ms). B Illustration of the extracellular electric potential, calculated both from the current dipole moment
and transmembrane currents for the situation in panel A. Within a radius r < 500 µm from the ‘center of areas’ (see below) of the
morphology the panel shows extracellular potentials φ(r) predicted using the line-source method, while outside this radius the panel
shows extracellular potentials φp(r) predicted from the current dipole moment (p, black arrow). Here, an assumption of an infinite,
homogeneous (same everywhere) and isotropic (same in all directions) extracellular conductivity was used. The ‘center of areas‘ was
defined as

∑nseg

n=1 Anrn/
∑nseg

n=1 An where An denotes compartment surface area. The time t = 2.25 ms as in panel A. The inset
axis shows the potential as function of time in the four corresponding locations (at |R| = 750 µm) surrounding the morphology (colored
circular markers). C Visualization of magnetic field component Bp ·ŷ (y-component) computed from the current dipole moment, outside a
circle of radius r = 500 µm (as in panel B). Inside the circle, we computed the same magnetic field component from axial currents inside
each compartment. The inset axis shows the y-component of the magnetic field as function of time in the four corresponding locations
(at |R| = 750 µm) surrounding the morphology (circular markers). D Illustration of upper half of the four-sphere head model used for
predictions of EEG scalp potentials from electric current dipole moments. Each spherical shell with outer radii r ∈ {r1, r2, r3, r4} has
piecewise homogeneous and isotropic conductivity σe ∈ {σ1, σ2, σ3, σ4}. The EEG/MEG sites numbered 1-9 mark the locations where
electric potentials and magnetic fields are computed, each offset by an arc length of r4π/16 in the xz-plane. The current dipole position
was θ = ϕ = 0, r = 78 mm (in spherical coordinates). E Electric potentials on the outer scalp-layer positions 1-9 in panel D. F Tangential
component of the magnetic field Bp · ϕ̂ in positions 1-9. (Note that at position 5, the unit vector ϕ̂ is defined to be directed in the positive
y-direction.)
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where ri represents the axial resistance per unit length along the cable. Assuming a homogeneous current93

density per unit length im along a single compartment with length ∆s, the total transmembrane current Im =94

im∆s.95

As in the first release of LFPy [Lindén et al., 2014], we rely on the NEURON simulation environment96

[Carnevale and Hines, 2006] to compute transmembrane currents. As of NEURON v7.4, a faster and direct97

method of accessing transmembrane currents is provided through its CVode.use_fast_imem() method,98

which we now utilize in an exclusive manner. NEURON’s ‘extracellular’ mechanism is thus no longer used99

to predict extracellular potentials (cf. Lindén et al. [2014, sec. 5.6]). Note, however, that this mechanism it-100

self is still used when an external extracellular potential is imposed as a boundary condition outside each101

compartment using the Cell.insert_v_ext() class method.102

2.1.2. Calculation of axial currents103

To compute the magnetic fields stemming from electrical activity in neurons, the axial currents within cells104

are needed [Hämäläinen et al., 1993]. The axial current for the cable is given by [Koch, 1999]:105

Ia(x, t) = − 1

ri

∂V m(x, t)

∂x
. (2)

Assuming homogeneous axial current density between the midpoints of two neighboring compartments n and106

n+ 1 along the cable, one may obtain the axial current from Ohm’s law:107

Ia
n,n+1(t) =

V m
n+1(t)− V m

n (t)

ri
n,n+1∆sn,n+1

=
V m
n+1(t)− V m

n (t)

Ri
n,n+1

. (3)

Here, V m
n and V m

n+1 are the compartment midpoint membrane potentials, ri
n,n+1 the axial resistance per unit108

length between the two compartments, ∆sn,n+1 the distance between compartment midpoints and Ri
n,n+1109

the corresponding axial resistance.110

Further, we outline how axial currents from complex reconstructed neuron morphologies are calculated in111

LFPy2.0, and provide the technical implementation details in Algorithm 1 below. For a more comprehensive112

explanation, see Næss [2015]. The corresponding implementation is in LFPy2.0 provided by the class method113

Cell.get_axial_currents_from_vmem().114

In NEURON, a section is a continuous piece of cable split into an arbitrary number of segments (com-115

partments) indexed by n. Morphologies with branch points must therefore be represented by more than one116

section. We here denote the relative length from start to end point of each section by χ ∈ [0, 1], see Fig 3A.117

All segments within the morphology except the initial segment of the root section (typically the somatic sec-118

tion) have a parent segment indexed by f . Each segment in a section can have an arbitrary number of child119

segments, thus a parent segment is the segment which connects to the start point of a child segment. We120

also distinguish between start-, mid- and end-point coordinates of each segment (Fig 3A).121

In Fig 3B and C we illustrate the simplest possible calculation of axial current between the midpoints of122

two neighboring segments f and n belonging to the same section. Their corresponding membrane voltages123

are V m
f and V m

n , separated by a total (series) axial resistance Ri
fn. From NEURON we can easily obtain the124

axial resistance between the segment midpoint and the segment’s parent node. The parent node is here the125

midpoint of the parent segment, as the child and parent belong to the same section. Therefore, NEURON126

gives us the total axial resistance Ri
fn directly, in this case. The axial current magnitude between segment127

midpoints is then trivial to compute using Ohm’s law (Eq (3)), but as the currents flowing within segments f128

and n may not lie on the same axis, we differentiate between the current magnitudes Ia
m and Ia

m+1, their axial129

line element vectors dm and dm+1, and the midpoints of each rm and rm+1 (panel B). The corresponding130

current indices are denoted by m and m+ 1 as detailed in Algorithm 1.131

Panel D represents the case where the parent and child segments f and n belong to different sections.132

The child segment is here the bottom segment in a section, and it is connected to the end point of f . As133

6
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the parent node (the node the child segment connects to on the parent segment) is here located between134

the two segments, NEURON does in this case not give us the total axial resistance directly. Instead, the total135

(series) axial resistance Ri
fn = Ri

f +Ri
n must first be computed to estimate the axial current. Ri

f is here the136

resistance between the parent midpoint and the connecting node, and Ri
n the resistance between the parent137

node and the segment midpoint.138

NEURON allows child sections to be connected anywhere along the parent section: 0 ≤ χ ≤ 1. Illustrated139

in panel E, a child segment is connected to the point χ = 0.5 and the axial resistance in the parent segment140

does not enter the calculation of axial current magnitude. LFPy2.0 still accounts for a virtual axial current Ia
m141

from the parent mid point to the child start point. These virtual currents ensure that the total current dipole142

moments computed either from transmembrane currents or from axial currents are identical (see Section 2.3.1143

for details).144

At morphology branch points, several child segments may protrude from a parent segment as illustrated in145

panel F. As the segment n and its sibling ñ both share the same parent f , we estimate the potential V m
× at the146

branch node using Ohm’s law and Kirchhoff’s current law, accounting for the axial resistivities (Ri
f , Ri

n, R
i
ñ)147

and potentials (V m
f , V m

n , V
m
ñ ), in order to compute the corresponding axial currents Ia

m and Ia
m+1. The full148

procedure presently used for computing axial currents in LFPy2.0 for the cases illustrated in panels B–F is149

provided in full detail in Algorithm 1.150

start

mid

end

A B C D E F

χ=0

χ=1

Figure 3: Axial currents in multicompartment neuron models. A Schematic illustration of sections (colored rectangles), segments
and equivalent electric circuit of a simplified multicompartment neuron model. The relative length χ varies between 0 and 1 from start- to
end-point of each section. B Axial current line element vectors (dm,dm+1) and corresponding midpoints (rm, rm+1) of axial currents
(Iam, I

a
m+1) between two connected segments. C Axial currents (Iam, I

a
m+1), membrane potentials (V m

f , V m
n ), and axial resistance

(Ri
fn) in equivalent electric circuit for a parent segment f and child segment n in a single section. D Similar to panel B, but parent and

child segments belong to two different sections. The total series resistance is here Ri
f + Ri

n. E Illustration of the case where the child
segment n is connected to a point χ = 0.5 on the parent section. For children connected at χ ∈ 〈0, 1〉 the voltage difference (V m

n −V m
f )

is only across the child segment axial resistance Ri
n, but the (virtual) current from the node connecting the child start point to the parent

midpoint Iam is still accounted for. F Illustration of axial currents at branch point between different sections of the morphology. The child
segment n has one parent f and one sibling indexed by ñ, where V m

× denotes the virtual membrane potential at the node connecting
the parent end-point to the children start-points. V m

ñ is the voltage in the midpoint of the sibling segment, while Ri
ñ and Iam̃ denotes the

axial resistance and current between the sibling midpoint and the branch point.
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Algorithm 1 Axial current calculations in LFPy2.0
1: children = dict. of child indices n of each parent section sec
2: connections = dict. of relative location χ ∈ [0, 1] where children connect onto parent section
3: Ri = list of axial resistances of child segments to corresponding parent nodes
4: Vm = list of membrane potentials at midpoints of each segment
5: Initialize length 2(nseg − 1) lists Ia, d and r indexed by m ∈ {0, 1, . . . , 2(nseg − 1)− 1}
6: set current and segment indices m = n = 0
7: set root_sec = True
8: for sec in neuron morphology do
9: if sec has parent section then

10: set parent segment index f from children and connections
11: set init_seg = True and root_sec = False

12: if count(children[sec])>1 then
13: set branch = True
14: set χ =connections[sec]
15: for seg in sec do
16: if root_sec then
17: set n = 1 and f = 0
18: set init_seg = False and root_sec = False
19: continue
20: set Ri

fn = Ri[n]
21: set V m

f = Vm[f ]
22: set V m

n = Vm[n]
23: if not init_seg or 0 < χ < 1 then
24: compute Ia[m] = (V m

f − V m
n )/Ri

fn (see Fig 3B,C,E)
25: else
26: set Ri

n = Ri[n] (axial resistance from mid to start point of segment n)
27: set Ri

f (axial resistance from end to mid point of parent segment f )
28: if not branch then
29: compute Ia[m] = (V m

f − V m
n )/(Ri

f +Ri
n) (see Fig 3D)

30: else
31: compute branch point potential

V m
× =

∑
h V

m
h /R

i
h∑

h 1/Ri
h

for h ∈ {f, n1, n2, . . . nchildren}

32: compute Ia[m] = (V m
× − V m

n )/Ri
n (see Fig 3F)

33: set Ia[m+ 1] = Ia[m]
34: compute d[m] by subtracting the midpoint of f from the start point of n
35: compute d[m+ 1] by subtracting the start point of n from the midpoint of n
36: compute r[m] by subtracting 0.5 · d[m] from the start point of n
37: compute r[m+ 1] by subtracting 0.5 · d[m+ 1] from the midpoint of n
38: set f = n
39: set n = n+ 1
40: set m = m+ 2
41: set branch = False
42: set init_seg = False
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2.2. Forward modeling of LFP and MUA signals151

The relation between transmembrane currents and extracellular potentials is calculated based on volume152

conduction theory [Nunez and Srinivasan, 2006; Einevoll et al., 2013]. At the relatively low frequencies relevant153

in neurophysiology (below a few thousand hertz), this derivation is simplified by omitting terms with time154

derivatives in Maxwell’s equations (quasistatic approximation, Hämäläinen et al. [1993, p. 426]). Further, the155

extracellular medium is in all situations considered below assumed to be ohmic, that is, linear and frequency-156

independent [Pettersen et al., 2012; Einevoll et al., 2013; Miceli et al., 2017].157

2.2.1. Homogeneous and isotropic media158

We first consider the simplest situation, where the medium is homogeneous, i.e., the same in all positions159

corresponding to an infinite volume conductor, and isotropic, i.e., the same electrical conductivity in all direc-160

tions. The medium is then represented by a scalar extracellular conductivity σe. The extracellular potential161

φ(r, t) at position r and time t is then given by [Nunez and Srinivasan, 2006; Lindén et al., 2014]162

φ(r, t) =
1

4πσe

I(t)

|r− r′|
, (4)

where I(t) represents a time-varying point current source at position r′. For transmembrane currents Im
jn(t)163

of individual compartments n ∈ [1, nseg
j ] of all cells j in a population of N cells, the extracellular potential can164

be computed as the linear sum of their contributions as165

φ(r, t) =
1

4πσe

N∑
j=1

nseg
j∑
n=1

Im
jn(t)

|r− rjn|
, (5)

but only under the assumption that each transmembrane current can be represented as a discrete point in166

space. This point-source assumption can be used in LFPy by supplying the keyword argument and value167

method="pointsource" to the RecExtElectrode class [Lindén et al., 2014].168

As a homogeneous current distribution along each cylindrical compartment is assumed, we may employ
the line-source approximation for somatic and dendritic compartments [Holt and Koch, 1999]. The formula is
obtained by integrating Eq (4) along the center axis of each cylindrical compartment n, and by summing over
contributions from every nseg

j compartment of all N cells [Holt and Koch, 1999; Pettersen and Einevoll, 2008;
Lindén et al., 2014]:

φ(r, t) =
1

4πσe

N∑
j=1

nseg
j∑
n=1

Im
jn(t)

∫
1

|r− rjn|
drjn

=
1

4πσe

N∑
j=1

nseg
j∑
n=1

Im
jn(t)

∆sjn
ln

∣∣∣∣∣∣
√
h2
jn + r2

⊥jn − hjn√
l2jn + r2

⊥jn − ljn

∣∣∣∣∣∣ . (6)

Compartment length is denoted ∆sjn, perpendicular distance from the electrode point contact to the axis of169

the line compartment is denoted r⊥jn, longitudinal distance measured from the start of the compartment is170

denoted hjn, and longitudinal distance from the other end of the compartment is denoted ljn = ∆sjn + hjn.171

The corresponding keyword argument and value to class RecExtElectrode is method="linesource"172

[Lindén et al., 2014].173

A final option in LFPy is however to approximate the typically more rounded soma compartments as174

spherical current sources, thus the line-source formula (Eq (6)) for dendrite compartments is combined with175

the point-source equation (Eq (4)), obtaining [Lindén et al., 2014]:176
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φ(r, t) =
1

4πσe

N∑
j=1

 Im
j,soma(t)

|r− rj,soma|
+

nseg
j∑
n=2

∫
Im
jn(t)

|r− rjn|
drjn


=

1

4πσe

N∑
j=1

 Im
j,soma(t)

|r− rj,soma|
+

nseg
j∑
n=2

Im
jn(t)

∆sjn
ln

∣∣∣∣∣∣
√
h2
jn + r2

⊥jn − hjn√
l2jn + r2

⊥jn − ljn

∣∣∣∣∣∣
 . (7)

The corresponding keyword argument and value is method="soma_as_point".177

If the distance between current sources and electrode contacts is smaller than the radius of the segment,178

unphysical singularities may occur in the computed extracellular potential. Singularities are in LFPy automat-179

ically prevented by either setting r⊥jn or |r − rjn| equal to the cylindrical compartment radius dependent on180

the choice of line or point sources.181

Electrode contacts of real recording devices have finite spatial extents. A good approximation to the electric182

potential across the uninsulated surface of metal electrode contact is obtained by computing the spatially183

averaged electric potential [Robinson, 1968; Nelson et al., 2008; Nelson and Pouget, 2010; Ness et al.,184

2015], in particular for current sources being located at distances larger than approximately one electrode185

radius [Ness et al., 2015]. The disc-electrode approximation to the potential [Camuñas-Mesa and Quiroga,186

2013; Lindén et al., 2014; Ness et al., 2015]187

φdisc(u, t) =
1

AS

∫∫
S

φ(u, t) d2r ≈ 1

m

m∑
h=1

φ(uh, t) , (8)

is incorporated in LFPy, with corresponding parameters for contact radius rcontact, numberm of random points188

uh on the flat, circular electrode contact surface when averaging [Lindén et al., 2014]. The surface normal189

vector for each electrode contact must also be specified.190

2.2.2. Discontinuous and isotropic media191

Above we described the case for an infinite volume conductor, that is, a constant extracellular conductivity192

σe, as implemented in the initial LFPy release [Lindén et al., 2014]. For cases where σe vary with position,193

i.e., σe = σe(r), such as for cortical in vivo recordings close to the cortical surface [Einevoll et al., 2007] or in194

vitro recordings using microelectrode arrays (MEAs) [Ness et al., 2015], this approximation does not generally195

hold. Instead a generalized Poisson equation must be solved [Nicholson and Freeman, 1975]:196

∇ · (σe(r)∇φ(r, t)) = −C(r, t), (9)

where C(r, t) is the current-source density. This equation can always be solved numerically by means of the197

Finite Element Method (FEM) [McIntyre and Grill, 2001; Ness et al., 2015] or other mesh-based methods (see198

for example Tveito et al. [2017]).199

In the special case where the conductivity σe is discontinuous in a single direction, that is, a constant con-200

ductivity in the xy-plane and a piecewise constant σe(z) in the z-direction, the ‘Method-of-Images’ (MoI) can201

be used to make analytical formulas for the extracellular potentials, analogous to Eq (4)–Eq (7) above [Nichol-202

son and Llinas, 1971; Nunez and Srinivasan, 2006]. When applicable, these formulas substantially simplify203

the modeling of the extracellular potentials compared to FEM modeling.204

Electrical potentials across microelectrode arrays (MEAs). The first MoI application is to model recordings205

in a MEA setting where a slice of brain tissue is put on an insulating recording chip (MEA-chip) and covered206

with saline [Ness et al., 2015; Hagen et al., 2015]. In this three-layer situation separate conductivity values207

are assigned to the topmost saline layer conductivity σS for z ∈ [h,∞], the middle tissue layer conductivity σT208
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for z ∈ [0, h) and the lowermost electrode σG for z ∈ [−∞, 0). The parameter h denotes the thickness of the209

middle tissue layer. The corresponding implementation is provided by the class RecMEAElectrode, and has210

at present the limitations that all current sources (segments) must be contained on the interval z ∈ [0, h), and211

that the line-source approximation can only be used when σG = 0 and when computing extracellular potentials212

for z = 0. For other forward-model configurations (for example for 0 ≤ z ≤ h and/or σG > 0) the point-source213

approximation can be used. For a detailed derivation of the MoI with two planar electrical boundaries, see214

Eq. (4) in Ness et al. [2015]. A corresponding example is provided with LFPy2.0 (example_MEA.py) which215

illustrates the computation of extracellular potentials as recorded by a MEA following synaptic activation of a216

pyramidal cell model.217

Electrical potentials close to cortical surface. The second MoI application is to model in vivo recordings of218

electrical potentials at or immediately below the cortical surface, that is, the interface between cortical gray219

matter and dura. Here the extracellular conductivity above the cortical surface σS can be higher or lower220

than the conductivity in cortical gray matter σT depending on how the measurements are done, for example221

whether saline or oil is used to cover an inserted laminar electrode [Einevoll et al., 2007]. Such a conductivity222

jump will affect both the electrical potential recorded at the cortical surface (ECoG recording) as well as the223

potentials recorded in the top cortical layers [Pettersen et al., 2006]. This can be modeled with the same224

framework as above, that is, by using the class RecMEAElectrode, with the cortical surface at height h,225

while ignoring the lower planar boundary by setting σG = σT. In this situation the potential at or below the226

cortical surface at position (x, y, z) for a current source, I(t), positioned at (x′, y′, z′) is given by [Pettersen227

et al., 2006; Nunez and Srinivasan, 2006; Ness et al., 2015] as:228

φ(x, y, z, t) =
I(t)

4πσT

(
1√

(x− x′)2 + (y − y′)2 + (z − z′)2
(10)

+
σT − σS

σT + σS

1√
(x− x′)2 + (y − y′)2 + (z + z′ − 2h)2

)
.

This approach assumes a flat cortical surface. Note, however, that in LFPy2.0 the ECoG signal can also be229

modeled by means of the four-sphere EEG head model as described below in Sec. 2.3.4. An example is230

provided with LFPy2.0 (example_ECoG.py) which illustrates extracellular potentials recorded in the cortex231

and at the cortical surface following activation of multiple synapses distributed across a pyramidal cell model.232

Electrical potentials in spherical conductor. LFPy2.0 also incorporates a spherical conductor model, adapted233

from [Deng, 2008], where the conductivity is constant within the sphere and zero outside (class234

OneSphereVolumeConductor). Note that this model is applicable for monopolar current sources, unlike235

the more complex multi-sphere head models described below in Section 2.3 which only apply to dipolar236

current sources. Although not pursued here, one application of this volume-conductor model could possibly237

be modeling of LFPs measured in spheroidal brain nuclei.238

2.2.3. Homogeneous and anisotropic media239

For homogeneous media, i.e., when the extracellular conductivity is the same at all positions, we also240

added support for anisotropic media [Nicholson and Freeman, 1975]. In this case the extracellular conduc-241

tivity in Eq (9) must be replaced by a rank 2 (3x3) tensor where the diagonal elements are σx, σy, and σz242

and the off-diagonal elements are zero [Nicholson and Freeman, 1975]. This could for example be used to243

mimic experimental observations of such anisotropy in cortex [Goto et al., 2010], that is, electric currents flow244

with less resistance along the depth direction (z-direction) than in the lateral directions (x, y-directions). In245

this case σz > σx = σy [Ness et al., 2015]. The corresponding implementation is based on the descrip-246

tion and implementation provided by Ness et al. [2015], and is in LFPy presently supported by the class247

RecExtElectrode, but not the class RecMEAElectrode.248
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2.3. Forward modeling of EEG, ECoG, and MEG signals from current dipoles249

The forward modeling of EEG and MEG signals from current dipoles has a long history [Hämäläinen et al.,250

1993; Nunez and Srinivasan, 2006]. Here the EEG contacts and the MEG magnetometers are located so far251

away from the neural sources that only the current dipole moments contribute to the measured signals, that is,252

the contributions from higher-order current multipoles are negligible. From charge conservation, it follows that253

current monopoles do not exist. To compute the contribution to EEG and MEG signals from detailed neuron254

models, we thus first need to compute single-neuron current dipole moments, cf. Sec. 2.3.1. Next these must255

be combined with appropriate volume-conductor models for the head.256

In LFPy2.0 we include two ‘head’ models for computing EEG signals from current dipole moments: the257

(very simplified) infinite homogenous volume-conductor model (Sec. 2.3.2), and the much more involved four-258

sphere head model where the brain tissue, cerebrospinal fluid (CSF), skull and scalp are represented with259

different values for the electrical conductivity [Nunez and Srinivasan, 2006; Næss et al., 2017], cf. Sec. 2.3.3.260

For the MEG signals the forward model is simpler as the magnetic permeability is the same throughout the261

head as in free space [Hämäläinen et al., 1993]. In LFPy2.0 we include simulation code for computing neural262

contributions to MEG signals applicable for all head models with spherically-symmetric electrical conduc-263

tivities, for example, the four-sphere head model, cf. Sec. 2.3.5. While these head models allow for direct264

calculation of EEG and MEG signals from neurons, it should be noted the computed current dipole moments265

also can be used for subsequent calculation of EEG and MEG signals by means of boundary element (BEM)266

or finite element models (FEM) with anatomically detailed head models [DeMunck et al., 2012; Bangera et al.,267

2010; He et al., 2002; Huang et al., 2016].268

2.3.1. Calculation of current dipole moments269

Current dipole moments from transmembrane currents. The current dipole moment from a single neuron can270

be computed from transmembrane currents as [Lindén et al., 2010]:271

p(t) =
nseg∑
n=1

rnI
m
n (t) , (11)

where Im
n is the transmembrane current at time t from compartment n at position rn. For a population of N272

cells with nseg
j compartments each, the current dipole moment at discrete time steps can be formulated as273

the matrix product:274


px(0) py(0) pz(0)
px(dt) py(dt) pz(dt)

...
...

...
px(T ) py(T ) pz(T )

 =



Im11(0) Im11(dt) . . . Im11(T )
Im12(0) Im12(dt) . . . Im12(T )

...
...

. . .
...

Imjn(0) Imjn(dt) . . . Imjn(T )
...

...
. . .

...
ImNn

seg
j

(0) ImNn
seg
j

(dt) . . . ImNn
seg
j

(T )



T


r
(x)
11 r

(y)
11 r

(z)
11

r
(x)
12 r

(y)
12 r

(z)
12

...
...

...
r
(x)
jn r

(y)
jn r

(z)
jn

...
...

...
r
(x)

Nn
seg
j

r
(y)

Nn
seg
j

r
(z)

Nn
seg
j


, (12)

where pu(t) is the u-component (u ∈ {x, y, z}) of the current dipole moment at time t (thus p(t) ≡ px(t)x̂ +275

py(t)ŷ+pz(t)ẑ), Im
jn(t) the transmembrane currents of segment n of cell j at time t and r(u)

jn the corresponding276

u-coordinates of each segment’s midpoint. x̂, ŷ and ẑ denote the cartesian unit vectors. For more compact277

notation we here show the transpose (denoted by the raised T ) of the matrix containing transmembrane278

currents. Note that the same formula may be used to also compute current dipole moments pj of individual279

cells j (or subsets thereof) by slicing the corresponding matrix elements.280
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Current dipole moments from axial currents. Alternatively, the current dipole moment can be computed281

from axial currents between neighboring segments (see Section 2.1.2). As an example, we consider a two-282

compartmental dendritic stick model, where segment one will act as a current sink, and segment two as a283

current source. The transmembrane current entering segment two Im
2 will be the same as the axial current284

Ia between the two segments, which is also equal to the current leaving compartment one Im
1 , such that285

Im
1 = −Im

2 = Ia. An axial line element vector d represents the path traveled by the axial current, which286

corresponds to the displacement r1 − r2 between the compartment midpoints. From Eq (11) it thus follows287

that the current dipole moment is:288

p =
2∑

n=1

rnI
m
n = Iad. (13)

Multiplying each axial current with the respective current path gives a set of current dipoles:289

pm(t) = Ia
m(t)dm. (14)

Calculating sets of current dipole moments from neural simulations can be useful, for example for ECoG290

predictions (see Section 2.3.4) or magnetic fields in proximity of the neuron (see Section 2.4).291

2.3.2. EEG signal for homogeneous volume conductor292

From eletrostatic theory we have that the electric potential outside a spatial distribution of current sinks and293

sources can be described by a multipole expansion φ(r) = Cmonopole/R + Cdipole/R
2 + Cquadrupole/R

3 +294

Coctupole/R
4 + ... , where R is the relative distance from the multipole to measurement location (and the295

coefficients C depends on the spherical angles). Due to charge conservation, current monopoles do not296

exist [Nunez and Srinivasan, 2006]. For sufficiently large values of R where Cdipole/R
2 �

∑∞
q=3 Cq−pole/R

q,297

the electric potential of a neuron can be approximated solely from its current dipole moment, as contributions298

from quadrupolar and higher-order terms become negligible. The electric potential from a current dipole in an299

ohmic, homogeneous and isotropic medium is given by [Nunez and Srinivasan, 2006]300

φp =
p ·R

4πσeR3
, (15)

where p is the current dipole moment as defined above, σe the conductivity of the extracellular medium,301

R = r − r′ the displacement vector between dipole location r′ and measurement location r, and R = |R|.302

Predictions of extracellular potentials from current dipole moments in homogeneous media are provided by303

the class InfiniteVolumeConductor.304

2.3.3. EEG signal in four-sphere head model305

The computation of EEG signals assuming a homogeneous volume conductor model is obviously a gross306

approximation as it neglects the large variation in the extracellular conductivity in the head. In order to com-307

pute more realistic EEG signals from underlying neuronal sources, we implemented in LFPy2.0 the inhomo-308

geneous four-sphere head model in class FourSphereVolumeConductor. This model is composed of309

four concentric shells representing brain tissue, cerebrospinal fluid (CSF), skull and scalp, where the conduc-310

tivity can be set individually for each shell [Srinivasan et al., 1998; Nunez and Srinivasan, 2006]. Note that311

corrections to the original model formulation was recently provided in Næss et al. [2017].312

The analytical model solution takes different forms for radial and tangential dipoles. The radial dipole313
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contribution to extracellular potential can be calculated as follows [Næss et al., 2017]:314

φ(1)
p (r, θ) =

p

4πσ1r2
z

∞∑
l=1

[
A

(1)
l

(
r

r1

)l
+
(rz
r

)l+1
]
lPl(cos θ) for rz < r < r1 , (16)

φ(s)
p (r, θ) =

p

4πσ1r2
z

∞∑
l=1

[
A

(s)
l

(
r

rs

)l
+B

(s)
l

(rs
r

)l+1
]
lPl(cos θ) for rs−1 < r < rs . (17)

The tangential dipole contribution to the extracellular potentials is:315

φ(1)
p (r, θ, ϕ) =

−p
4πσ1r2

z

sinϕ
∞∑
l=1

[
A

(1)
l

(
r

r1

)l
+
(rz
r

)l+1
]
P 1
l (cos θ) for rz < r < r1 , (18)

φ(s)
p (r, θ, ϕ) =

−p
4πσ1r2

z

sinϕ
∞∑
l=1

[
A

(s)
l

(
r

rs

)l
+B

(s)
l

(rs
r

)l+1
]
P 1
l (cos θ) for rs−1 < r < rs . (19)

Here, φ(1)
p is the extracellular potential measured at radial location r in the inner sphere, the brain, while φ(s)

p316

gives the potential in CSF, skull and scalp with s ∈ {2, 3, 4}, respectively.317

The current dipole moment has magnitude p = |p| and radial location rz, while rs and σs denote the318

external radius and conductivity of shell s. A(s)
l and B(s)

l are coefficients that depend on the shell radii and319

conductivities. Pl(cos θ) is the l-th Legendre Polynomial where θ is the angle between the measurement and320

dipole location vectors, further ϕ is the azimuth angle and P 1
l is the associated Legendre polynomial. The321

detailed derivations of the constants A(s)
l and B(s)

l are given in Næss et al. [2017]. Here, we use the notation322

σij ≡ σi/σj and rij ≡ ri/rj :323

14

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 14, 2018. ; https://doi.org/10.1101/281717doi: bioRxiv preprint 

https://doi.org/10.1101/281717


A
(1)
l =

l + 1

l
σ12 + Zl

σ12 − Zl
rl+1
z1 (20)

A
(2)
l =

A
(1)
l + rl+1

z1

rl12 + rl+1
21 Yl

(21)
B

(2)
l = YlA

(2)
l (22)

A
(3)
l =

A
(2)
l +B

(2)
l

rl23 + rl+1
32 Vl

(23)
B

(3)
l = VlA

(3)
l (24)

A
(4)
l =

l + 1

l

A
(3)
l +B

(3)
l

l + 1

l
rl34 + rl+1

43

(25) B
(4)
l =

l

l + 1
A

(4)
l (26)

Vl =

l

l + 1
σ34 −

rl34 − rl+1
43

l + 1

l
rl34 + rl+1

43

σ34 +
rl34 − rl+1

43

l + 1

l
rl34 + rl+1

43

(27) Yl =

l

l + 1
σ23 −

l

l + 1
rl23 − Vlrl+1

32

rl23 + Vlr
l+1
32

σ23 +

l

l + 1
rl23 − Vlrl+1

32

rl23 + Vlr
l+1
32

(28)

Zl =
rl12 −

l + 1

l
Ylr

l+1
21

rl12 + Ylr
l+1
21

. (29)

324

2.3.4. ECoG signal from four-sphere head model325

The four-sphere head model is not restricted to EEG predictions, but can also be applied for modeling326

electric potentials in other layers of the inhomogeneous head model, such as ECoG signals at the interface327

between the brain tissue and the CSF. In contrast to EEG electrodes, however, the ECoG electrodes are328

located only micrometers away from the apical dendrites. The electrode’s proximity to the neuronal source329

makes the four-sphere model a less obvious candidate model, as the model is based on the current dipole330

approximation, giving good predictions only when the measurement point is more than some dipole lengths331

away from the source [Lindén et al., 2010]. However, in the FourSphereVolumeConductor class method332

calc_potential_from_multi_dipoles(), this problem can be avoided by taking advantage of the333

fact that electric potentials sum linearly in ohmic media: Instead of computing a single current dipole moment334

for the whole neuron, we compute multiple current dipole moments, one for each axial current, as described335

in Section 2.3.1. Since these current dipoles have small enough source separations for the current dipole336

approximation to be applicable, we can compute the ECoG signal contribution from each current dipole mo-337

ment separately, using the four-sphere model. The ECoG signal is finally predicted by summing up each338

contribution. The corresponding LFPy2.0 example file is /examples/example_ECoG_4sphere.py.339
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2.3.5. MEG signals in spherically-symmetric head models340

For spherically-symmetric head models the MEG signal can be computed from the current dipole mo-341

ments set up by intracellular axial currents [Hämäläinen et al., 1993, p. 428]. To compute magnetic fields Bp342

from current dipole moments we incorporated the special form of the magnetostatic Biot-Savart law (where343

magnetic induction effects are neglected) [Nunez and Srinivasan, 2006, Appendix 16] given as:344

Bp =
µ0

4π

p×R

R3
. (30)

As above, p is the dipole source, R = r− r′ the displacement between dipole location r′ and measurement345

location r, and R = |R|. For a detailed derivation of this expression see Hämäläinen et al. [1993]. The346

magnetic field B is related to the commonly used quantity H (often also termed magnetic field) through347

B = µ0H + M = µH where M is the magnetization and µ the magnetic permeability of the material.348

However, in biological tissues the magnetization M is very small, and µ is very close to the magnetic constant349

(i.e., the magnetic permeability of vacuum) µ0 [Hämäläinen et al., 1993]. Predictions of magnetic signals are350

in LFPy2.0 incorporated in the class MEG, which provides the method calculate_H in order to compute351

the magnetic field from a current dipole moment time series. Its output must be multiplied by µ to obtain the352

magnetic field Bp.353

Throughout this paper, we show for the four-sphere head model magnetic field components decomposed354

into tangential and radial components at different positions on spherical surfaces. The tangential components355

were computed in the direction of the angular unit vectors θ̂ = cos θ cosϕx̂ + cos θ sinϕŷ − sin θẑ and ϕ̂ =356

− sinϕx̂ + cosϕŷ as B · θ̂ and B · ϕ̂, respectively. The radial component was computed as Bp · r̂ where r̂357

denotes the radial unit vector from the center of the sphere in the direction of the contact. Furthermore, we358

also show tangential and radial components of the surface magnetic field where the underlying dipoles were359

rotated by an angle θ = π/2 around the x-axis, denoted BRx(π/2)p · θ̂, BRx(π/2)p · ϕ̂ and BRx(π/2)p · r̂,360

respectively. For this purpose we used the rotation matrix361

Rx

(π
2

)
=

1 0 0
0 0 −1
0 1 0

 (31)

multiplied with the current dipole moment p in cartesian coordinates.362

2.4. Magnetic signals close to neurons363

Most studies of magnetic fields generated by neural activity have been based on MEG recordings where364

the neuronal sources are so distant from the magnetic-field sensors that the far-field dipole approximation in365

Eq (30) can be applied. However, probes are also being developed for measuring magnetic fields in direct366

vicinity of the neurons [Barbieri et al., 2016; Caruso et al., 2017]. To compute the magnetic fields in the vicinity367

of neurons, LFPy2.0 also implements the relevant Biot-Savart law for this situation [Blagoev et al., 2007]:368

B(r) =
µ0

4π

ma∑
m=1

Ia
m

dm × (r− rm)

|r− rm|3
. (32)

This formula provides the magnetic field for ma axial currents Ia
m where dm are axial line element vectors,369

and rm the midpoint positions of each axial current. The use of this formula assumes that contributions to the370

magnetic fields from extracellular volume currents are negligible [Hämäläinen et al., 1993, p. 427]. Predictions371

of magnetic signals from axial currents (or equivalently sets of current dipoles) are in LFPy2.0 facilitated by the372

corresponding class method MEG.calculate_H_from_iaxial(). We show (in Fig 2) the y-components373

of the magnetic fields in vicinity of a model neuron computed as B · ŷ and Bp · ŷ respectively.374
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2.5. New Classes and network use-case implementation375

The first release of LFPy described in Lindén et al. [2014] included a set of Python class definitions for in-376

stantiating single-cell models (Cell, TemplateCell) and corresponding instrumentation of the models with377

synapse point processes attached to the cell (Synapse), patch-clamp electrodes (StimIntElectrode)378

and extracellular recording electrodes (RecExtElectrode). Simulations with multiple simultaneous cell-379

object instances were at the time not supported. Class TemplateCell supported the use of template380

specifications, a requirement for networks in NEURON, but was primarily written to support source codes381

of ‘network-ready’ single-cell models such as the Hay et al. [2011] models of layer-5 pyramidal neurons avail-382

able from, for example, ModelDB (senselab.med.yale.edu/modeldb, McDougal et al. [2017]).383

The ‘one cell at a time’ approach may seem limited, in particular when considering ongoing network384

interactions, but knowing that forward-modeling of extracellular potentials can be decoupled from the network385

simulation, users could always set up simulations of each individual cell, play back synapse activation times386

as occurring in the connected network, and sum up the single-cell contributions to the extracellular potential.387

Thus, the calculation of extracellular potentials can even be dealt with in an ‘embarrassingly’ parallel manner388

[Foster, 1995; Hagen et al., 2016]. These simplifying steps are not possible if the extracellular potential itself389

affects the cellular dynamics, that is, if mutual interactions between cellular compartments belonging to the390

same or different cells occur through the extracellular potential, so-called ephaptic interactions [Anastassiou391

et al., 2011; Goldwyn and Rinzel, 2016; Tveito et al., 2017].392

For the present LFPy2.0 release, we added support for simulations of recurrently connected multicompart-393

ment models with concurrent calculations of extracellular potentials and current dipole moments. As described394

above, the current dipole moment is used for predictions of distal electric potentials (for example scalp surface395

potentials as in EEG measurements) and magnetic fields (as in MEG measurements). For our example use396

case, we considered a recurrent network of four populations of multicompartment neuron models. We added397

a new set of generic class definitions in LFPy to represent the network, its populations and neurons, as well as398

classes representing different volume-conductor models and measurement modalities as summarized next.399

Cells. Each individual neuron in an LFPy network exists as an instantiation of class NetworkCell. As this400

class definition uses class inheritance from the old TemplateCell and in turn Cell classes, it retains all401

common methods and attributes from its parent classes. The NetworkCell can therefore be instantiated in402

a similar manner as its parent class:403

#!/usr/bin/env python404

"""example_NetworkCell.py"""405

# import modules:406

from LFPy import NetworkCell, StimIntElectrode407

from matplotlib.pyplot import subplot, plot408

# class NetworkCell parameters:409

cellParameters = dict(410

morphology='BallAndStick.hoc',411

templatefile='BallAndStickTemplate.hoc',412

templatename='BallAndStickTemplate',413

templateargs=None,414

v_init=-65.415

)416

# create cell:417

cell = NetworkCell(418

tstart=0., tstop=100.,419

**cellParameters420

)421

# create stimulus device:422

iclamp = StimIntElectrode(423

cell=cell,424

idx=0,425

pptype='IClamp',426

amp=0.5,427

dur=80.,428

delay=10.,429

record_current=True430

)431

# run simulation:432
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cell.simulate()433

# plot cell response:434

subplot(2,1,1)435

plot(cell.tvec, iclamp.i)436

subplot(2,1,2)437

plot(cell.tvec, cell.somav)438

The morphology and template files referred to above are defined in NEURON ‘hoc’ language files. A ‘ball and439

stick’ style morphology file with active soma (Hodgkin & Huxley Na+, K+ and leak channels) and passive440

dendrite sections and corresponding template file was written as:441

/* -------------------------------442

BallAndStick.hoc443

------------------------------- */444

// Create sections:445

create soma[1]446

create apic[1]447

448

// Add 3D information:449

soma[0] {450

pt3dadd(0, 0, -15, 30)451

pt3dadd(0, 0, 15, 30)452

}453

apic[0] {454

pt3dadd(0, 0, 15, 3)455

pt3dadd(0, 0, 1015, 3)456

}457

458

// Connect section end points:459

connect apic[0](0), soma[0](1)460

461

// Set biophysical parameters:462

forall {463

Ra = 100.464

cm = 1.465

all.append()466

}467

soma { insert hh }468

apic {469

insert pas470

g_pas = 0.0002471

e_pas = -65.472

}473

/* ---------------------------- */474

and475

/* -------------------------------476

BallAndStickTemplate.hoc477

------------------------------- */478

begintemplate BallAndStickTemplate479

public init, soma, apic480

public all481

objref all482

proc init() {483

all = new SectionList()484

}485

create soma[1], apic[1]486

endtemplate BallAndStickTemplate487

/* ---------------------------- */488

In contrast to class TemplateCell, class NetworkCell has built-in methods to detect somatic action489

potentials and set-ups of synapses being activated by such threshold crossings in other cells.490

Network populations. One step up in the hierarchy, class NetworkPopulation represents a size NX491

population of NetworkCell objects of one particular cell type (X) in the network. The class can be used492

directly as:493
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#!/usr/bin/env python494

"""example_NetworkPopulation.py"""495

# import modules496

from mpi4py.MPI import COMM_WORLD as COMM497

from LFPy import NetworkPopulation, NetworkCell498

# class NetworkCell parameters:499

cellParameters = dict(500

morphology='BallAndStick.hoc',501

templatefile='BallAndStickTemplate.hoc',502

templatename='BallAndStickTemplate',503

templateargs=None,504

delete_sections=False,505

)506

# class NetworkPopulation parameters:507

populationParameters = dict(508

Cell=NetworkCell,509

cell_args = cellParameters,510

pop_args = dict(511

radius=100.,512

loc=0.,513

scale=20.),514

rotation_args = dict(x=0., y=0.),515

)516

# create population:517

population = NetworkPopulation(518

first_gid=0, name='E',519

**populationParameters520

)521

# print out some info:522

for cell in population.cells:523

print('RANK {}; pop {}; gid {}; cell {}'.format(524

COMM.Get_rank(), population.name,525

cell.gid, cell))526

Direct instantiation of class NetworkPopulation, however, is of limited use as it does not provide any527

means of simulation control by itself, and has only one built-in method to draw and set random cell-body posi-528

tions within a chosen radius (pop_args[’radius’]) and depth from the normal distribution N (u, σu). In529

the code example above, pop_args[’loc’] refers to expected mean depth u and pop_args[’scale’]530

to the corresponding standard deviation σu. A random cell rotation around its own vertical z-axis is applied531

by default. The integer cell.gid value accessed above is a unique global identifier gid of each cell in the532

network, and is assigned in running order from the number first_gid. For parallel execution using MPI,533

cells will be distributed among threads according to the round-robin rule if the condition gid%NMPI == k is534

True, where % denotes a division modulus operation, NMPI the MPI pool size and k ∈ [0, 1, ..., NMPI− 1] the535

corresponding rank number.536

Networks. The new network functionality is provided through class Network. An instantiation of the class537

sets attributes for the default destination of file output, temporal duration t and resolution dt of the simulation,538

a chosen initial voltage V m
init and global temperature control Tcelsius (which affects channel dynamics). Further-539

more, the class instance provides built-in methods to create any number of NX -sized populations X. Different540

built-in class methods create random connectivity matrices C
(r)
XY (per rank, see Connectivity Model below)541

between any presynaptic population X and postsynaptic population Y , and connect X and Y using an inte-542

ger number of synapses per connection nsyn drawn from the capped normal distribution N (nsyn, σsyn
n )H(n)543

where H(·) denotes the Heaviside step function. Similarly, synaptic conductances gsyn are drawn from the544

distribution N (gsyn, σsyn
g )H(g − gmin) (where gmin denotes minimum synaptic conductance) with connection545

delays δsyn from N (δ
syn
, σsyn

δ
)H(δ− δmin) (where δmin denotes the minimum delay in the network). The net-546

work class handles the synapse model in NEURON and corresponding parameters (time constants, reversal547

potentials, putative synapse locations etc.), and finally provides a simulation control procedure. The simulation548

control allows for concurrent calculation of network activity and prediction of extracellular potentials as well as549

the current dipole moment.550

In order to set up a complete network simulation we may choose to define NetworkCell and551

NetworkPopulation parameters as above, and define parameter dictionaries for our instances of Network552
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and extracellular measurement device RecExtElectrode:553

#!/usr/bin/env python554

"""example_Network.py"""555

# import modules556

import numpy as np557

import scipy.stats as st558

from mpi4py import MPI559

from LFPy import NetworkCell, Network560

import neuron561

# relative path for simulation output:562

OUTPUTPATH='example_network_output'563

# class NetworkCell parameters:564

cellParameters = dict(**cellParameters)565

# class NetworkPopulation parameters:566

populationParameters = dict(**populationParameters)567

# class Network parameters:568

networkParameters = dict(569

dt = 2**-4,570

tstop = 1200.,571

v_init = -65.,572

celsius = 6.5,573

OUTPUTPATH = OUTPUTPATH574

)575

# class RecExtElectrode parameters:576

electrodeParameters = dict(577

x = np.zeros(13),578

y = np.zeros(13),579

z = np.linspace(1000., -200., 13),580

N = np.array([[0., 1., 0.]]*13),581

r = 5.,582

n = 50,583

sigma = 0.3,584

)585

# method Network.simulate() parameters:586

networkSimulationArguments = dict(587

rec_current_dipole_moment = True,588

rec_pop_contributions = True,589

)590

Furthermore, we define population names (X) and corresponding sizes (NX ), as well as one overall591

connection probability (CY X ):592

# population names, sizez and connection probability:593

population_names = ['E', 'I']594

population_sizes = [80, 20]595

connectionProbability = [[0.05, 0.05]]*2596

Then, we may chose to define the synapse model and corresponding parameters (here using NEURON’s597

built-in two-exponential model Exp2Syn) for synapse conductances (weight), delays and synapses per con-598

nection (multapses), as well as layer-specificities of connections (LY XL, see Hagen et al. [2016] and below):599

# synapse model. All corresponding parameters for weights,600

# connection delays, multapses and layerwise positions are601

# set up as shape (2, 2) nested lists for each possible602

# connection on the form:603

# [["E:E", "E:I"],604

# ["I:E", "I:I"]].605

synapseModel = neuron.h.Exp2Syn606

# synapse parameters607

synapseParameters = [[dict(tau1=0.2, tau2=1.8, e=0.)]*2,608

[dict(tau1=0.1, tau2=9.0, e=-80.)]*2]609

# synapse max. conductance (function, mean, st.dev., min.):610

weightFunction = np.random.normal611

weightArguments = [[dict(loc=0.002, scale=0.0002)]*2,612

[dict(loc=0.01, scale=0.001)]*2]613

minweight = 0.614

# conduction delay (function, mean, st.dev., min.):615

delayFunction = np.random.normal616

delayArguments = [[dict(loc=1.5, scale=0.3)]*2]*2617

mindelay = 0.3618

multapseFunction = np.random.normal619

multapseArguments = [[dict(loc=2., scale=.5)]*2,620
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[dict(loc=5., scale=1.)]*2]621

# method NetworkCell.get_rand_idx_area_and_distribution_norm622

# parameters for layerwise synapse positions:623

synapsePositionArguments = [[dict(section=['soma', 'apic'],624

fun=[st.norm]*2,625

funargs=[dict(loc=500., scale=100.)]*2,626

funweights=[0.5, 1.])]*2,627

[dict(section=['soma', 'apic'],628

fun=[st.norm]*2,629

funargs=[dict(loc=0., scale=100.)]*2,630

funweights=[1., 0.5])]*2]631

Note that we above relied on Python list-comprehension tricks for compactness. Having defined all parame-632

ters, one can then create the network, populations, stimulus, connections, recording devices, run the simula-633

tion and collect simulation output:634

if __name__ == '__main__':635

############################################################################636

# Main simulation637

############################################################################638

# create directory for output:639

if not os.path.isdir(OUTPUTPATH):640

if RANK == 0:641

os.mkdir(OUTPUTPATH)642

COMM.Barrier()643

644

# instantiate Network:645

network = Network(**networkParameters)646

647

# create E and I populations:648

for name, size in zip(population_names, population_sizes):649

network.create_population(name=name, POP_SIZE=size,650

**populationParameters)651

652

653

# create excitatpry background synaptic activity for each cell654

# with Poisson statistics655

for cell in network.populations[name].cells:656

idx = cell.get_rand_idx_area_norm(section='allsec', nidx=64)657

for i in idx:658

syn = Synapse(cell=cell, idx=i, syntype='Exp2Syn',659

weight=0.002,660

**dict(tau1=0.2, tau2=1.8, e=0.))661

syn.set_spike_times_w_netstim(interval=200.)662

663

664

# create connectivity matrices and connect populations:665

for i, pre in enumerate(population_names):666

for j, post in enumerate(population_names):667

# boolean connectivity matrix between pre- and post-synaptic neurons668

# in each population (postsynaptic on this RANK)669

connectivity = network.get_connectivity_rand(pre=pre, post=post,670

connprob=connectionProbability[i][j])671

672

# connect network:673

(conncount, syncount) = network.connect(674

pre=pre, post=post,675

connectivity=connectivity,676

syntype=synapseModel,677

synparams=synapseParameters[i][j],678

weightfun=np.random.normal,679

weightargs=weightArguments[i][j],680

minweight=minweight,681

delayfun=delayFunction,682

delayargs=delayArguments[i][j],683

mindelay=mindelay,684

multapsefun=multapseFunction,685

multapseargs=multapseArguments[i][j],686

syn_pos_args=synapsePositionArguments[i][j],687

)688

689

# set up extracellular recording device:690

electrode = RecExtElectrode(**electrodeParameters)691
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692

# run simulation:693

SPIKES, OUTPUT, DIPOLEMOMENT = network.simulate(694

electrode=electrode,695

**networkSimulationArguments696

)697

The argument SPIKES returned by the final network.simulate method call is a dictionary with keys698

gids and times, where the corresponding values are lists of global neuron ID’s (gID) and numpy ar-699

rays with spike times of each respective unit in the network. The returned OUTPUT and DIPOLEMOMENT700

arguments are numpy arrays with structured datatypes (sometimes referred to as record arrays). The ar-701

ray OUTPUT[’imem’] is the total extracellular potential from all transmembrane currents in units of mV,702

the entries ’E’ and ’I’ contributions from the excitatory and inhibitory neuron populations, respectively.703

DIPOLEMOMENT similarly contains the current dipole moment from populations ’E’ and ’I’, but not the704

sum as the current dipole moment of different populations may, in principle, be freely positioned in different lo-705

cations within a volume conductor. The computed current dipole moments by themselves have no well defined706

positions in space and must explicitly be assigned a position by the user, unlike the individual compartment707

positions used when computing the extracellular potential.708

The corresponding LFPy2.0 example files discussed throughout this section are:709

• /examples/example_network/example_NetworkCell.py,710

• /examples/example_network/example_NetworkPopulation.py711

• /examples/example_network/example_Network.py.712

2.6. Description of biophysically-detailed network in example use case713

Neuron models. Our example network model presented in Results comprised about 5500 biophysically714

detailed multicompartment neurons obtained from The Neocortical Microcircuit Collaboration (NMC) Portal715

(https://bbp.epfl.ch/nmc-portal, Ramaswamy et al. [2015]). The NMC portal provides NEURON code for about716

1000 different single-cell models as well as connectivity data of a reconstruction and simulation of a rat so-717

matosensory cortex column [Markram et al., 2015].718

For simplicity of this demonstration, we here use only four different single-cell models as shown in Fig 4A719

for the different network populations. For layers 4 and 5 we chose the most common excitatory cell type and720

most common inhibitory interneuron cell type, in accordance with statistics of the reconstructed microcircuit of721

Markram et al. [2015] as provided on the NMC portal. The table in panel A summarizes population names (X–722

presynaptic; Y – postsynaptic) which here coincide with morphology type (m), electric type (e), cell model #,723

compartment count per single-cell model (nseg
j ), number of cells NX in each population, occurrence FX ≡724

NX/
∑
X NX , the number of external synapses on each cell next, rate expectation of external synapses νext725

and the mean zsoma
X and standard deviation σsoma

z,X of the normal distribution N (zsoma
X , σsoma

z,X ) from which726

somatic depths are drawn for each population. The cell type can be derived from the ‘m’ and ‘e’ type in the727

table. Using the nomenclature of Markram et al. [2015], L4 and L5 are abbreviations for layer 4 and 5; PC728

– pyramidal cell; LBC – large basket cell; TTPC1 – thick-tufted pyramidal cell with a late bifurcating apical729

tuft; MC – Martinotti cell; cAD – continuous adapting; dNAC – delayed non-accommodating; bAC – burst730

accommodating. Thus, L4_PC_cAD corresponds to a layer 4 pyramidal cell with a continuously adapting731

firing pattern as a response to depolarizing step current and so forth. As multiple variations of the same732

cell types are provided on the NMC portal, the cell model # can be used to identify the particular single-cell733

model and corresponding file sets used in the network described here. These single-cell model files can be734

downloaded one after another from the portal as for example L5_TTPC1_cADpyr232_1.zip, or all together735

in a single archive. For simplicity we ignore heterogeneity in e-types for each m-type, thus the population736

counts NX correspond to the count per m-type in the reconstructed microcircuit. Note for the present network737

description that {X,Y,m} ∈ {L4_PC,L4_LBC,L5_TTPC1,L5_MC}.738
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Population geometry. The centers of somatic compartments for all cells i ∈ X were distributed with even739

probability within a circular radius of 210 µm corresponding to the radius of the reconstructed somatosen-740

sory column in Markram et al. [2015]. The corresponding depths were drawn from the normal distribution741

N (zsoma
X , σsoma

z,X ) using population-specific mean and standard deviations given in Fig 4A. Neuron positions742

resulting in any neuron compartments protruding above the hypothetical cortical surface at z = 0 or below743

layer 6 at z = −2082 µm were redrawn from the depth distribution. All cells were rotated around their local744

vertical z-axis by a random angle θ ∈ [0, 2π).745

Synapse models. For synapses made by cells in a presynaptic population X onto a postsynaptic population746

Y we used synapse model files provided with the single-cell model files from the NMC portal. There are747

two base models with connection-specific parameterization which were obtained from the portal. Excitatory748

synapses are modeled as probabilistic AMPA and NMDA receptors, while inhibitory synapses are modeled749

as probabilistic GABAA receptors. Both synapse types were modeled with presynaptic short-term plasticity.750

The synapse parameterization procedure and validation is described in detail in Markram et al. [2015], with751

code implementations based on Fuhrmann et al. [2002]. The synapse parameters are summarized in Table 1,752

detailing the synapse model names, average synaptic conductances gsyn and corresponding standard devia-753

tions σsyn
g , release probabilities Pu, relaxation time constants from depression τDep, relaxation time constants754

from facilitation τFac, ratios of NMDA vs. AMPA (excitatory connections only), rise and decay time constants755

τ r
U and τd

U of the two-exponential conductances of each current type U ∈ {AMPA,NMDA,GABAA}, and756

reversal potentials esyn. Random conductances for each individual synapse were drawn from the capped nor-757

mal distribution N (gsyn, σsyn
g )H(g − gmin). For our network we set the minimum synaptic conductance to be758

gmin = 0 nS.759

Extrinsic input. Synapses from external inputs to the neurons in our network were modeled similarly to ex-760

citatory synapses of intrinsic network connections. For inputs to a population Y in layer L we chose to761

duplicate the synapse parameters of connections made by the presynaptic excitatory population within the762

same layer (as we were unable to assess what parameters were used for extrinsic connections in Markram763

et al. [2015]). Our synapse parameters are given in Table 2. For each cell in the network we created next764

synapses set randomly onto dendritic and apical compartments with compartment specificity of connections765

Sjn/
∑
n∈{dend,apic} Sjn, where Sjn denotes surface area of compartment n of cell j. The random activation766

times of each synapse were set using Poisson processes with rate expectation νext for the duration of the767

simulation. The values for next and νext are given in Fig 4A, and were set by hand in order to maintain spiking768

activity in all populations.769

Connectivity model. Random connections in our network were set using the Python-implementation of the770

‘connection-set algebra’ of Djurfeldt [2012]; Djurfeldt et al. [2014] (https://github.com/INCF/csa). Using this771

formalism, we constructed boolean connectivity matrices C
(r)
Y X for postsynaptic cells j(r) ⊂ Y distributed772

across each separate parallel MPI rank (denoted by the superset ‘(r)’ for rank number) and presynaptic cells773

i ∈ X. Each instance of C(r)
Y X had shape (NX × Nj(r)⊂Y ), with entries equal to True denoting connections774

from cell i to j(r), as expressed mathematically by775

C
(r)
Y X(CY X)(i, j(r)) =

{
True with probability CY X ,

False otherwise .
(33)

For X = Y and i = j(r), entries in C
(r)
Y X were set to False (no autapses). We used fixed connection probabil-776

ities CY X as obtained from the NMC portal between our chosen m-types.777

Multapses. As multiple synapses per connection appear to be a prominent feature in cortical networks (see778

Reimann et al. [2015]; Markram et al. [2015] and references therein), we drew for every connection between779

presynaptic cell i and postsynaptic cell j a random number of synapses nsyn rounded to an integer from the780
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capped normal distribution N (nsyn, σsyn
n )H(n). Conduction delays from action-potential detection (thresh-781

old θAP = −10 mV) in cell i for each corresponding synapse onto cell j were drawn from the distribution782

N (δ
syn
, σsyn

δ
)H(δ − δmin). For our network we set the minimum delay δmin = 0.3 ms for all connections.783

Layer-specificity of connections. In order to position each individual synapse of a connection on a cell j ∈ Y ,
in a simplified manner that depended on the degree of overlap between presynaptic axons and postsynaptic
dendrites (‘Peter’s rule’), we calculated for each postsynaptic population Y layer-specificities of connections
LY XL in layer L for synapses made by presynaptic populations X [Hagen et al., 2016], by first computing
the sums ∆siXL =

∑
n∈axon ∆sinXL, that is, the total axon length of a presynaptic cell type per layer L and

sums ∆sjY L =
∑
n∈{soma,dend}∆sjnY L of total dendrite and soma length for each postsynaptic cell type

across each layer. Then we defined the layer-specificity of connections as

LY XL =
√

∆siXL∆sjY L/
∑
L

√
∆siXL∆sjY L .

The sums
∑
L LY XL = 1 for all X and Y . Synapse sites of connections onto cell j were then set randomly784

with a compartment specificity of connections Sjn
∑
L PrN (LY XL,∆L/2)(znj)/

∑
n Sjn, where Sjn is the sur-785

face area of compartment n of the cell j centered at depth znj and PrN (...) the probability density function of786

the distribution N (LY XL,∆L/2). ∆L denotes the thickness of layer L.787

All connectivity parameter values (CY X , nsyn, σsyn
n , δ

syn
, σsyn

δ
,LY XL) are summarized in Table 3. Visual788

representations of CY X , nsyn and LY XL are shown in Fig 4B, C and D. Panel E shows 20 cells in each789

population X with corresponding distribution of NX somas across depth (∆z = 50 µm) in panel F. Panel G790

shows the resulting distribution of synapses across depth for all combinations of Y and X (∆z = 50 µm).791

Computation of extracellular potentials inside cortical column. For our multicompartment neuron network792

we chose to compute the extracellular potential vertically through the center of the column, with the most793

superficial contact at the top of layer 1 (z = 0) to a depth of z = −1500 µm within layer 6. The inter-contact794

distance was ∆z = 100 µm, and contacts were assumed to be circular with radius rcontact = 5 µm and surface795

normal vectors aligned with the horizontal y-axis. For the electrode surface averaging we used m = 50 (cf.796

Eq (8) and Lindén et al. [2014]). For the calculation of extracellular potential inside the cortical column we797

assumed a homogeneous, isotropic, linear and ohmic extracellular conductivity σe = 0.3 S/m.798

Computation of ECoG signal from Method-of-Images. The extracellular potential on top of cortex (ECoG)799

was computed by means of the Method-of-Images (MOI, see Section 2.2.2). In the example, the conductivity800

below the contact was set as σG = σT = 0.3 S/m, corresponding to the gray-matter value used above, while801

the conductivity on top of cortex was to set to be fully insulating, i.e., σT = 0 S/m. This could correspond to the802

situation where a grid of ECoG contacts are embedded in an insulating material (see, for example, Castagnola803

et al. [2014]). We further considered a single circular ECoG disk electrode with contact radius r = 250 µm804

with its surface normal vector perpendicular to the brain surface. The disk electrode was centered at the805

vertical population axis and positioned at the upper boundary of layer 1. For the disk-electrode approximation806

(cf. Eq (8)) we set m = 500. (Note that the present MoI implementation requires all transmembrane currents807

to be represented as point sources confined within the boundaries of the middle (cortical) layer.808

Computation of EEG and MEG signals. The most direct approach for computing EEG and MEG signals809

would be to (i) compute the per-neuron current dipole moment, (ii) compute the contribution to the signals810

from each neuron, and (iii) sum these signals to get the total EEG and MEG signals from the entire network.811

To reduce the computational demands, we instead compute the per-population current dipole moment pX(t)812

using Eq (12). The total current dipole moment is then obtained by summing over all populations, i.e., p =813 ∑
X pX .814

From pX we computed the EEG (surface electric potentials on the scalp layer) of the four-sphere head815

model as described above, and similarly magnetic fields Bp. For the four-sphere head model we assumed816
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conductivities σs ∈ {0.3, 1.5, 0.015, 0.3} S/m and radii rs ∈ {79, 80, 85, 90} mm for brain, cerebrospinal fluid817

(CSF), skull and scalp, respectively [Nunez and Srinivasan, 2006; Næss et al., 2017]. We positioned each818

population current dipole pX below the brain-CSF boundary on the vertical z-axis (thus x = y = 0) at819

z = r1 + zsoma
X , where zsoma

X was the average soma depth within each population. Surface potentials, i.e.,820

EEG potentials, and magnetic fields where computed for polar angles θ ∈ [−π/4, π/4] with angular resolution821

∆θ = π/16 as illustrated in Fig 5E (azimuth angles ϕ = 0), resulting in a contact separation along the arc822

of r4π/16 ≈ 18 mm. Different magnetoelectroencephalogram (MEG) equipment may be sensitive to different823

components of the magnetic field [Hämäläinen et al., 1993]. We show different scalar components of the824

magnetic field computed on the surface of the four-sphere head model as described above (in Section 2.3.5).825

Simulation details. Simulations were run for a total duration of T = 1500 ms with a simulation step size826

dt = 0.0625 ms (16 kHz sampling frequency). The first 500 ms were discarded as startup transient. All827

neurons were initialized at a membrane voltage V m
init = −77 mV and temperature Tcelsius = 34◦C (affecting828

membrane-channel dynamics).829

2.7. Technical details830

All source codes and development history of past and present versions of LFPy are publicly available831

on GitHub (see https://github.com/LFPy/LFPy), using ‘git’ (https://git-scm.com) for code provenance tracking.832

LFPy is released with an open-source software licence (GPL), which alongside GitHub functionality for listing833

issues, integration with automated testing, easy forking, local development and merges of upstream changes,834

facilitates continued, community-based LFPy development.835

LFPy2.0 requires Python (continuously tested w. v2.7, v3.4-3.6), an MPI (message-parsing interface)836

implementation such as OpenMPI, NEURON v7.4 or newer compiled with MPI and bindings for Python,837

Cython, and the Python packages mpi4py, numpy, scipy, h5py, csa (https://github.com/INCF/csa) and Neu-838

roTools (http://neuralensemble.org/NeuroTools). In order to run all example files also matplotlib and Jupyter839

(http://jupyter.org) have to be installed, but prebuilt Python distributions such as Anaconda840

(https://www.continuum.io) should provide these common Python packages, or provide easy means of in-841

stalling LFPy dependencies (issuing, for example, "conda install mpi4py" on the command line). Detailed in-842

structions for installing dependencies for common operating systems (MacOS, Linux, Windows) are provided843

in the online LFPy documentation (http://lfpy.readthedocs.io).844

The latest stable LFPy release on the Python Package Index (https://pypi.python.org) can be installed by845

issuing:846

$ pip install LFPy --user847

which may prompt the install of also other missing dependencies. The command848

$ pip install --upgrade --no-deps LFPy849

may be used to upgrade an already existing installation of LFPy (without updating other dependencies). In850

order to obtain all LFPy source codes and corresponding example files, we recommend users to checkout the851

LFPy source code on GitHub, after installing the git version control software:852

$ cd <path to repository folder>853

$ git clone https://github.com/LFPy/LFPy.git854

$ cd LFPy855

$ pip install -r requirements.txt856

$ python setup.py develop --user857

More detail is provided on http://lfpy.readthedocs.io.858

Reproducibility. The simulated results and analysis presented here were made possible using Python 2.7.11859

with the Intel(R) MPI Library v5.1.3, NEURON v7.5 (1472:078b74551227), Cython v0.23.4, LFPy860

(github.com/LFPy/LFPy, SHA:0d1509), mpi4py v2.0.0, numpy v1.10.4, scipy v0.17.0, h5py v2.6.0, parameters861

(github.com/NeuralEnsemble/parameters, SHA:v0aaeb), csa (github.com/INCF/csa, SHA:452a35) and mat-862

plotlib v2.1.0 running in parallel using 120-4800 cores on the JURECA cluster in Jülich, Germany, composed863
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Table 1: Summary of intrinsic synapse parameters.
postsynaptic population (Y )

parameter L4_PC L4_LBC L5_TTPC1 L5_MC

pr
es

yn
ap

tic
po

pu
la

tio
n

(X
)

L4_PC syn. model
gsyn (nS)
σsyn
g (nS)
Pu
τDep (ms)
τFac (ms)
NMDA ratio
τ r
AMPA (ms)
τd
AMPA (ms)
τ r
NMDA (ms)
τd
NMDA (ms)
esyn (mV)

ProbAMPANMDA
0.3
0.11
0.859
670
17
0.4
0.2
1.737
0.29
43
0

ProbAMPANMDA
0.3
0.11
0.398
560
130
0.4
0.2
1.74
0.29
43
0

ProbAMPANMDA
0.3
0.11
0.5
670
17
0.4
0.2
1.742
0.29
43
0

ProbAMPANMDA
0.3
0.11
0.093
140
660
0.4
0.2
1.742
0.29
43
0

L4_LBC syn. model
gsyn (nS)
σsyn
g (nS)
Pu
τDep (ms)
τFac (ms)
τ r
GABAA (ms)
τd
GABAA (ms)
esyn (mV)

ProbGABAAB
0.89
1.3
0.213
730
21
0.2
7.604
-80

ProbGABAAB
0.33
0.15
0.254
700
21
0.2
8.373
-80

ProbGABAAB
0.98
1.3
0.226
750
21
0.2
7.364
-80

ProbGABAAB
0.33
0.16
0.253
710
21
0.2
8.349
-80

L5_TTPC1 syn. model
gsyn (nS)
σsyn
g (nS)
Pu
τDep (ms)
τFac (ms)
NMDA ratio
τ r
AMPA (ms)
τd
AMPA (ms)
τ r
NMDA (ms)
τd
NMDA (ms)
esyn (mV)

ProbAMPANMDA
0.29
0.11
0.5
670
17
0.4
0.2
1.743
0.29
43
0

ProbAMPANMDA
0.3
0.11
0.369
550
140
0.4
0.2
1.743
0.29
43
0

ProbAMPANMDA
0.31
0.11
0.5
670
17
0.4
0.2
1.744
0.29
43
0

ProbAMPANMDA
0.3
0.11
0.092
150
690
0.4
0.2
1.741
0.29
43
0

L5_MC syn. model
gsyn (nS)
σsyn
g (nS)
Pu
τDep (ms)
τFac (ms)
τ r
GABAA (ms)
τd
GABAA (ms)
esyn (mV)

ProbGABAAB
0.66
0.15
0.3
1200
2.1
0.2
8.291
-80

ProbGABAAB
0.33
0.15
0.25
700
21
0.2
8.295
-80

ProbGABAAB
0.66
0.15
0.299
1200
2.2
0.2
8.271
-80

ProbGABAAB
0.33
0.15
0.252
710
21
0.2
8.339
-80
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Table 2: Synapse parameters for extrinsic input.
postsynaptic population (Y )

parameter L4_PC L4_LBC L5_TTPC1 L5_MC

pr
es

yn
ap

tic
po

p.
(X

)

ext syn. model
gsyn (nS)
σsyn
g (nS)
Pu
τDep (ms)
τFac (ms)
NMDA ratio
τ r
AMPA (ms)
τd
AMPA (ms)
τ r
NMDA (ms)
τd
NMDA (ms)
esyn (mV)

ProbAMPANMDA
0.3
0.11
0.859
670
17
0.4
0.2
8.291
0.29
43
0

ProbAMPANMDA
0.33
0.15
0.254
700
21
0.4
0.2
8.295
0.29
43
0

ProbAMPANMDA
0.31
0.11
0.5
670
17
0.4
0.2
8.271
0.29
43
0

ProbAMPANMDA
0.33
0.15
0.252
710
21
0.4
0.2
8.339
0.29
43
0

of two 2.5 GHz Intel Xeon E5-2680 v3 Haswell CPUs per node (2 x 12 cores), running the CentOS 7 Linux864

operating system. Each node had at least 128 GB of 2133 MHz DDR4 memory. All software packages were865

compiled using the GNU Compiler Collection (GCC) v4.9.3. All source codes for this study will be provided as866

LFPy example files on GitHub.867
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Table 3: Summary of connectivity parameters.
postsynaptic population (Y )

parameter L4_PC L4_LBC L5_TTPC1 L5_MC

pr
es

yn
ap

tic
po

pu
la

tio
n

(X
)

L4_PC CY X
nsyn

σn,syn

δsyn (ms)
σδ,syn (ms)
LY XL1

LY XL2

LY XL3

LY XL4

LY XL5

LY XL6

0.076
3.3
1.4
1.35
0.867
0.0
0.058
0.152
0.336
0.454
0.0

0.042
7.9
3.0
1.17
0.763
0.0
0.0
0.0
0.53
0.47
0.0

0.11
4.3
1.7
1.433
0.817
0.0
0.069
0.106
0.105
0.719
0.0

0.034
7.6
2.7
1.521
0.978
0.0
0.0
0.0
0.0
0.73
0.27

L4_LBC CY X
nsyn

σn,syn

δsyn (ms)
σδ,syn (ms)
LY XL1

LY XL2

LY XL3

LY XL4

LY XL5

LY XL6

0.063
16.0
6.2
1.006
0.367
0.0
0.0
0.1
0.672
0.228
0.0

0.062
14.0
6.0
1.076
0.395
0.0
0.0
0.0
0.818
0.182
0.0

0.056
17.0
7.2
1.064
0.399
0.0
0.0
0.109
0.328
0.563
0.0

0.027
10.0
3.5
1.677
0.494
0.0
0.0
0.0
0.0
1.0
0.0

L5_TTPC1 CY X
nsyn

σn,syn

δsyn (ms)
σδ,syn (ms)
LY XL1

LY XL2

LY XL3

LY XL4

LY XL5

LY XL6

0.011
2.5
0.89
2.374
0.811
0.0
0.02
0.129
0.244
0.608
0.0

0.0069
6.1
2.1
2.227
0.903
0.0
0.0
0.0
0.379
0.621
0.0

0.063
6.2
2.6
1.445
0.653
0.0
0.02
0.078
0.066
0.836
0.0

0.045
9.2
3.1
1.372
0.577
0.0
0.0
0.0
0.0
0.739
0.261

L5_MC CY X
nsyn

σn,syn

δsyn (ms)
σδ,syn (ms)
LY XL1

LY XL2

LY XL3

LY XL4

LY XL5

LY XL6

0.04
12.0
3.9
1.91
0.994
0.111
0.13
0.249
0.329
0.18
0.0

0.035
12.0
3.7
1.732
0.663
0.0
0.0
0.0
0.735
0.265
0.0

0.083
14.0
5.6
2.252
1.549
0.136
0.187
0.209
0.124
0.344
0.0

0.038
12.0
3.4
1.341
0.787
0.0
0.0
0.0
0.0
0.926
0.074
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3. Results868

3.1. Single-neuron activity and extracellular measurements869

The first version of LFPy [Lindén et al., 2014] assumed the active model neurons to be embedded in870

an infinite homogeneous volume conductor and was most suited to compute extracellular potentials (spikes,871

LFPs) inside the brain. One new feature of LFPy2.0 compared to the first version of LFPy is that electrical872

potentials outside cortex (ECoG, EEG), as well as magnetic fields both inside and outside cortex (MEG),873

can be computed. These new measures are illustrated in Fig 2 for a single synaptically activated pyramidal874

neuron.875

Fig 2A presents a basic LFPy simulation example where a passive neuron model with simplified morphol-876

ogy receives a single synaptic input current (inset I). We computed the extracellular potential in the xz-plane877

(color image plot), using the assumption of line sources for each dendritic compartment, a spherical current878

source representing the soma, and homogeneous conductivity (Eq (7)). The postsynaptic response is re-879

flected as a somatic depolarization (inset II) and as a deflection in the extracellular potential in the location880

r (blue dot, inset III). The corresponding current dipole moment p(r, t) was computed using Eq (12) and is881

illustrated by the black arrow. The x- and z-components of the current dipole moment are illustrated in inset882

IV, and we note the much larger dipole moment component in the vertical z-direction compared to the lateral883

x-direction. We do not show the y-component of the current dipole moment as all segments in this simplified884

neuronal morphology are located in the xz-plane (hence p · ŷ = 0).885

To illustrate the fact that a current dipole potential (Eq (15)) gives a good approximation to the extracellular886

potential φ far away from the neuron, we compare with results from using the more comprehensive line-source887

method (Eq (6)) in panel B: The line-source potential φ is shown inside the dashed circle of radius r > 500 µm,888

while the dipole potential φp is shown outside the circle. The inset shows the dipole potential corresponding889

to the colored dots located at a distance of 750 µm.890

In panel C we similarly compute the magnetic field for radii r > 500 µm using the current dipole mo-891

ment (Eq (30)), and axial currents inside (Eq (32)). The axial currents were computed from per-compartment892

membrane potentials as described in Section 2.1.2. For both color image plot and the inset, we show the893

dominating magnetic field component, i.e., the y-component. As for the electrical potential in panel B, we see894

that the predicted magnetic fields match well at the r = 500 µm interface.895

Panel D illustrates the layout of scalp-layer measurement sites on the four-sphere head model described896

in Section 2.3.3. The numbered points along the outer scalp layer represents measurement locations for897

EEG and MEG signals. The single current dipole moment is positioned beneath the CSF-brain boundary on898

the vertical z-axis (see caption for details). Panel E shows the corresponding scalp surface potentials which899

is dominated by the z-component of the current dipole moment (p · ẑ, panel A inset IV). Panel F shows900

the corresponding dominant tangential magnetic field component (Bp · ϕ̂) computed from the current dipole901

moment using Eq (30). At the center location (location 5) only the x-component (p · x̂) contributes to the902

signal, in the other locations both the x- and y-components contribute.903

3.2. Network activity and extracellular measurements904

The second main new feature of LFPy2.0 is the possibility to simulate recurrently connected networks of905

neurons in parallel. Our exemplary network, shown in Fig 4, demonstrating this new feature is based on a sub-906

set of cortical single-cell models, synapse models and connectivity data from Markram et al. [2015] obtained907

from The Neocortical Microcircuit Collaboration (NMC) Portal [Ramaswamy et al., 2015]. The implementation908

is described in detail in Section 2.6.909

In addition to supporting simulations of neuronal networks with biophysically detailed single-neuron mod-910

els in parallel, LFPy2.0 allows for concurrent calculations of extracellular measures of network activity. Specif-911

ically, the extracellular potentials at specific positions can be computed at each time step which avoids the912

memory-demanding process of recording transmembrane currents in all compartments for the duration of the913

simulation, either to disk or to memory. In the present example, the current dipole moment was calculated914
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at every time step, and this amounted to a useful dimensionality reduction, as only the x, y, z-axis compo-915

nents of p per population X had to be stored. Assuming serial execution, then for each neuron population916

X, the total memory consumption is then reduced by a factor 3/(NXn
seg) where NX is the population size917

and nseg the number of compartments per neuron (see panel A for values), compared to storing currents.918

The per-population current dipole moments were then used to predict EEG scalp surface potentials and MEG919

signals in the corresponding locations. Note that per-population current dipole moments can be stored, EEG920

and MEG signal can be computed with other head models at a later stage.921

3.2.1. Network spiking activity922

Fig 5 shows the various predicted measurements for a one-second period of network activity. The spike923

raster and corresponding spike-count histogram (panels A and B) demonstrate the network’s tendency to pro-924

duce synchronous irregular patterns of activity with the parameterization summarized in Section 2.6, Tables925

1-3 and Fig 4B. The per-neuron spike occurrences in the excitatory populations L4_PC and L5_TTPC1 were926

sparser than for the inhibitory populations L4_LBC and L5_MC. As in the full circuit of Markram et al. [2015], it927

is possible that an asynchronous network state could have been obtained by modifying extracellular [Ca2+]o-928

dependent release probabilities Pu for the different synapse types in the model [Borst, 2010; Markram et al.,929

2015]. A modification of release probabilities can shift the effective balance between excitatory and inhibitory930

synapse activations, but also incorporation of a larger sample of heterogeneous cell types in the model could931

have brought the network into an asynchronous state, essentially by increasing the amount of inhibitory feed-932

back. In particular interneuron expression in neocortex is known to be more heterogeneous and more dense933

than demonstrated here [Markram et al., 2004, 2015]. However, as our main focus here is to present new934

simulation technology now incorporated in LFPy, we did not pursue this line of inquiry.935

3.2.2. Local field potentials (LFPs)936

The extracellular potentials as would be measured by a 16-channel laminar probe positioned through937

the center axis of the cylindrical column, are shown in Fig 5C. The computed extracellular potentials are938

observed to be of the same order of magnitude as experimentally measured spontaneous potentials ('0.1–939

1 mV, see Maier et al. [2010]; Hagen et al. [2015]; Reyes-Puerta et al. [2016]). We further observe that940

the synchronous events seen in the spiking activity (panel A) are reflected as substantial fluctuations in the941

extracellular potential with amplitudes close to 0.5 mV.942

The signals in neighboring channels are further observed to be fairly correlated with comparable ampli-943

tudes, irrespective of the presence of somatic compartments at the depths of the contacts (Fig 4F). At the944

superficial channels 1–6, deflections in the electric potential following synchronous network activation are945

predominantly negative, while a change in sign occur around channel 7 (near the boundary between layer 3946

and 4). The strongest deflections of the extracellular potential are typically observed at contacts within layer947

5 (ch. 11–13), that is, at depths corresponding to the dense branching of basal dendrites and somas of the948

large layer 5 pyramidal neuron population. These deflections reflect that the soma compartments and basal949

dendrites are expected to act as dominant sources of the transmembrane currents setting up the extracellular950

potential [Lindén et al., 2010]. Adding further to this, layers 4 and 5 also had the highest overall densities of951

excitatory and inhibitory synapses in the present model (Fig 4G). Some spike events (extracellular signatures952

of action potentials) are seen in ch. 14, produced by one or several neurons located near the virtual recording953

device.954

Further investigation of the different contributors (Fig 6A-D) to the extracellular potential (Fig 5C), revealed955

that most of the signal variance across depth can be explained by transmembrane currents of the two excita-956

tory populations (Fig 6E). Even if the cell numbers in the two pyramidal-cell population were similar, population957

L5_TTPC1 contributed more to the signal than population L4_PC at all channels except at channel 9 (around958

which the L4_PC somas are positioned).959
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3.2.3. ECoG signal960

Fig 5D compares the extracellular potential in the topmost channel 1 (gray line), predicted under the961

assumptions of dendritic line sources, somatic spherical sources and an infinite homogeneous extracellular962

medium (cf. Eq (7)), with our ECoG prediction at the same depth (black line). The ECoG signal was computed963

assuming a wide contact (rcontact = 250 µm) aligned horizontally on top of a flat cortex (z = 0). Further, for964

the ECoG signal the method-of-images (MoI; cf. Eq (11)) was used to account for a conductivity discontinuity965

at the cortical surface. Here, zero conductivity (mimicking, for example, the situation with an insulating mat966

surrounding the ECoG contact [Castagnola et al., 2014]) was assumed above the cortical surface, while the967

grey-matter value of σe = 0.3 S/m was assumed below.968

The amplitude of the ECoG trace was slightly increased compared to the potential measured by the smaller969

electrode. This amplitude increase can be attributed to the fact that a reduction in conductivity above the970

boundary would decrease the value of the denominator of Eq (11), and hence increase the signal amplitude971

below insulating cortical surfaces [Pettersen et al., 2006]. The expected increased signal amplitude from this972

conductivity step is here counter-measured by the larger diameter of the ECoG contact (rcontact = 250 µm973

vs. rcontact = 5 µm) resulting in an increased average distance from the signal source to the contact point974

averaged over the contact’s surface. Detailed investigation of each signal normalized to the same standard975

deviation (not shown) revealed virtually indistinguishable features across time and in their power spectra.976

3.2.4. Current dipole moments977

Fig 5E shows the three components of the total current dipole moment p stemming from the network ac-978

tivity. The most striking feature is the much larger z-component compared to the lateral x- and y-components.979

This large difference in component size, about two orders for magnitude, reflects (i) that the vertically aligned980

pyramidal cell morphologies span across several layers, and (ii) the near rotational symmetry of the model981

populations around the z-axis. Unlike the z-component, the lateral components largely cancel out. In the same982

way as for the extracellular potential, the two pyramidal populations are also the dominant sources of the total983

dipole moment (Fig 6F-J). We also note that the z-component of the population current dipole moment gener-984

ally dominates the other components of the population dipoles, with the exception of the L4_LBC population.985

Here all components are tiny, reflecting the stellate dendritic morphology and the evenly distributed synapses986

onto the neurons in this population.987

For our model network we note that the maximum magnitude of the current dipole moment is about988

0.1 nAm, which is about two orders of magnitude smaller than previously estimated typical ’mesoscopic’989

dipole strengths [Hämäläinen et al., 1993, p. 418].990

3.2.5. EEG signals991

As a demonstration of predicting non-invasive electric (‘EEG’) signals outside of the brain with LFPy2.0,992

we utilized the four-sphere head model (as implemented in class FourSphereVolumeConductor, see993

Methods) and defined scalp-layer measurement locations as illustrated in Fig 5F. We assumed the modeled994

network to represent a piece of cortical network positioned at the top of a cortical gyrus, so that the popu-995

lation axes were in the radial direction of the spherical head model. The current dipoles (computed above)996

were positioned below the interface between the CSF and the brain, more specifically the layer-4 and layer-5997

population dipoles were positioned at the depth of the center of layer 4 and layer 5, respectively.998

As observed in Fig 5G, the temporal form of the scalp potentials corresponds directly to the temporal999

form of the dominant z-component of the current dipole moment in panel E. For an infinite volume conductor1000

it follows directly from Eq (15) that the recorded scalp potential will be proportional to this dipole moment1001

at recording positions directly (radially) above the dipole location. Likewise, inspection of the formulas for1002

the four-sphere head model shows that this is also the case for the scalp-potential contributions from both1003

the radial (Eq (16)–Eq (17)) and tangential (Eq (18)–Eq (19)) dipole components (although with different1004

proportionality constants for the two components).1005

For the present example network comprising 5594 neurons of which 5077 are pyramidal cells, we observe1006

the magnitudes of the fluctuating scalp potential directly on top of the dipole sites to be on the order of 0.1 µV.1007
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This is about two orders of magnitude smaller than the typical size of measured EEG signals of∼10 µV [Nunez1008

and Srinivasan, 2006, Fig. 1.1].1009

The weakly conducting skull layer (compared to the highly conductive brain, spinal fluid and scalp layers)1010

results in a spatial ‘low-pass filter effect’ from volume conduction [Nunez and Srinivasan, 2006, Ch. 6]. This1011

low-pass effect accounts for the relatively weak attenuation of the EEG signal with lateral distance from the1012

center position (position 5 in panel F) along the head surface, as observed in panel G. On the surface of a1013

spherical volume conductor with homogeneous conductivity inside the sphere, but otherwise zero conductiv-1014

ity outside the sphere’s surface (1-sphere head model), the potential from a current dipole would decay in1015

amplitude at a higher rate compared to our 4-sphere head-model case with a spherical skull layer with low1016

conductivity. However, in an infinite homogeneous volume conductor the decay in electric potential along the1017

putative sphere’s surface would decay with a lower rate than both the 1-sphere and 4-sphere head models,1018

see Nunez and Srinivasan [2006, Ch. 6] for a comparison.1019

3.2.6. MEG signals1020

The computed current dipole moments in Fig 5E was also used to compute MEG signals. Panel H shows1021

the computed magnetic fields for the same set-up providing the EEG signals in panel G, that is, radially1022

oriented population current dipoles. In this situation the only sizable magnetic field is directed in the tangential1023

direction around the vertical z-axis. With our spherical coordinates this corresponds to the ϕ-direction where1024

the unit vector ϕ̂ points in counter-clockwise direction. Note also that the magnetic field is almost zero straight1025

above the dipole (position 5), as here the vectors p and R are near parallel so that the vector product in Eq (30)1026

is very small. We also observe that the magnetic field is symmetric around the center position (position 5), so1027

that the field at position 6 is always similar to the field at position 4, and so on.1028

For EEG signals, equivalent radial dipoles located at the ‘crowns’ of gyri are generally expected to give1029

the largest signal contributions [Nunez and Srinivasan, 2006]. For MEG signals, on the other hand, equivalent1030

current dipoles in brain sulci oriented tangentially to the head surface is expected to provide the largest1031

signals [Hämäläinen et al., 1993]. In Fig 5I we thus show the magnetic field with the current dipole moment1032

in panel E directed in a tangential direction (that is, in the y-direction into the paper in panel F) rather than1033

in the radial direction. In this situation the largest magnetic field component is in the tangential direction θ̂1034

(around the y-axis) in position 5. The ϕ̂-component is as expected negligible, while the radial component is1035

antisymmetric around position 5, but negligible in position 5.1036

Typical magnetic fields measured in human MEG are on the order of 50–500 fT [Hämäläinen et al., 1993],1037

and in Fig 5I we find that magnetic fields of similar magnitudes (∼100 fT) are predicted when the current1038

dipole moment from our network is oriented in parallel to the cortical surface. Note, however, that in our1039

model set-up, the dipole is only 11 mm away from the closest MEG sensor at position 5, while in human1040

recordings the minimum distance between tangential dipoles in brain sulci and the MEG sensors may be1041

several centimeters [Hämäläinen et al., 1993]. As the magnetic field from a current dipole decays as the1042

square of the distance (see Eq (30)), our model likely gives an overestimate of the contribution to the MEG1043

signal from our model network when applied to a human setting.1044

In Fig 5H we also observe sizable magnetic fields (∼20–40 fT) generated by radially-oriented current1045

dipoles. However, the generated fields are in the angular φ-direction where the fields have opposite directions1046

on each side of the central position (position 5). Thus, in a setting with several such neighbouring dipoles1047

(generated by neighbouring populations) on cortical gyri, there will be large cancellations effects. Despite the1048

larger distances from the MEG sensors, tangentially oriented dipoles in sulci is therefore expected to dominate1049

the measured MEG in human settings [Hämäläinen et al., 1993].1050

3.3. LFPy parallel network performance1051

In order to assess the performance figures of multicompartment-neuron network implementations in LFPy1052

on a high-performance computing (HPC) facility, we performed a series of simulations with two-population1053

versions of the network presented above. These modified networks consisted only of the layer-5 m-types1054
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Figure 4: Details of the example network. A Biophysically detailed neuron models of the network, with depth-values of boundaries of
layers 1-6. The lower left table summarizes population names (X – presynaptic; Y – postsynaptic) which here coincide with morphology
type (m); electric type (e); cell model #; compartment count per single-cell model (nseg

j ); number of cells NX in each population;
occurrence FX (defined as NX/

∑
X NX ); the number of external synapses on each cell next; rate expectation of external synapses

νext; the expected mean zsoma
X and standard deviation σsoma

z,X of the normal distribution N from which somatic depths are drawn. B
Pairwise connection probability CY X between cells in presynaptic populations X and postsynaptic populations Y . C Average number
nsyn of synapses created per connection between X and Y . D Layer specificity of connections LY XL [Hagen et al., 2016] from each
presynaptic population X onto each postsynaptic population Y . Gray values denote LY XL = 0. E Illustration of cylindrical geometry of
populations including a laminar recording device for extracellular potentials (black circular markers) and a single ECoG electrode above
layer 1 (gray line). n = 20 neurons of each population are shown in their respective locations. F Laminar distribution of somas for
each network population (∆z = 50 µm) in one instantiation of the circuit. G Laminar distribution of synapses across depth onto each
postsynaptic population Y from presynaptic populations X (∆z = 50 µm).
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Figure 5: Intra- and extracellular measures of activity in example network. A Spike raster plot for each population. Each row of dots
corresponds to the spike train of one neuron, color coded by population. B Population spike rates computed by summing number of spike
events in each population in temporal bins of width ∆t = 5 ms. C Extracellular potentials as function of depth assuming an infinite volume
conductor. D Extracellular potential on top of cortex (ECoG) assuming a discontinuous jump in conductivity between brain (σ = 0.3 S/m)
and a non-conducting cover medium (σ = 0 S/m) and electrode surface radius r = 250 µm. The signal is compared to the channel
1 extracellular potential in panel C (gray line). E Component-wise contributions to the total current dipole moment p(t) summed over
population contributions. F Illustration of upper half of the four-sphere head model (with conductivities σs ∈ {0.3, 1.5, 0.015, 0.3} S/m and
radii rs ∈ {79, 80, 85, 90} mm for brain, csf, skull and scalp, respectively), dipole location in inner brain sphere and scalp measurement
locations. The sites in the xz-plane numbered 1-9 mark the locations where electric potentials and magnetic fields are computed, each
offset by an arc length of r4π/16 ≈ 18 mm. G EEG scalp potentials from multicompartment-neuron network activity with radially
oriented populations. H Tangential and radial components of the head-surface magnetic field (MEG) from multicompartment-neuron
network activity with radially oriented population. I Tangential and radial components of the magnetic field (MEG) on the head surface,
with underlying dipole sources rotated by an angle θ = π/2 around the x-axis (thus with apical dendrites pointing into the plane). (Note
that at position 5, the unit vectors ϕ̂ and θ̂ are defined to be directed in the positive y- and x-directions, respectively.)
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Figure 6: Per-population contributions to the extracellular potential and current dipole moment and corresponding signal vari-
ance. A-D Contributions to the extracellular potential from populations X ∈ {L4_PC, L4_LBC, L5_TTPC1, L5_MC} in the network
across depth. E Extracellular potential variance across depth for contributions of each population, and for the sum over populations. F-I
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35

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 14, 2018. ; https://doi.org/10.1101/281717doi: bioRxiv preprint 

https://doi.org/10.1101/281717


L5_TTPC1 and L5_MC. We modified cell counts per population NX and connection probabilities CY X de-1055

pending on chosen network population sizes NX as noted in the text below. All other simulation parameters1056

were kept fixed as given in Tables 1-3.1057

First, we compared set-up times, creation times of populations and connections, and simulation times1058

for instantiations of similarly sized reference networks (N (1)
L5_TTPC1 = 2400, N

(1)
L5_MC = 480) for different1059

number of MPI processes NMPI (Fig 7A). NMPI was set identical to the number of available physical cores1060

(no multi-threading). A seed value for the random number generator for each network instantiation was varied1061

to obtain an N = 3 sample size for each tested value of NMPI. Both with predictions of extracellular potentials1062

and current dipole moments (continuous lines) and without (dotted lines), the biggest fraction of the total1063

computational time was spent during the main simulation part (red curves), that is, where the simulation is1064

advanced time step by time step. The additional computational cost of computing extracellular potentials and1065

current dipole moments was less than half compared to just simulating the spiking activity in the recurrently1066

connected network. The times spent creating all recurrent connections and synapses (green curves) were1067

between a factor 16 and 32 shorter than the simulation time.1068

The creation of connections and simulation times scaled strongly with NMPI. An optimal, or strong, log-1069

log-linear scaling curve can be represented as a function t(NMPI) ∝ N−1
MPI, in particular for NMPI ≤ 480, as1070

these NMPI-values result in an even load balance across parallel processes with the presently used round-1071

robin distribution of cells across MPI processes (see Section 2.5 for details). Each parallel process has the1072

same number of cells of each m-type, segments (nseg
j ) and state variables corresponding to different active1073

ion-channel models. Only variations in per-cell in-degrees (synapse counts) across different processes and1074

simulations occurred due to the random network connectivity model, but even with different random seeds in1075

each trial the trial variability was small (error bars denoting standard deviations are hardly seen).1076

The creation of populations (orange curves) however showed worse scaling behaviour for NMPI > 480,1077

in part due to uneven load balance. Another possible reason for reduced performance was the increased1078

strain on the file system as all processes simultaneously access the same single-neuron source files upon1079

instantiating individual NetworkCell objects. This might have been avoided by creating local copies of the1080

necessary files on each compute node, but we did not pursue this here as the overall time spent instantiating1081

neuron populations was only a fraction of the observed simulation times. The loading of parameters and1082

other needed data (blue curves) was, as expected, fairly constant for different values of NMPI as we did not1083

parallelize the corresponding code.1084

As a second scaling-performance test, we ran series of simulations with NMPI = 480 but varied the total1085

network size by a factor b ∈ {0.2, 0.25, 0.5, 1, 2, 4} while keeping the expected number of connections KY X1086

(and thus the number of synapses) between pre- and post-synaptic populations X and Y fixed (Fig 7B). The1087

expected number of randomly created (binomially distributed) connections KY X was calculated using the1088

relation [Potjans and Diesmann, 2014]:1089

CY X = 1−
(

1− 1

NXNY

)KY X

, (34)

with reference network size (N (1)
L5_TTPC1 = 2400, N

(1)
L5_MC = 480) and connection probabilities CY X as given1090

in Table 3. Similar to the test presented in panel A, most of the total computation time was spent during the1091

main simulation part (red curves), followed by creation of connections (green curves) and loading of different1092

parameters (blue curves).1093

In contrast to the previous case, the creation of cells in the network displayed strong scaling with network1094

size (which implies a relationship t(r) ∝ b). The supra-optimal scaling seen for connections can be explained1095

by the creation of similar connection counts across different factors b. (Note that supra-optimal scaling implies1096

that t(r) ∝ bq with exponent q ∈ (0, 1), while sub-optimal scaling implies that q > 1.) For the tested factors1097

b = 0.25 and b = 0.5 we expected sub-optimal scaling for creating populations and connections, as well as for1098

simulation duration. These b-values gave different cell counts and thus inhomogeneous load-balances across1099
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MPI processes, which was unavoidable with the presently used round-robin parallelization scheme. A jump in1100

performance was seen for b = 0.2 which resulted in only one multicompartment neuron and corresponding1101

calculations on each MPI process.1102

As a third scaling-performance test we fixed the mean per-cell synapse in-degree kY X (count of incoming1103

connections per cell) and reran network simulations for different network sizes (Fig 7C). The total number1104

of connections was thus set to bK
(1)
Y X and corresponding connection probabilities CY X were recomputed1105

accordingly using Eq (34). As expected, this modification mostly affected the time spent creating connections1106

(green curve), and resulted in a near-linear performance curve for scaling factors b ≥ 1.1107

As a final performance assessment we repeated the experiment described above with upscaled networks1108

and increased MPI pool sizes. In Fig 8A we set the reference network population sizes N (1)
L5_TTPC1 = 120001109

and N (1)
L5_MC = 2400 and varied NMPI between 600 and 4800. LFPy’s parallel performance was strong also1110

here, and Fig 7A consequently shows trends similar to the findings for the smaller network. Here, the time1111

spent creating populations (orange curves) was reasonably invariant for different NMPI values, and increased1112

overall by some factor 2-4 compared to the previous case. The parameter loading times were similar, while1113

the time spent connecting the network was increased by a factor ∼ 4, but the simulation times increased only1114

by a factor . 2. The differences in connection and simulation times seen here, can be explained by the fact1115

that the typical synapse in-degrees were not preserved. Instead, the synapse in-degrees were increased for1116

the larger network, as we used the connection probability values defined in Table 3.1117

In Fig 8 panels B and C we set NMPI = 2400, and varied the network population sizes relative to the1118

reference network population sizes in panel A by the factor b ∈ {0.2, 0.25, 0.5, 1, 2, 4}. Again, the performance1119

figures were in qualitative agreement with the previous results for the smaller network and smaller MPI pool1120

sizes. The population creation times and simulation times with and without signal predictions displayed strong1121

scaling with relative network size. The time spent loading parameters was increased by a small amount (by1122

a factor . 2), which likely reflected the increased strain on the file and communication system on the cluster,1123

due to larger MPI pool sizes. The times spent creating the populations were also here near ideally dependent1124

on NMPI in both panels B and C. As the total number of connections (and synapses) were conserved across1125

network population sizes in panel B, the connection times varied only by a factor two from the smallest to the1126

largest network. In panel C, where the number of connections per neuron was kept approximately constant, a1127

doubling in network size resulted in a doubling in connection times. The larger network simulations required1128

approximately twice the amount of time, compared to the smaller network simulations in Fig 7. In panel C,1129

simulations with LFP predictions consistently failed for the largest network size (b = 4), most likely due to lack1130

of available memory to create arrays for storing current dipole moments and extracellular potentials with the1131

increased count of instantiated connections.1132

4. Discussion1133

In the present paper we have presented LFPy2.0, a majorly revised version of the LFPy Python package1134

with several added features compared to its initial release [Lindén et al., 2014].1135

4.1. New features in LFPy2.01136

The first version of LFPy only allowed for the computation of electrical measurements from activity in single1137

neurons or, by trivial parallellization, populations of neurons only receiving feedforward synaptic input. LFPy2.01138

allows for simulations of recurrently connected neurons as well, for example the types of neuronal networks1139

in cortex. Further, the first version of LFPy was tailored to compute extracellular potentials (spikes, LFPs)1140

inside the brain. Here it was assumed that all active neurons were embedded in an infinite homogeneous1141

(i.e., same extracellular conductivity everywhere) and isotropic (i.e., same extracellular conductivity in all1142

directions) volume conductor (Section 2.2.1). LFPy2.0 includes several new features and measures of neural1143

activity:1144
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Figure 7: Parallel performance with networks in LFPy. A Initialization of parameters (par.), population create (pop.), connectivity
build (conn.) and main simulation time (sim.) as functions of number of physical CPU cores/MPI processes (NMPI). The reference
network population sizes N(1)

X for X ∈ {L5_TTPC1,L5_MC} are given in the panel title. The network was otherwise constructed
with synapse, stimulus and connectivity parameters for each possible connection as given in Tables 1-3. Times shown with continuous
lines were obtained for simulations that included calculations of extracellular potentials and current dipole moments as in Figures 2-6 (w.
E.P.), while times shown with dotted lines were obtained for simulations with no such signal predictions (w.o. E.P.). Each data value is
shown as the mean and standard deviation of times obtained from N = 3 network realizations instantiated with different random seeds.
B Initialization of parameters, population create, connectivity build and main simulation time as functions of network size relative to the
reference network population sizesN(1)

X forX ∈ {L5_TTPC1,L5_MC} as given in the panel title. The superset ‘(1)’ denotes a relative

network size b = 1. Simulations were run using a fixed MPI process count NMPI and connection probabilities C(r)
Y X were recomputed

for different values of b, such that the expected total number of connectionsK(1)
Y X was constant between each simulation (using Eq (34)).

The set-up was otherwise identical to the set-up in panel A. C Same as panel B, but with a fixed expected per-cell synapse in-degree
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Figure 8: Parallel performance with networks in LFPy II. A Similar to Fig 7A, but with network population sizes upscaled by a factor
5, and a corresponding increase in parallel job sizes. B-C Similar to Fig 7B-C, but with network population sizes and parallel job sizes
increased by a factor 5.
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• Stepwise discontinuities in the extracellular conductivity, such as at the cortical surface, can be included1145

by means of the Method-of-Images (Section 2.2.2) to compute potentials immediately below or on the1146

cortical surface (i.e., electrocorticographic recordings; ECoG). This approach can also be applied in the1147

computation of potentials recorded by microelectrode arrays (MEAs) [Ness et al., 2015].1148

• Cylindrical anisotropic conductivity (Section 2.2.3) can be included in the computation of spikes and1149

LFPs, reflecting for example that in cortex and hippocampus the conductivity might be larger in the1150

depth direction (along the apical pyramidal-neuron dendrites) than in the lateral directions [Goto et al.,1151

2010].1152

• Current dipole moments from single neurons and populations of neurons are computed (Section 2.3.1)1153

for later use in calculation of signals of systems-level electrical and magnetic recordings (EEG, ECoG,1154

MEG), also for more detailed head models than what is considered presently in LFPy2.0 (as described1155

in next two items).1156

• Electrical potentials at the scalp (electroencephalographic recordings; EEG) are computed from the1157

current dipole moments and spherical head models, in particular the four-sphere head model [Nunez1158

and Srinivasan, 2006; Næss et al., 2017], cf. Section 2.3.3. This four-sphere head also predicts ECoG1159

signals (Section 2.3.4).1160

• Magnetic fields outside the head (magnetoencephalographic recordings; MEG) can be computed from1161

the current dipole moments assuming a spherically symmetric head model (Section 2.3.5). Likewise,1162

magnetic field inside the brain can be computed directly from neuronal axial currents (Section 2.4).1163

LFPy2.0 also includes much more rigorous code testing with more than 260 unit tests, automated build1164

testing with TravisCI (travis-ci.org/LFPy/LFPy) with different versions of Python (2.7, 3.4-3.6), test coverage of1165

code using coveralls (coveralls.io/github/LFPy/LFPy), automated documentation builds using Read the Docs1166

(http://lfpy.readthedocs.io), and several updated example files, as well as new examples demonstrating differ-1167

ent scientific cases using the new functionalities. The software runs on a wide variety of operating systems,1168

including Linux, Mac OS and Windows.1169

4.2. Example applications1170

To illustrate some of the new measurement modalities incorporated in LFPy2.0 we showed in Fig 2 the LFP1171

and EEG signature of a simple pyramidal-like neuron receiving a single excitatory synaptic input on its apical1172

dendrite. In this example the extracellular medium was assumed to be homogeneous, and a characteristic1173

dipolar profile was observed in the extracellular potential (panel B). The accuracy of the far-field electrical1174

dipole approximation (Eq (15)) for distances of a few millimeters or more away from the neuronal source, was1175

also demonstrated. The corresponding magnetic field set up by the neuron (panel C) was quite distinct from1176

the electric potential pattern, but also here far-field magnetic dipole approximation (Eq (30)) was observed to1177

be accurate some distance away.1178

To illustrate the implementation of networks in LFPy2.0 we showed in Section 2.5 a code example for a1179

small network using simplified ball-and-stick neurons connected by conductance-based synapses. Our main1180

example applications were on a network of about 5500 morphologically and biophysically detailed neuron1181

models from the reconstructed somatosensory cortex column of Markram et al. [2015], connected using1182

probabilistic synapse models with short-term plasticity. For this example, Fig 6 provided results for a one-1183

second epoch of network activity where spikes (panels A, B), LFPs inside the cortical model column (panel1184

C), the ECoG signal recorded at cortical surface (panel D), and the net current dipole moment (panel E)1185

were depicted. The computed current dipole moment was further used to compute the corresponding EEG1186

signal with the four-sphere head model for the situation where the model network was placed on top of a1187

cortical gyrus where the apical dendrites of the pyramidal neurons, and thus the current dipole moment, is1188

pointing in the radial direction (panel G). The same current dipole moment was also used to compute the1189
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MEG signal, assuming a spherically-symmetric head volume-conductor model, both for the case when the1190

net current dipole is directed perpendicular (panel H) and parallel (panel I) to the scalp. The latter situation1191

could correspond to the case where the model network is positioned in a cortical sulcus.1192

While the example network was set up mainly to demonstrate the new features in LFPy2.0, some of the1193

example results are notable. As expected the two excitatory pyramidal cell populations in the network provided1194

almost all of of the recorded LFP signal (except in the deep layers where the layer-5 inhibitory Martinotti-cell1195

population also gave a sizable contribution), cf. Fig 7E. Likewise, the two excitatory pyramidal cell populations1196

also gave the dominant contributions to the net current dipole moment providing the EEG and MEG signals1197

(Fig 7J).1198

For the present example network comprising about 5000 pyramidal neurons, we observed the maximum1199

magnitude of the EEG signal to be about 0.1 µV (Fig 6G), that is, about two orders of magnitude smaller1200

than the typical size of measured EEG signals of ∼10 µV [Nunez and Srinivasan, 2006, Fig. 1.1]. Thus our1201

example model network appears too small, that is, it incorporates too few pyramidal neurons, to account for1202

the typical experimentally recorded EEG signal amplitudes.1203

The maximum magnetic field computed at the cortical surface was seen in Fig 5H–I to be about 100 fT,1204

that is, similar in magnitude to typical magnetic fields measured by MEG sensors in a human setting (∼50–1205

500 fT [Hämäläinen et al., 1993]). However, our model predictions assumed the minimum distance between1206

the current dipoles and the magnetic-field recording device to be only about a centimeter, likely much smaller1207

than the typical minimal distance between the dominant tangential dipoles in cortical sulci and the human1208

MEG sensors. Since the magnetic field around a current dipole decays as the square of the distance, our1209

modeling likely substantially overestimates the magnetic field that would produced by the computed current1210

dipoles in a human setting.1211

4.3. Use of LFPy1212

Comparison of candidate models with experiments. An obvious application of LFPy is, following the tradition1213

of physics, to (i) compute predictions of the various available measures of neural activity from different candi-1214

date models and (ii) identify which model, or which class of models, is in best agreement with the experimental1215

data. While not always possible, the approach is preferably pursued on multimodal data measured simulta-1216

neously (for example simultaneous recordings of spikes, LFP and ECoG). The multi-objective comparison of1217

experimental data with candidate models is a subject on its own, and will not be discussed here (but see, for1218

example, Druckmann et al. [2007]).1219

Validation of data analysis methods. Neuroscience relies on data analysis, and data analysis methods should1220

be validated [Denker et al., 2012]. An important application of LFPy could be to provide model-based ground-1221

truth benchmarking data for such validation. This approach has already been used with biophysically de-1222

tailed neuron models to test methods for spike sorting [Einevoll et al., 2012; Hagen et al., 2015; Lee et al.,1223

2017], neuron classification [Buccino et al., 2017], estimation of firing rates from multi-unit activity (MUA) [Pet-1224

tersen et al., 2008], current-source density (CSD) analysis [Pettersen et al., 2008; Łęski et al., 2011; Ness1225

et al., 2015], independent component analysis (ICA) [Głąbska et al., 2014] and laminar population analysis1226

(LPA) [Głąbska et al., 2016].1227

Likewise, LFPy could be used to aid in the interpretation of various statistical measures of electrophysi-1228

ological activity such as spike-triggered LFP or mutual information [Einevoll et al., 2013]. The interpretation1229

of these measures in terms of the underlying neural network activity is a priori not trivial, but intuition and1230

understanding can be gained by LFPy model investigations where simulation results can be compared with1231

neural activity directly. An example of this was given in Hagen et al. [2016]. There the spike-triggered LFP as1232

measured in the model simulation was compared with other ways of accounting for spike-LFP relationships1233

with a simpler physical explanation, that is, the LFP signature following activation of a presynaptic neural1234

population.1235
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It should be noted that the LFPy network model does not necessarily have to be finely tuned to a particular1236

experimental system in order for it to be suitable for validation of data analysis methods: Methods claimed to1237

have fairly general applicability should also be applicable to biologically plausible example network models.1238

Testing of simplified modeling schemes. LFPy now allows for the concurrent simulation of intracellular (mem-1239

brane potential) and extracellular signals (spikes, MUA, LFP, EEG, MEG) for recurrent networks of biophys-1240

ically and morphologically detailed neuron models. Such network models are computationally demanding to1241

run [Markram et al., 2015], in particular when extracellular signals are computed simultaneously [Reimann1242

et al., 2013]. A computationally less demanding alternative is a hybrid LFP scheme where the network dy-1243

namics, that is, spikes, are modeled with simple point-neuron models such as the integrate-and fire model,1244

and the stored spikes are played back in a second computational step computing the extracellular potentials1245

using multicompartment neuron models [Mazzoni et al., 2015; Hagen et al., 2016].1246

This scheme requires that salient features of spiking activity of networks of detailed multicompartment1247

neuron models can be accurately captured by point-neuron network models. This was for example demon-1248

strated by Rössert et al. [2016] who reproduced key network behaviour of a reconstructed somatosensory1249

column [Markram et al., 2015] by systematic mapping of synaptic input to somatic responses in generalized1250

leaky integrate-and-fire neurons. Likewise, the accuracy of the second step in the hybrid scheme where the1251

extracellular potential is computed, can be systematically tested by comparing resulting predicted extracellular1252

potential with the ground-truth potentials provided by LFPy. The same approach can naturally also be applied1253

to test other simplified schemes for computing extracellular signals.1254

4.4. Possible refinements of measurement models in LFPy1255

Frequency-dependence of extracellular conductivity. The present forward-modeling schemes for electrical1256

potentials assume the extracellular conductivities σe to be independent of frequency. If such a frequency1257

dependence is found and described, it can in principle be straightforwardly incorporated by considering each1258

frequency (Fourier) component of recorded signal independently. This was, for example, pursued in Miceli1259

et al. [2017] where each frequency component of the spikes and LFP signals were computed independently1260

(i.e., each frequency component had a specific value of σe and a corresponding phase shift required by the1261

Kramers-Kronig relations to preserve causality) and eventually summed to provide the full electric potential.1262

However, on balance the experimental evidence points to at most a weak frequency dependence of σe with1263

only minor putative effects on the recorded spikes and LFPs [Miceli et al., 2017]. Therefore, the present1264

approximation in LFPy2.0 to assume a frequency-independent conductivity σe, seems warranted.1265

Modeling of ECoG signals. LFPy2.0 provides two different methods for computing ECoG signals, that is, sig-1266

nals at the cortical surface: the method-of-images (MoI) Section 2.2.2 and the four-sphere model Section 2.3.41267

which both have their pros and cons. The MoI method assumes a planar cortical interface and that the media1268

above this interface can be described electrically by means of a single isotropic electrical conductivity. The1269

four-sphere model assumes a spherical cortical surface and uses the far-field dipole approximation which1270

requires the dipolar sources to be sufficiently far away from the recording contacts. With the present use of1271

current dipole moments representing entire neuron populations, this approximation is challenged by the rel-1272

atively short distance between in particular the most superficial populations and the cortical surface [Næss,1273

2015]. A future project is to systematically explore the accuracy of these two methods for ECoG modeling, for1274

example by comparing their predictions for different situations.1275

The present forward modeling of electrical potentials are based on stylized spatial (planar/spherical ge-1276

ometries, step-wise varying conductivities) and directional (isotropy/cylindrical anisotropy) variations. More1277

complicated models for the variation of the extracellular conductivity can be accounted for by means of finite-1278

element modeling (FEM, Logg et al. [2012]; Lempka and McIntyre [2013]; Ness et al. [2015]; Næss et al.1279

[2017]) for which the ‘lead field’, that is, the contribution from transmembrane currents or dipole moments to1280

electric signals, always can be computed [Malmivuo and Plonsey, 1995]. FEM could, for example, be used to1281

explore in detail how the recording device affects the recorded ECoG signal when a grid of ECoG contacts1282
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are embedded in an insulating material (see, for example, Castagnola et al. [2014]), in analogy to the study1283

of multielectrode arrays (MEAs) in Ness et al. [2015].1284

More complicated head models. The current dipole moments computed by LFPy can also be used to compute1285

EEG and MEG signals based on geometrically detailed head models measured by MRI [Bangera et al., 2010;1286

DeMunck et al., 2012; Vorwerk et al., 2014; Huang et al., 2016]. Note, however, that geometrically detailed1287

head models do not automatically transfer to electrically detailed head models, and it is thus not always1288

clear how much accuracy is gained by using such models rather than the simpler head models currently1289

implemented in LFPy (see discussion in [Nunez and Srinivasan, 2006, Ch. 6]).1290

4.5. Possible improvements of LFPy code1291

While we here demonstrated a relatively strong scaling of parallel network implementations in LFPy, the1292

code itself could be further optimized for improving overall simulation speeds and reduced memory consump-1293

tion allowing for larger networks for any given MPI pool size.1294

One common way of improving efficiency of Python applications is rewriting ‘slow’ code to use Cython1295

(C-extensions for Python, http://cython.org, Smith [2015]). The current LFPy version uses Cython to a limited1296

extent, but remaining code bottlenecks could be identified and addressed accordingly. One potential problem1297

with efficient porting of parts of LFPy’s Python code to Cython is repeated calls to NEURON’s Python interface,1298

which from a performance point of view should be avoided.1299

One known bottleneck with parallel implementations of multicompartment neuron networks is uneven load1300

balance, resulting from the fact that individual neurons with very uneven numbers of compartments may be1301

assigned to the different MPI processes. Uneven load balance could potentially be addressed by incorporating1302

the multi-split method described in Hines et al. [2008], as it appears compatible with the presently used1303

CVode.use_fast_imem method (available since NEURON v7.4). LFPy could then be updated accordingly.1304

Even without the NEURON multi-split method, distribution of cells among MPI processes using a round-1305

robin scheme could, however, be optimized to level out large differences in compartment counts (and cor-1306

responding numbers of state variables). Memory consumption could also be addressed by choosing more1307

efficient memory structures or generators, for example, for connectivity management, and by avoiding in-1308

memory storage of output data wherever possible. File-based I/O operations during ongoing simulations may,1309

however, come at the expense of increased simulation times.1310

In terms of improved support for simulator-independent (agnostic) model description languages for neu-1311

ronal models such as NeuroML [Gleeson et al., 2010; Cannon et al., 2014] or NESTML [Plotnikov et al.,1312

2016], LFPy’s TemplateCell and NetworkCell classes already now support loading of active and pas-1313

sive single-neuron model files translated to NEURON’s HOC and NMODL languages from NeuroML and1314

NeuroML2 (now in development). A growing number of such single-neuron models is becoming available1315

through, for example the Open Source Brain initiative (http://www.opensourcebrain.org), which can readily be1316

used in order to construct new network models. While certainly doable, LFPy is at present not set up for auto-1317

matic loading of entire neuron networks specified in NeuroML. Also, single-cell and network models specified1318

using LFPy could, in principle, be possible to translate into NeuroML as well, which would allow for executing1319

such models using for example NetPyne (www.neurosimlab.org/netpyne) or LEMS [Cannon et al., 2014].1320

4.6. Other measurement modalities in LFPy1321

The present version of LFPy only models recording of electric and magnetic brain signals. Optical record-1322

ing methods are increasingly used in neurophysiology, however, and forward-modeling of such signals would1323

be a natural extension of the present functionality. In voltage-sensitive dye imaging (VSDi), the recorded sig-1324

nals reflects a weighted average of the membrane potentials, and such averages can be readily computed1325

since the membrane voltages in all neuronal compartments are computed during a network simulation sim-1326

ulation [Chemla and Chavane, 2010a,b]. This must then be combined with proper forward-modeling of the1327

propagation of the light through the brain tissue [Tian et al., 2011; Abdellah et al., 2015, 2017].1328
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Calcium imaging has become a wide-spread method for measuring neural dynamics [Grienberger and1329

Konnerth, 2012]. With the use of neuron models that explicitly includes dynamic modelling of the intracellular1330

calcium concentrations (for example, Hay et al. [2011]; Almog and Korngreen [2014]) such signals could be1331

directly modeled as well.1332

4.7. Outlook1333

While information in the brain might largely be represented by spike trains, we believe that tools such1334

as LFPy will be instrumental in testing candidate network models aiming to account for this information pro-1335

cessing. In the foreseeable future, experimental data against which candidate models can be tested will be a1336

limiting factor. It is thus key that such candidate models can be tested not only against spike trains, but also1337

other measurement modalities.1338

This updated version of LFPy makes a major step towards being a true multi-scale simulator of neural1339

circuits, allowing for flexible incorporation of highly detailed neuron models at the micrometer scale, yet able1340

to also predict recorded signals such as EEG and MEG at the systems-level scale. The largest network1341

considered in the here had 57,600 neurons. With the present code, not optimized for numerical efficiency, the1342

simulation of 1.5 seconds of biological time on this network required about 1600 CPU hours across 2400 MPI1343

processes. With optimized code, we expect that much larger networks can soon be addressed routinely as1344

ever more powerful computers gradually become available. The software is also publicly available on GitHub1345

and retains the open-source software license of its initial release, and our hope is that continued development1346

remains driven by needs and contributions of individuals and groups of researchers.1347
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