1	CREBBP and WDR 24 Affects Quantitative Variation in Red
2	Colouration in the Chicken
3	
4	
5	
6	Fogelholm, J. ¹ , Henriksen. R. ¹ , Höglund, A. ¹ , Huq, N. ¹ , Johnsson, M. ^{1,2} , Lenz, R. ³ ,
7	Jensen, P. ¹ , Wright, D. ¹
8	

9 Abstract

10	Plumage colouration in birds is important for a plethora of reasons, ranging from
11	camouflage, sexual signaling, and species recognition. The genes underlying
12	colour variation have been vital in understanding how genes can affect a
13	phenotype. Multiple genes have been identified that affect plumage variation, but
14	research has principally focused on major-effect genes (such as those causing
15	albinism, barring, and the like), rather than the smaller effect modifier loci that
16	more subtly influence colour. By utilizing a domestic x wild advanced intercross
17	with a combination of classical QTL mapping of red colouration as a quantitative
18	trait and a targeted genetical genomics approach, we have identified five
19	separate candidate genes (CREBBP, WDR24, ARL8A, PHLDA3, LAD1) that
20	putatively influence quantitative variation in red colouration in chickens. Such
21	small effect loci are potentially far more prevalent in wild populations, and can
22	therefore potentially be highly relevant to colour evolution.
23	
24	

26 Introduction

27	The presence of feathers is one of the most defining characteristics of birds.							
28	Feathers are not only specialized for flight but also to relay a plethora of visual							
29	signals to both friends and foes alike through specific visual patterns, such as							
30	camouflage (GLUCKMAN AND CARDOSO 2010), sexual signaling and displays which							
31	can influence sexual selection (WILKINS et al. 2016) and species recognition							
32	(SEDDON et al. 2013). One of the most striking aspects of the pattern is the							
33	colouration of the plumage, which can range from pure black or white to metallic							
34	greens and purples as well as oranges and reds. The colour of the feathers can be							
35	sourced from the environment, (LOPES et al. 2016) or synthesized internally with							
36	genetic regulation. The most common colours are produced by the melanins.							
37	These pigments come in two forms: eumelanin, which produces blacks and							
38	browns (GALVÁN AND SOLANO 2016) and pheomelanin, which produces reds,							
39	oranges and yellows that are similar in appearance to the carotenoid							
39 40	oranges and yellows that are similar in appearance to the carotenoid pigments(GALVÁN AND SOLANO 2016)							
40								
40 41	pigments(Galván and Solano 2016)							
40 41 42	pigments(GALVÁN AND SOLANO 2016) Domesticated animals are a classical example of extreme variability in							
40 41 42 43	pigments(GALVÁN AND SOLANO 2016) Domesticated animals are a classical example of extreme variability in pigmentation within species. A reduction in pigmentation and colouration							
40 41 42 43 44	pigments(GALVÁN AND SOLANO 2016) Domesticated animals are a classical example of extreme variability in pigmentation within species. A reduction in pigmentation and colouration complexity is usually considered as one of the key components of the							
40 41 42 43 44 45	pigments(GALVÁN AND SOLANO 2016) Domesticated animals are a classical example of extreme variability in pigmentation within species. A reduction in pigmentation and colouration complexity is usually considered as one of the key components of the domestication syndrome (WILKINS <i>et al.</i> 2014), however artificial selection has							
40 41 42 43 44 45 46	pigments(GALVÁN AND SOLANO 2016) Domesticated animals are a classical example of extreme variability in pigmentation within species. A reduction in pigmentation and colouration complexity is usually considered as one of the key components of the domestication syndrome (WILKINS <i>et al.</i> 2014), however artificial selection has also led to novel colour phenotypes in domesticated animals (LUDWIG <i>et al.</i> 2009;							
40 41 42 43 44 45 46 47	pigments(GALVÁN AND SOLANO 2016) Domesticated animals are a classical example of extreme variability in pigmentation within species. A reduction in pigmentation and colouration complexity is usually considered as one of the key components of the domestication syndrome (WILKINS <i>et al.</i> 2014), however artificial selection has also led to novel colour phenotypes in domesticated animals (LUDWIG <i>et al.</i> 2009; LINDERHOLM AND LARSON 2013; WRIGHT 2015). In the case of coat colouration,							

orange. Several of the domesticated chicken breeds such as the white leghorn
layer and commercial broiler breeds provide a stark contrast to the colourful
Red Junglefowl as they are completely white and display no sexual
dichromatism.

56 There are several genes implicated in plumage colour variation. We can 57 subdivide colour genes into three distinct classes depending on their mechanism. 58 Intra-individual patterning genes determine the patterns we can observe across 59 an individual. Intra-feather patterning genes determine the pattern within each 60 feather (e.g barred feathers(Schwochow Thalmann et al. 2017)). Finally we have 61 the colour determinants. These are genes that set the colour for each position 62 within the observed pattern. This can be either in a single feather or across an 63 individual. As an example of the independence of these types of colour loci, a 64 recent study in a hemimetabolous insect (LIU et al. 2016), concluded that the 65 genes influencing the patterning of the colours did not alter the intensity of the 66 pigmentation. This suggests that coat colour patterns are achieved through a 67 combination of patterning genes coupled to the genes that determine the 68 intensity of each colour.

69

Examples of causative genes for pigmentation include well studied colour
determining genes such as *MC1R* (involved in the melanin pathway where its
activation leads to the production of black eumelanin (HEARING 2011)) and *MITF*,
which activates the enzyme Tyrosinase (YASUMOTO *et al.* 1994), a rate limiting
step in the melanin synthesis pathway. These variants can all be considered of
major effect, in that they cause albinism, black plumage, etc in a binary fashion

(though often a variety of epistatic interactions also occur). However to the best
of our knowledge, smaller effect loci that have less extreme modifier effects, in
essence quantitative trait loci for plumage colour, have yet to be identified. In
wild individuals it may be of greater importance to more subtly modify coat
colouration, which is why many of the genes with more extreme phenotypic
effects are identified in laboratory or domestic populations.

82

To identify genes that regulate quantitative variation in the intensity of red 83 84 colouration, we utilized an advanced intercross between wild Red Junglefowl 85 and domestic White Leghorn chickens. The Red Junglefowl are elaborately 86 coloured, with feathers ranging from dark red to light orange, whereas the White 87 Leghorn birds are fixed for the dominant white locus and are pure white in 88 colour. The intercross birds display an enormous range of plumage colouration, 89 whilst genetically the advanced intercross gives far smaller confidence intervals 90 for detected QTL than standard F₂ intercrosses(DARVASI AND SOLLER 1995). The 91 study presented here utilizes multiple generations for this analysis. A large scale 92 QTL scan was performed using the F₈ generation, whilst further targeted 93 expression OTL (eOTL) studies were performed using the F_{10} and F_{12} generations 94 to assess candidate genes identified in the QTL scan. By using a combination of 95 targeted genetical genomics (whole genome transcriptomics of targeted 96 individuals) to simultaneously map eQTL and correlate gene expression with 97 intensity of red colouration, we identify 5 putatively causal genes affecting 98 quantitative variation in red plumage colouration in the chicken.

99

100

101 MATERIALS AND METHODS

102

103 Study animals

104	The animals used in this study come from three separate generations (F $_{8},F_{10}$ and
105	F_{12}) of an intercross between a Red Junglefowl male and three females from a
106	White leghorn selection line. Food and water was supplied ad libitum, see
107	(JOHNSSON et al. 2012) for further details of housing and the intercross. Each
108	generation typically consists of around 100 individuals, with the exception of the
109	F8 mapping population with 572 individuals reared in 6 batches. The $F_{\rm 10}$ and $F_{\rm 12}$
110	generations were also of approximately 100 individuals each, with 12 $F_{\rm 10}$ and 12
111	F ₁₂ individuals used in this study.
112	
113	Colour phenotyping

114 Wings were removed post-mortem from individuals after slaughter at 212 days 115 in the case of the F₈ individuals. Each wing was photographed using a tripod 116 mounted NIKON D5500 with a 40mm lens using a LF-PB-3 (Falcon Eyes) light 117 tent and two fixed 24Watt DULUX L (Osram) lights mounted to brackets to 118 ensure identical lighting conditions were used for each wing. A standardized blue 119 background was used for each shot, whilst an X-rite colour checker chart (with 120 both pure white and red coloured squares) was included in each photograph to 121 normalize colour levels. Wing photos were taken on the blue background, and a 122 corresponding image was taken of the blank background without the wing 123 present. Raw image quality was used for subsequent calculations. Two separate 124 phenotypes were extracted from each wing, peak and overall red intensity. Peak 125 intensity was measured by selecting an area of approximately 1cm² (~14000

126 pixels) in the area with the strongest representative red intensity observed by 127 eve in Adobe Photoshop CS6 and recording the median value from the red RGB 128 channel. This value was then divided by the value measured from the 'true' red 129 on the colour chart, to give a normalized peak red intensity for each wing. It is 130 worth noting that since white is composed of full saturation in all channels this 131 red value is negatively correlated with red colour, ie the darker red the feather is 132 the lower the relative colour score will be and vice versa. The second phenotype 133 uses the average red intensity measured across each wing. This was performed 134 using the following steps:

135

136 1. Colour correction:

137 The raw sensor measurements (pixel values without any of the usual processing 138 of the camera) were extracted from the image file using the program dcraw (see 139 http://www.cybercom.net/~dcoffin/dcraw/ for the original version of the 140 program and http://www.guillermoluijk.com/tutorial/dcraw/index_en.htm for a 141 tutorial describing the program). For each of the images the location of the white 142 patch of the colour checker with the highest intensity was automatically detected 143 and the mean RGB vector over all pixels in this patch was computed. The colour 144 vectors of all pixels in the image were then scaled (and converted to 16-bit 145 unsigned integer) such that the resulting pixels in the white patch had all the 146 same gray values. After this step all colour variations due to varying illumination 147 and camera conditions were eliminated and all images could be compared. 148

149 2. Geometric correction and compilation of the wing mask:

150

151 After normalization, colour correction registration points (essentially two 152 crosshairs on the left and the right side of the blue background) were 153 automatically detected in both images of an image pair. The locations of these 154 registration points were then used to compute the geometric transformation that 155 aligned the images without the wing with the image with the wing. Pixelpairs 156 with blue colour in the background image and non-blue colour in the wing image 157 define a mask indicating the location of the wing. 158 159 3. Extraction of red pixels:

The mask computed in the previous step is used to set all non-wing pixels to a 160 161 black background colour. Next the colour vectors in the masked image are 162 converted from the RGB colour space to the HSV colour space using the Matlab 163 function rgb2hsv. In this HSV the colour of a pixel is described by three values: H 164 is the hue (described by an angle), S is the saturation described by an interval 165 and finally V is the value, which is a non-negative number describing the 166 lightness. In the application only reddish pixels are of interest. The 167 corresponding region in colour space was defined as the region where the hue 168 value was between 0.6 and 0.7 and the saturation value was greater than 0.75. 169 Both the hue and the saturation values are located in the [0,1] interval. This 170 procedure thus isolates all the red patterned feathers from the rest of the wing. 171 After the pattern isolation, the red channel of the entire resulting trimmed image 172 was measured in Photoshop. Therefore this second phenotype takes the median 173 red intensity of every red area of the wing into consideration. The average value

8

for this second phenotype is 184.4 with a standard deviation of 42.4 compared to

the average value of 0.71 with a standard deviation of 0.18 for the single featheranalysis used for the eQTL analysis (see below).

177

178 A separate eQTL fine mapping population was used for expression 179 analyzes of budding feather tissue for candidate gene assessment in the 180 previously detected QTL regions identified in the F₈ generation. These birds 181 were individuals from both the F₁₀ and F₁₂ generations from the advanced 182 intercross ($n=12 F_{10}$ and $12 F_{12}$ birds). Multiple generations were required to 183 obtain a broad spectrum of red colour phenotypes. For these birds, growing 184 feather buds were selected from adult wings for use in both phenotyping and 185 gene expression assays. The feathers from each growing bud were removed and 186 used in the phenotyping assay, to ensure that the gene expression and colour 187 phenotype would match as closely as possible. These feathers were removed 188 from the bud and stacked in 3 layers to mimic the wing (where feathers are 189 overlapping). Red colour intensity was then measured using the same technique 190 as for the F_8 birds, with only the peak intensity measured. The developing basal 191 root of the feather follicle (calami) was then used for RNA extraction and 192 microarray analysis for eventual eQTL analysis.

193

194 RNA extraction

5-6 growing feathers of 2-3 cm length were collected from each individual. The
calamus was immediately cut from each feather and snap frozen in liquid
nitrogen for RNA extraction, the rest of the feather was kept at -30 and used for
colour measurements. RNA was extracted from a pooled sample of three to four
calami per individual which had been homogenized in Lysing matrix D tubes(MP)

200 Biomedicals) in a FastPrep(MP Biomedicals) using TRIzol (Sigma Aldrich) 201 reagent and following the manufacturers instructions. After quality checking the 202 RNA with RNA Nano Chips(Agilent Technologies) in an Agilent 2100 Bioanalyzer 203 to ensure that RNA was not degraded, the RNA was treated with DNAse I 204 (Thermo scientific) followed by cDNA synthesis using a RevertAID KIT from Life 205 technologies, and following the instructions provided with the kit. The cDNA was 206 again quality checked using a Bioanalyzer 2100 and RNA Nano chips(Agilent 207 Technologies) and subsequently labeled with a NimbleGen One colour labeling 208 kit(Roche) according to the manufacturers instructions. Finally the cDNA was 209 hybridized to NimbleGen 12x135k custom gene expression microarrays (Roche) 210 and scanned using a NimbleGen MS200 Microarray scanner (Roche). The custom 211 Microarrays have been used in previous publications by the group and contain 212 all known Ensembl and RefSeq genes as well as EST probes (for microarray 213 details see Johnsson et al. 2016). Microarrays were first preprocessed using 214 DEVA software to normalize the data and all arrays were processed together. 215

216 Genotyping, QTL mapping

217 DNA preparation was performed by Agowa GmbH (Berlin, Germany), using standard salt extraction. A total of 652 SNP markers were genotyped using an Illumina 218 219 GoldenGate system, and gave a map of length ~92675cM, with an average marker 220 spacing of ~ 16cM. QTL analysis was performed in R (R DEVELOPMENT CORE TEAM 221 2008) using the R/Qtl software package (BROMAN et al. 2003), with standard interval 222 mapping and epistatic analyzes performed. Interval mapping was performed using 223 additive and additive+dominance models. In the colour phenotyping QTL analysis 224 batch and sex were always included as fixed effects. To control for potential family

225	substructure, a Principal Component Analysis (PCA) of the genotype data was
226	performed, and the first ten PCs fitted as covariates in the model, with all significant
227	PCs retained in the final model (see (JOHNSSON et al. 2016) for further details). A sex
228	interaction was also added, where significant. Digenic epistatic analysis was
229	performed as per the guidelines provided in (BROMAN AND SEN 2009). Initially a
230	global model was used that incorporated standard main effects and sex interactions.
231	Epistasis was then built on this model, starting with the most significant loci and
232	working down for each trait. Significance thresholds were calculated by permutation
233	(CHURCHILL AND DOERGE 1994; DOERGE AND CHURCHILL 1996), with thresholds of
234	20% and 5% genome wide significance being the cut-offs for suggestive and
235	significant loci respectively. This corresponded to approximately LOD cut offs of 3.6
236	and 4.4. Confidence intervals were calculated using a 1.8 LOD drop method
237	(MANICHAIKUL et al. 2006). Epistasis thresholds were calculated in a similar manner,
238	with 20% and 5% genome-wide thresholds used.
239	
240	eQTL Mapping

241 The individuals in the F_{10} and F_{12} fine mapping eQTL population were genotyped for sixteen SNP markers which had been identified in the F8 mapping population 242 243 as being flanking markers for the QTL with the two colour phenotypes (see 244 supplementary table 1 for locations and primers). Five were located on chr2, 245 three on chr10 and chr14 respectively, and two markers on chr 15 and chr 11 246 and finally one marker on chr26, for a total of 16 markers. These SNP markers were all genotyped by pyrosequencing on a QIAGEN pyromark q24 using 247 248 QIAGEN GOLD reagents. DNA was extracted from blood using a standard salt 249 extraction protocol, except for a small number of individuals were blood samples

were missing and DNA was instead extracted from feathers using a modified
protocol for the Qiagen DNEasy kit with dithiothreitol(DTT) added to the lysis
step.

253

254	Analysis was performed using a three-step procedure. Initially, all genes that
255	were present in the colour QTL regions detected in the F_8 analysis were selected
256	as candidates (n=875, Reference genome version GalGal4). These probes were
257	then correlated with the specific red colour phenotype obtained for each feather
258	sample (see above), using a linear model to fit gene expression levels and colour
259	score using the lmFit function in the limma R package (RITCHIE et al. 2015; R
260	STUDIO TEAM 2016). All probes that had a significant association between gene
261	expression and colour score at a FDR significance level of 0.05 were retained (n=
262	76, see supplementary table 2). The last step was to perform eQTL mapping in
263	R/qtl, using standard interval mapping, with sex and batch (F_{10} or F_{12}) included
264	as fixed factors. All the genes from stage 2 were tested against the regions
265	genotyped using the 16 SNP markers mentioned above (on chromosomes 2, 10,
266	11, 14, 15 and 26). Permutation testing was used to set an experiment-wide
267	threshold for each gene (1000 permutations per gene), with a 5% significance
268	and a 20% suggestive threshold obtained (LOD values of \sim 3.0 and \sim 2.2
269	respectively). To control for the total number of genes (n=76), a principal
270	component analysis was first performed on these 76 genes. 7 significant
271	eigenvalues accounted for 97% of the total variation in the data. Thus, as it is
272	only required to control for the number of independent tests, a multiple testing
273	correction of 7 was added to each LOD threshold. Using a log_{10} transformation to
274	convert this to a LOD score, this gives an increase of 0.85 LOD to each threshold,

275 meaning an eQTL was suggestive with a LOD score of \sim 3.05, and significant with

- 276 a LOD score of ~3.85.
- 277
- 278
- 279 RESULTS
- 280 QTL analysis
- 281 QTL analyzes were performed using both peak red intensity and overall red
- intensity in the F_8 birds (n= 380). Three separate QTL were identified for peak
- intensity on chromosomes 2 at 149cM, chromosome 10 at 176cM, and
- chromosome 14 at 207cM. In the case of the loci on chromosomes 2 and 10, the
- 285 RJF genotype led to an increase in red intensity, whilst for the chromosome 14
- locus the WL genotype led to an increase in red intensity. Four separate QTL
- were identified for overall red intensity on chromosomes 2 (at 81cM), 11 (at
- 288 73cM), 15 (at 148cM) and 26 (at 0cM). Once again, for two of the loci (on
- chromosomes 2 and 15) the RJF genotype led to an increase in red intensity. The
- other loci on chromosomes 11 and 26 mainly acted through dominance rather
- than additive variation.
- 292

293 Targeted Expression Analyses

294 The loci that were identified using the initial genome-wide F₈ scan were then

assessed using gene expression data from the F_{10} and F_{12} generations. We

- correlated the expression levels to the relative intensity of red colouration with
- all genes (a total of 875 probesets) located within the confidence intervals of the
- seven QTL regions. After multiple testing corrections (FDR, p=0.05) were applied

we found 76 probesets that were correlated with the peak intensity of red

300 colouration. (FDR adjusted p-value < 0.05).

301

301	
302	In order to further narrow down the list of potential candidate genes we
303	performed an eQTL analysis using the probesets that correlated with colour
304	using a set of targeted markers within colour QTL. We detected six eQTLs
305	covering 5 genes that were genome-wide suggestive (including a multiple testing
306	correction for the total number of genes tested), two for genes associated with
307	overall red intensity and four that are associated with the peak red intensity (see
308	table 2). All were trans-eQTLs, being controlled from a region on chromosome 10
309	(15Mb).
310	
311	
312	A network of trans-eQTL between colour QTL
313	We see a trans regulation of candidate gene expression, with a locus on
314	chromosome 10 controlling multiple target sites. The most significant trans-
315	eQTL effect originates from chromosome 10 and controls two genes on
316	chromosome 14 (CREBBP and WDR24), and three genes on chromosome 26
217	(ADLOA DULDA2 and LAD1) and figure 2. There is also a calestive group (DUDIN

317 (*ARL8A*, *PHLDA3*, and *LAD1*), see figure 2. There is also a selective sweep (RUBIN

318 *et al.* 2010) located within the chromosome 10 QTL region around 500kb

319 downstream from our eQTL marker location and within the confidence interval

 $320 \quad \ \ for the colour QTL identified in the F_8 \ population.$

321

322

323 DISCUSSION

324 The aim of this study was to identify genes and genetic loci that affect red 325 colouration in the chicken. By treating colour as a quantitative trait, as opposed 326 to looking for solely discrete classes, we have identified a total of seven small 327 effect QTL that until now have been overlooked. Furthermore, by combining this 328 with a targeted genetical genomics approach in an additional population we have 329 identified five candidate genes affecting the intensity of red colouration. These 330 genes would be unlikely to have been identified using more classical (presence/ 331 absence of major genes) linkage methods. This is unsurprising given that the 332 average effect size was around 7% in our study, whilst the high degree of epitasis 333 between loci would have meant they would have been extremely hard to 334 pinpoint using single scan approaches. In particular chromosome 10 appears to 335 have a strong effect, controlling loci on chromosomes 14 and 26. It therefore 336 appears that this locus has trans acting effects in combination with epistasis. 337 This locus also contains a selective sweep that is fixed in domestic layer birds 338 (the majority of which are white), yet segregating in wild RJF. The presence of 339 this selective sweep adds weight to the evidence that this locus truly affects 340 colour intensity.

341

Several genes have been identified as affecting colour in the chicken,
however these are all major-effect genes that have been identified using a
classical linkage/ single gene approach. In the chicken, the Dominant White locus
(on chromosome 33, an allele of the *PMEL* gene) (KERJE *et al.* 2004), the classic
extended phenotype (E) linked to *MC1R* on chromosome 11 at 19Mb (TAKEUCHI *et al.* 1996; KERJE *et al.* 2003), and the Dark Brown (Db) locus on chromosome 1
(linked with SOX10) (GUNNARSSON *et al.* 2007) all affect pigmentation (white/

349 black in the case of Dominant White and E, and red in the case of Dark brown), 350 whilst sex-linked barring (on chromosome Z) and the *EDNRB2* (panda) locus in 351 quails (MIWA et al. 2007) primarily affect patterning. Despite these examples, 352 studies of pigmentation inheritance in crosses imply that many more genes have 353 vet to be identified. Specifically, to examine buff, brown and red colouration, 354 crosses have been made with a variety of breeds, including Junglefowl x Buff 355 Minorca and Rhode Island Red breeds (BRUMBAUGH AND HOLLANDER 1966), Brown 356 and Light Brown Leghorn breeds (SMYTH JR 1965), Dark Cornish and Black 357 breasted Red (KIMBALL 1955), and Villafranquina birds (CAMPO AND ALVAREZ 358 1988). These studies revealing a complex pattern of inheritance and multiple 359 modifier loci exist that affect pheomelanine. For example with the buff 360 phenotype, four autosomal factors were proposed, named ginger, mahogany, 361 dilute and champagne blond (BRUMBAUGH AND HOLLANDER 1966), whilst many 362 studies noted many variations in the intensity of the red colouration present, 363 even when segregating for a known major effect gene (SMYTH JR 1965) (CAMPO 364 AND ALVAREZ 1988). The wide variety of phenotypes that rapidly emerge indicate 365 that multiple epistatic interactions and numerous genes of small effect is the 366 norm, yet such modifier loci have yet to be identified. 367

The QTL that we report here overlap none of these previously identified
major effect loci. The genes and QTL are all novel loci (as affecting colour),

though in the case of the QTL on chromosome 11, this is around 4Mb

downstream of the *MITF* gene. It is possible that this locus is a modest trans

acting factor affecting the *MITF* gene, however no correlation was found between

373 any of the colour measurements and *MITF* expression. Interestingly, the linkage

374	between this locus and <i>MITF</i> may have even caused the effects to be erroneously
375	ascribed to <i>MITF</i> alleles. When considering the classical studies it is perhaps
376	logical that these modifier loci are discrete to the genes identified previously. For
377	example Dominant White is known to be ineffective against red pheomelanin,
378	whilst the silver allele for sex-linked silver (PMEL) has no discernible modifying
379	effect on red in females (KIMBALL 1955). Our study indicates that by
380	concentrating solely on such major genes, which are easier to identify, much
381	variation is missed.
382	
383	Of the candidate genes identified, particular interest comes from the
384	interaction and correlation seen between the gene <i>CREBBP</i> and red intensity.
385	CREBBP is controlled by the trans-acting eQTL locus on chromosome 10 that also

385

386 contains the selective sweep. CREBBP binds to CREB, whilst CREB itself is a

387 transcription factor strongly involved in melanin synthesis, principally by

388 binding and activating *MITF* via the cAMP response element (SAHA et al. 2006).

389 Given this role of *CREB* and its close interplay with *CREBP*, it therefore

390 represents an excellent candidate as small-effect modifier of red colouration via

391 melanogenesis to alter pheomelanine. Currently, CREBBP has primarily been

392 found to be involved with neuronal growth and development (SHARMA et al.

393 2010; LOPEZ-ATALAYA et al. 2011), so a role in feather colour expression is

394 relatively novel. Of the other candidate genes identified, WDR24 is a master

395 regulator of lysosome function. Given one function of lysosomes is to regulate

396 and degrade pigment molecules, this also represents another excellent candidate

- 397 gene. Similarly, the gene ARL8A, an acetylated Arf-like GTPase, is localized to
- 398 lysosomes and affects their mobility (HOFMANN AND MUNRO 2006). Of the

remaining genes, *PHLDA3* is implicated in tumour suppressor function, is a target
of p53 and also impedes somatic cell reprogramming (QIAO *et al.* 2017), whilst *LAD1* encodes ladinin-1, a collagenous anchoring filament protein that is
involved with the maintenance of cohesion at the dermal-epidermal boundary
(TEIXEIRA *et al.* 2015), and defects in this gene are related to linear IgA disease, an
autoimmune blistering disease (ISHIKO *et al.* 1996).

405

In summary, by treating the intensity of red colouration as a purely 406 407 quantitative trait and utilising a variety of advanced intercross generations and targeted gene expression profiling we are able to identify multiple small-effect 408 409 loci that interact to determine the red colouration present in RJF. Using a 410 targeted genetical genomics approach we are able to identify several high quality 411 candidate genes that appear to have direct relevance to the melanogenesis 412 pathway and can thus modify overall red intensity. As far as we are aware this is 413 the first study to identify QTL and candidate genes that can more subtly modify 414 the intensity of red colouration in feathers, with such small effect loci being 415 potentially far more prevalent in wild populations. 416

417 ACKNOWLEDGEMENTS

418 The research was carried out within the framework of the Swedish Centre of

419 Excellence in Animal Welfare Science, and the Linköping University Neuro-network.

420 SNP genotyping was performed by the Uppsala Sequencing Center. The project was

421 supported by grants from the Carl Tryggers Stiftelse, Swedish Research Council

422 (VR), the Swedish Research Council for Environment, Agricultural Sciences and

- 423 Spatial Planning (FORMAS), and European Research Council (advanced research
- 424 grant GENEWELL 322206).
- 425
- 426
- 427
- 428
- 429
- 430

431 References

432	Broman, K. W., and S. Sen, 2009 A guide to QTL mapping with r/qtl. Springer, New							
433	York.							
434	Broman, K. W., H. Wu, S. Sen and G. A. Churchill, 2003 R/qtl: QTL maping in							
435	experimental crosses. Bioinformatics 19: 889-890.							
436	Brumbaugh, J., and W. Hollander, 1966 Genetics of buff and related color							
437	patterns in the fowl. Poultry Science 45: 451-457.							
438	Campo, J., and C. Alvarez, 1988 Genetics of the black-tailed red plumage pattern							
439	in Villafranquina chickens. Poultry science 67: 351-356.							
440	Darvasi, A., and M. Soller, 1995 Advanced Intercross Lines, an Experimental							
441	Population for Fine Genetic Mapping. Genetics 141: 1199-1207.							
442	Galván, I., and F. Solano, 2016 Bird Integumentary Melanins: Biosynthesis,							
443	Forms, Function and Evolution. International Journal of Molecular							
444	Sciences 17: 520.							
445	Gluckman, T. L., and G. C. Cardoso, 2010 The dual function of barred plumage in							
446	birds: camouflage and communication. Journal of Evolutionary Biology							
447	23: 2501-2506.							
448	Gunnarsson, U., A. R. Hellstrom, M. Tixier-Boichard, F. Minvielle, B. Bed'hom et							
449	al., 2007 Mutations in SLC45A2 cause plumage color variation in chicken							
450	and Japanese quail. Genetics 175: 867-877.							
451	Hearing, V. J., 2011 Determination of melanin synthetic pathways. J Invest							
452	Dermatol 131: E8-E11.							
453	Hofmann, I., and S. Munro, 2006 An N-terminally acetylated Arf-like GTPase is							
454	localised to lysosomes and affects their motility. Journal of Cell Science							
455	119: 1494.							
456	Ishiko, A., H. Shimizu, T. Masunaga, T. Hashimoto, M. Dmochowski et al., 1996 97-							
457	kDa Linear IgA Bullous Dermatosis (LAD) Antigen Localizes to the Lamina							
458	Lucida of the Epidermal Basement Membrane. Journal of Investigative							
459	Dermatology 106: 739-743.							
460	Johnsson, M., I. Gustafson, CJ. Rubin, AS. Sahlqvist, K. B. Jonsson <i>et al.</i> , 2012 A							
461	Sexual Ornament in Chickens Is Affected by Pleiotropic Alleles at HAO1							
462	and BMP2, Selected during Domestication. PLoS Genetics 8: e1002914.							
463	Johnsson, M., M. J. Williams, P. Jensen and D. Wright, 2016 Genetical Genomics of							
464	Behavior: A novel chicken genomic model for anxiety behavior. Genetics							
465	202: 327-340.							
466	Kerje, S., J. Lind, K. Schütz, P. Jensen and L. Andersson, 2003 Melanocortin 1 -							
467	receptor (MC1R) mutations are associated with plumage colour in							
468	chicken. Animal genetics 34: 241-248.							
469	Kerje, S., P. Sharma, U. Gunnarsson, H. Kim, S. Bagchi <i>et al.</i> , 2004 The Dominant							
470	white, Dun and Smoky color variants in chicken are associated with							
471	insertion/deletion polymorphisms in the PMEL17 gene. Genetics 168:							
472	1507-1518.							
473	Kimball, E., 1955 Dark Cornish Plumage Pattern: A Preliminary Report. Poultry							
474	Science 34: 818-821.							
475	Linderholm, A., and G. Larson, 2013 The role of humans in facilitating and							
476	sustaining coat colour variation in domestic animals. Semin Cell Dev Biol							
477	24: 587-593.							

478	Liu, J., T. R. Lemonds, J. H. Marden and A. Popadic, 2016 A Pathway Analysis of							
479	Melanin Patterning in a Hemimetabolous Insect. Genetics 203: 403-413.							
480	Lopes, Ricardo J., James D. Johnson, Matthew B. Toomey, Mafalda S. Ferreira,							
481	Pedro M. Araujo <i>et al.</i> , 2016 Genetic Basis for Red Coloration in Birds.							
482	Current Biology 26: 1427-1434.							
483	Lopez-Atalaya, J. P., A. Ciccarelli, J. Viosca, L. M. Valor, M. Jimenez-Minchan <i>et al.,</i>							
484	2011 CBP is required for environmental enrichment-induced							
485	neurogenesis and cognitive enhancement. EMBO J 30: 4287-4298.							
486	Ludwig, A., M. Pruvost, M. Reissmann, N. Benecke, G. A. Brockmann <i>et al.</i> , 2009							
487	Coat color variation at the beginning of horse domestication. Science 324:							
488	485.							
489	Manichaikul, A., J. Dupuis, S. Sen and K. W. Broman, 2006 Poor Performance of							
490	Bootstrap Confidence Intervals for the Location of a Quantitative Trait							
491	Locus. Genetics 174: 481-489.							
492	Miwa, M., M. Inoue - Murayama, H. Aoki, T. Kunisada, T. Hiragaki <i>et al.</i> , 2007							
493	Endothelin receptor B2 (EDNRB2) is associated with the panda plumage							
494	colour mutation in Japanese quail. Animal genetics 38: 103-108.							
495	Qiao, M., M. Wu, R. Shi and W. Hu, 2017 PHLDA3 impedes somatic cell							
496	reprogramming by activating Akt-GSK3ß pathway. Scientific Reports 7:							
497	2832.							
498	R Development Core Team, 2008 R: A language and environment for							
499	statistical computing, pp.							
500	R Studio Team, 2016 R Studio: Integrated Development for R., pp.							
501	Ritchie, M. E., B. Phipson, D. Wu, Y. Hu, C. W. Law <i>et al.</i> , 2015 limma powers							
502	differential expression analyses for RNA-sequencing and microarray							
503	studies. Nucleic Acids Res 43: e47.							
504	Rubin, CJ., M. C. Zody, J. Eriksson, J. R. S. Meadows, E. Sherwood <i>et al.</i> , 2010							
505	Whole-genome resequencing reveals loci under selection during chicken							
506	domestication. Nature 464: 587-591.							
507	Saha, B., S. K. Singh, C. Sarkar, R. Bera, J. Ratha <i>et al.</i> , 2006 Activation of the Mitf							
508	promoter by lipid - stimulated activation of p38 - stress signalling to							
509	CREB. Pigment Cell & Melanoma Research 19: 595-605.							
510	Schwochow Thalmann, D., H. Ring, E. Sundstrom, X. Cao, M. Larsson <i>et al.</i> , 2017							
511	The evolution of Sex-linked barring alleles in chickens involves both							
512	regulatory and coding changes in CDKN2A. PLoS Genet 13: e1006665.							
513	Seddon, N., C. A. Botero, J. A. Tobias, P. O. Dunn, H. E. Macgregor et al., 2013							
514	Sexual selection accelerates signal evolution during speciation in birds.							
515	Proc Biol Sci 280: 20131065.							
516	Sharma, N., S. P. Jadhav and S. A. Bapat, 2010 CREBBP re-arrangements affect							
517	protein function and lead to aberrant neuronal differentiation.							
518	Differentiation 79: 218-231.							
519	Smyth Jr, J. R., 1965 Allelic relationship of genes determining extended black,							
520	wild type and brown plumage patterns in the fowl. Poultry science 44: 89-							
521	98.							
522	Takeuchi, S., H. Suzuki, M. Yabuuchi and S. Takahashi, 1996 A possible							
523	involvement of melanocortin 1-receptor in regulating feather color							
524	pigmentation in the chicken. Biochimica et Biophysica Acta (BBA)-Gene							
525	Structure and Expression 1308: 164-168.							

526	Teixeira, J. C., C. de Filippo, A. Weihmann, J. R. Meneu, F. Racimo <i>et al.</i> , 2015 Long-
527 528	Term Balancing Selection in LAD1 Maintains a Missense Trans-Species Polymorphism in Humans, Chimpanzees, and Bonobos. Mol Biol Evol 32:
529	1186-1196.
530	Wilkins, A. S., R. W. Wrangham and W. T. Fitch, 2014 The "Domestication
531 532	Syndrome" in Mammals: A Unified Explanation Based on Neural Crest Cell Behavior and Genetics. Genetics 197: 795-808.
533	Wilkins, M. R., H. Karaardic, Y. Vortman, T. L. Parchman, T. Albrecht <i>et al.</i> , 2016
534	Phenotypic differentiation is associated with divergent sexual selection
535	among closely related barn swallow populations. J Evol Biol 29: 2410-
536	2421.
537	Wright, D., 2015 Article Commentary: The Genetic Architecture of Domestication
538	in Animals. Bioinformatics and Biology Insights 9S4: BBI.S28902.
539	Yasumoto, K., K. Yokoyama, K. Shibata, Y. Tomita and S. Shibahara, 1994
540	Microphthalmia-associated transcription factor as a regulator for
541	melanocyte-specific transcription of the human tyrosinase gene.
542	Molecular and Cellular Biology 14: 8058-8070.
	Molecular allu cellular biology 14: 0050-0070.
543	
544	
545	
546	
010	
547	
F 40	
548	
549	
550	
551	
551	
552	
553	
554	

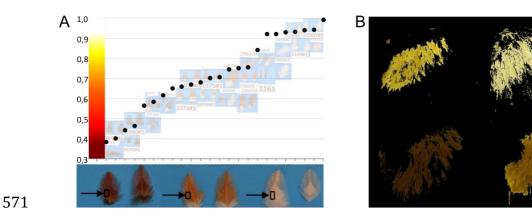
555 FIGURE LEGENDS

556	Figure 1.	Quantitative colour	phenotypes used for	QTL.	/eQTL ma	pping. A)	Peak

- red intensity. The feathers that we have used in the gene expression
- 558 measurements are placed on a blue background and their level of red intensity is
- measured relative to a True red colour chart. The darkest red feathers score
- between \sim 0.4-0.5 and the almost pure white feathers score between \sim 0.9-0.99.
- B) Depicts four representative measurements of Average red colour score
- 562 measured across the right wing.

563

Figure 2. Cartoon depicting the genetic regulation of gene expression for the

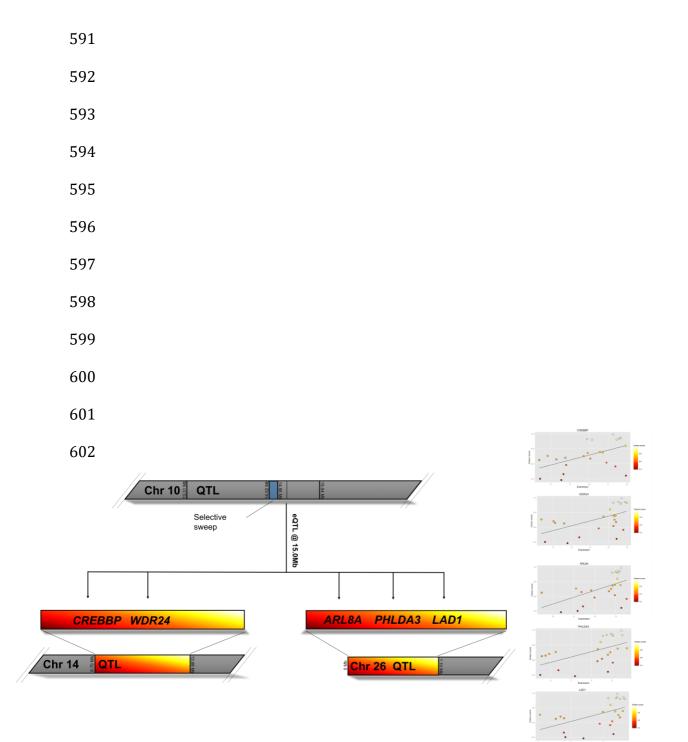

565 candidate genes with both a correlation with red intensity and a significant

566 eQTL.

567

568

569



- -

- 5/4

- F 0 5

-

trait	chr	position	LOD	R2	add+/-s.e.	dom+/-se	lower Cl	upper Cl	lower_marker	upper_marker	covariates	interaction
overall_red_intensit	:y	2	81	9.0	6.8 7.5+/-3.2	11.2+/-4.6	70)	93 rs14133982	rs14139143	sex, batch, PC2, PC3	2@81.0:11@73.0
overall_red_intensit	:y	11	73	9.9	5.6 1.4+/-8.1	15.4+/-11.9	61		80 rs14961831	rs14025092	sex, batch, PC2, PC3	2@81.0:11@73.0, sex:11@73.0
overall_red_intensit	.y	15	148	6.5	4.8 7.2+/-4.2	8.8+/-9.1	125	i 1	.69 rs15023850	rs15025752	sex, batch, PC2, PC3	15@148.0:26@0.0
overall_red_intensit	y	26	0	8.7	6.5 -7.4+/-2.8	12.7+/-3.8	C)	5 rs13724830	rs15466096	sex, batch, PC2, PC3	15@148.0:26@0.0
spot_red_intensity		2	149	6.1	5.6 0.05+/-0.01	0.02+/-0.02	94	l 1	62 rs15060526	rs15069282	sex, batch, PC1, PC3	2@149.0:10@176.0
spot_red_intensity		10	176	6.3	5.8 0.12+/-0.04	0.05+/-0.05	161	. 2	206 rs14947769	rs14951592	sex, batch, PC1, PC3	2@149.0:10@176.0, 10@176.0:sex
spot_red_intensity		14	207	5.7	5.2 -18+/-3.5	-11.2+/-6.1	171	. 2	23 rs14076550	rs15002638	sex, batch, PC1, PC3	

Table 1.

Results from the QTL scan of the two phenotypes(red spot intensity and average red red) in the initial F8 mapping population. QTL locations (in cM), Lod scores, effect sizes (r²), additive and dominance values, confidence intervals (as per a 1.8 lod drop method), covariates and interactions are all shown.

	colour c	orrelation	า		eQTL						
Gene	logFC	t	adj.P.ValB		eQTL origin	eQTL marker snp	additive effect (+/-SE)	dominance effect (+/- SE)	% of variation	lod	Gene location
WDR24	4.52	3.20	0.05	-1.83	Chr 10	Gg_rs14949856	0.9190 (0.3162)	1.9981 (0.4790)	51.12	3.73	14
PHLDA3	4.04	3.12	0.05	-1.97	Chr 10	Gg_rs14949856	0.8264 (0.2938)	1.7414 (0.4451)	48.37	3.45	26
LAD1 (ensgal31450)	2.87	2.85	0.05	-2.51	Chr 10	Gg_rs14949856	0.6549 (0.2196)	1.2526 (0.3327)	48.06	3.41	26
CREBBP	4.24	3.06	0.05	-2.13	Chr 10	Gg_rs14949856	0.8353 (0.3221)	1.8305 (0.4879)	45.71	3.18	14
ARL8A	3.04	2.99	0.05	-2.23	Chr 10	Gg_rs14949856	0.5042 (0.2297)	1.3767 (0.3480)	45.82	3.19	26
LAD1 (ensgal0410)	4.39	2.90	0.05	-2.40	Chr 10	Gg_rs14949856	0.9748 (0.3519)	1.8517 (0.5331)	44.18	3.04	26

Table 2 Summary of candidate genes with both a significant correlation with red intensity and a significant eQTL. The table includes the log of Fold change for the probe in question, t value of the gene expression, the adjusted p-value and the B value for the correlation between expression levels and colour score. In addition, it has the chromosomal location of the eQTL marker (plus the marker name), the additive and dominance effects of the eQTL, the % of variation explained by the eQTL (r-squared value), lod score and the location of the gene itself.

Marker	Chromosome	Position cM	Position Mb	Forward primer	Reverse primer	Sequencing primer
Gg_rs15065217	2	127,2	14516677	*-TGTCTGCAGATCTTGTCCTGTATA	AGGCCTGTCTACATTCAGAGATAC	TCTACTGCTCAGAATGGA
rs15067636	2	145,0	16687105	CCGCTTCTGTGGTTTCAATT	*-AACAGAAAACCCAAGCAGAACTAT	CTTCTGTTTTCATCTGAG
Gg_rs15069282	2	162,1	18391048	CCCTGTTGTTAGGAGAAACTGC	*-GGTTGGAAAAGACCTCTCAGATC	GGTACAGTTGTCATCCC
Gg_rs14947769	10	147,8	13319695	*-GTCCTTCAAAATCACTGGGAATAA	ATTCAAATCCATTTCCTTCCTATC	CCATTTCCTTCCTATCTT
rs14008254	10	176,0	14402662	*-CAGAAAGAGGAGGTTGCTACTGAA	GAGTGCCTGATGAGTGTTGC	TTGGGTAAGTGTGAAAAG
Gg_rs14949856	10	185,0	15038239	*-TTGTCCTTACCCCTGTGTTTCCAT	GCCATACTTTCTCTTCCAGCAGAC	TATCTGTCCCAAGATA
Gg_rs14076550	14	177,0	8716372	AGGACTGGATAAGGCAATTAGGT	*-ACACAATTACCCATTCCTCTACCT	CAAAATCACTGTGGTATGT
rbl1499	14	205,0	12196898	*-CCTCCCCAACCTCCTAAAGTTT	ACTCCGCTCAGATCAGAAAGCA	TCAGATCAGAAAGCAAAT
Gg_rs15002638	14	216,0	13991134	GGAAACTGACAGCTCCTGTACAT	*-TTCCCATCACACAGCTCTCCT	CTGACAGCTCCTGTACAT
Gg_rs14132382	2	32,4	5800398	*-CCTGTCCCTGTGCCACTGTTT	TGGGGCTCTGCTTCCTACCT	GAAAGATCTTACTCATCTCC
Gg_rs14139143	2	112,2	11674795	ATCCATAACTACCAGGCAATTCTT	*-CAAACGATCAAAGTGGGTCATAC	CCAGGCAATTCTTTATTT
Gg_rs14961831	11	35,8	8056008	*-ATCAGCAACCACCTGTGTTTTAGT	TACTCCAGCTCTCTCATTGTGTTC	GCTCTCTCATTGTGTTCAG
Gg_rs14025092	11	88,0	11351200	*-TCAGAACCACTGCATGAAGATG	TGCTCTTCTTAGCTGGATCCTTAG	TCTGTCACTGAATAGACAAT
Gg_rs15023850	15	89,7	9174305	*-TGGCACCCCGTCCTTTTT	ACAAAGCGATCTCTATTGCCAGAC	GCCAGACTGGGCAAC
Gg_rs15025752	15	187,9	11183710	*-GAGCAGCGTATGGAGGATG	CAGAGAGGCAATGTAACCAGTG	GCAATGTAACCAGTGC
Gg_rs13724830	26	0,0	0	*-CATGCCCTGGGGCTTTAGA	ATCCTAGCTCCATACAGGCAGTCC	AGTCCCTGGCTTTCC
* Indicates that the	e primer is biotinyla	ted				

Supplementary table 1. The table contains relevant information about the SNP markers and their respective primers used in the eQTL

analysis. Position is both given in cM which relates to the QTL intevals, the Mb position is from the chicken reference genome(GALGAL4)

and the position is given for the focal SNP.

Probe	Chromosome		logFC		t	P.Value	adj.P.Val	В
ENSGALT0000012346_C16orf5			6.002275	11.217850		0.0006320295		
ENSGALT0000003935_MIRO2_CHICK				10.841217		0.0006584453		
603600028F1 / TRAP1		-	6.712854		3.605752	0.0013135986		
603596617F1 / XPO6			6.720810	10.952979		0.0013610138		
NM_001080866_RHOT2			4.616023 5.263306	10.833742 10.783071		0.0015816039		
ENSGALT0000003932_MIRO2_CHICK						0.0017916569		
ENSGALT00000012148_ITFG3 603601970F1 / TMEM8A			6.341249 5.713957	11.098892 10.585808		0.0020783937		
NM_001031350_C16orf68_chr14_10348923				8.066088		0.0022328880		
ENSGALT00000039617 NAT15			5.100140	9.194483	3.325216	0.0025451155		
ENSGALT00000039730_Q8UWH0_CHICK			4.122639		3.252801	0.0031928076		
NM 001007833 NUBP2			3.552526	10.666258		0.0032140574		
NM_001006175_TRAP1			3.125431		3.215945	0.0034980680		
NM_001030628_WDR24			4.522475	11.488458		0.0036394216		
ENSGALT00000004283_XPO6			6.272554		3.193017	0.0037019509		
ENSGALT00000004228 DECR2			3.315317	11.519013		0.0037407681		
ENSGALT00000011808_C16orf72			5.653611			0.0037430013		
ENSGALT00000003811_CCDC78			-2.807805			0.0037803787		
ENSGALT00000011343_POLR3E						0.0040487617		
NM_001031350_C16orf68_chr14_10350025			-4.396338			0.0040752097		
ENSGALT0000004234 NME4			-3.795146			0.0043810158		
ENSGALT00000028722 ENSGALG00000018015		-				0.0043840690		
ENSGALT00000011945_GTF3C1						0.0048215569		
ENSGALT00000012273_C7orf26						0.0049179589		
ENSGALT00000012587_CREBBP						0.0051471007		
NM_001004374_HBZ				5.996912		0.0059404327		
603603352F1 / ITFG3						0.0060584718		
603002889F1 / ITFG3			-3.747227			0.0061108445		
ENSGALT00000012079_Q8UWG9_CHICK		14	5.754563	10.313767	2.979106	0.0062413302	0.04851474	-2.3011431
NM_001030645_NMRAL1		14	3.196344	11.084192	2.976451	0.0062814475	0.04851474	-2.3067319
ENSGALT00000012057_Q8UWH0_CHICK		14	3.010304	9.482771	2.960719	0.0065242954	0.04851474	-2.3398090
ENSGALT0000004308_ENSGALG0000002730		14	-2.228230	7.436000	-2.925942	0.0070931972	0.04851474	-2.4126449
603864144F1 / GRIN2A		14	-3.257751	10.017333	-2.924022	0.0071259422	0.04851474	-2.4166548
ENSGALT00000039712_ENSGALG00000007458		14	-2.841434	5.862337	-2.919902	0.0071966963	0.04851474	-2.4252556
ENSGALT00000011882_TMEM114		14	-1.741101	5.305429	-2.916450	0.0072564788	0.04851474	-2.4324562
ENSGALT00000031460_PKP1		26	7.406901	12.888613	3.739232	0.0009311163	0.04765397	-0.6339774
ENSGALT00000031418_ENSGALG00000019781		26	3.494684	13.320229	3.520339	0.0016280111		
ENSGALT00000040765_ENSGALG00000024130			3.470722	10.702196		0.0017300575	0.04765397	-1.1622522
ENSGALT00000040700_ENSGALG0000000164				8.927275		0.0021209522		
ENSGALT0000001308_SRPK1			5.559411	10.936054		0.0023129925		
603577259F1 / ADORA1			4.489564	10.974163		0.0025940233		
NM_001031029_KDM5B						0.0026376717		
ENSGALT0000000815_ENSGALG0000000584				11.332917				
ENSGALT00000041022_LOC425540			-2.537206			0.0037337161		
ENSGALT0000000419_TNNI1						0.0040082485		
NM_204681_MGAT4C						0.0043838073		
ENSGALT0000031449_PHLDA3				8.074663				
603577127F1 / TIMM17A						0.0048800612		
ENSGALT0000010295_Q6RV43_CHICK				7.170000		0.0049418934		
ENSGALT0000001098_TBC1D22B				11.575283		0.0056877858		
NM_001012868_ARL8A			3.038471		2.988570	0.0060912022		
603867884F1 / ZC3H11A				9.573937	2.944365	0.0067765263		
603866403F1 / ADORA1 603596828F1 / ZC3H11A			3.793461	10.269412		0.0069669177		
			4.041353	9.500308	2.906274	0.0074253129		
ENSGALT00000000410_LAD1 ENSGALT00000000450 Q10729 CHICK				11.757904 8.531079	2.902966	0.0074843493 0.0079936879		
			-3.834560					
ENSGALT00000031422_KIF21B ENSGALT00000031450_LAD1						0.0080246358 0.0084951361		
ENSGALT00000034111_C15orf26 ENSGALT00000010330_MESDC1				8.251058 11.232650		0.001459340 0.001845162	0.04255361	
ENSGALT00000010550_MESDC1 ENSGALT00000038555_NTRK3			2.496574	9.856804	3.383620			
ENSGALT00000028965_gga-mir-7-2		_	-3.864593			0.002223133	0.04255361 0.04255361	
603597682F1 / NTRK3			4.955642		3.239696		0.04255361	
ENSGALT00000034132_STARD5			4.955642	11.025842		0.003196338	0.04255361	
NM_001007826_FAM108C1			4.294369		3.163196	0.003869533	0.04233301	
ENSGALT00000010984_NTRK3				11.324537		0.004827078	0.04706401	
ENSGALT00000010834_MFGE8			5.297711	11.425704	0.0.00.00	0.006610232	0.04939742	
ENSGALT00000010558_PEX11A		_		10.958296		0.007100110	0.04939742	
ENSGALT00000010358_FEXTEA				10.938290		0.008207826		
603603061F1 / LOC415478				9.222242		0.008328539	0.04939742	
ENSGALT00000010970_MRPL46			-2.729331			0.008575292		
ENSGALT00000010370_MRF140			-2.292619			0.009208981	0.04939742	
NM 001004370 RHCG			-2.710401			0.009499504		
ENSGALT00000007492_LOC768954			-3.133861			0.0006510699		
603603027F1 / UQCRFS1			3.857809		3.842298			

Supplementary Table 2. Differentially expressed genes that correlate with

the intensity of red colouration and have an FDR adjusted p-values < 0.05.

The table also contains information about Log fold change as well as

average expression for each probe.