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 2

Abstract: 23 

Predicting population collapse in the face of unprecedented anthropogenic 24 

pressures is a key challenge in conservation. Abundance-based early warning signals 25 

have been suggested as a possible solution to this problem; however, they are known 26 

to be susceptible to the spatial and temporal subsampling ubiquitous to abundance 27 

estimates of wild population. Recent work has shown that composite early warning 28 

methods that take into account changes in fitness-related phenotypic traits - such as 29 

body size - alongside traditional abundance-based signals are better able to predict 30 

collapse, as trait dynamic estimates are less susceptible to sampling protocols. 31 

However, these previously developed composite early warning methods weighted the 32 

relative contribution of abundance and trait dynamics evenly. Here we present an 33 

extension to this work where the relative importance of different data types can be 34 

weighted in line with the quality of available data. Using data from a small-scale 35 

experimental system we demonstrate that weighted indicators can improve the 36 

accuracy of composite early warning signals by >60%. Our work shows that non-37 

uniform weighting can increase the likelihood of correctly detecting a true positive 38 

early warning signal in wild populations, with direct relevance for conservation 39 

management. 40 

 41 
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Introduction 46 

Statistical early warning signals (EWSs) calculated from abundance time 47 

series data have been suggested as a possible method for predicting approaching 48 

population collapses and regime shifts (Drake & Griffen, 2010; Carpenter et al., 2011; 49 

Dakos et al., 2012; Kéfi et al., 2013). However, abundance-based early warning 50 

signals are known to be susceptible to the spatial and temporal subsampling 51 

ubiquitous to wild population abundance estimates (Clements et al., 2015), and have 52 

been criticized for not reliably predicting significant declines in natural populations 53 

(Burthe et al., 2016). Recent work has sought to resolve these issues by incorporating 54 

data on the dynamics of fitness-related phenotypic traits alongside abundance data 55 

(Clements & Ozgul, 2018). Traits such as body size are highly responsive to 56 

environmental perturbations and changes in the dynamics of these traits often precede 57 

demographic responses to deteriorating environments (Anderson et al., 2008; Ozgul et 58 

al., 2014; Clements & Ozgul, 2016a). Incorporating information on the shift in the 59 

body-size distribution of a population can not only provide an additional measure of 60 

stability (Anderson et al., 2008), but has the potential to improve the predictive 61 

accuracy of EWS as trait dynamic estimates may be less susceptible to sampling 62 

protocols than population abundance estimates are when the distribution of ages and 63 

sexes is assumed to be random (spatial partitioning between ages or sexes may affect 64 

this) (Clements et al., 2015, 2017; Clements & Ozgul, 2016a). Previous work has 65 

shown composite early warning metrics that include data on both abundance and trait 66 

dynamics better predict population collapse than those that incorporate abundance-67 

only or trait-only data (Clements & Ozgul, 2016a).  68 

Recently developed trait-abundance composite early warning indicators have 69 

been based upon the method proposed by Drake & Griffen (2010), whereby multiple 70 
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statistical signals are normalized and then summed to create a single composite signal. 71 

Clements & Ozgul (2016a) used this approach to incorporate shifts in mean body size 72 

and variance in body size along with concurrent changes in the statistical properties of 73 

an abundance time series, and demonstrated that such an approach can significantly 74 

improve the reliability of early warning signals in both experimental (Clements & 75 

Ozgul, 2016a) and natural (Clements et al., 2017) populations. However, in this 76 

method the relative importance of abundance versus trait data in the composite 77 

indicators was weighted evenly. Given the known issues with abundance data, a 78 

logical extension to this method is to non-evenly weight the relatively importance of 79 

abundance and trait data in the composite indicators. 80 

Non-uniform weighting of model parameters has a history of use in 81 

conservation biology, particularly in determining optimal management strategies to 82 

maximize outputs from limited resources (Joseph, Maloney & Possingham, 2009). 83 

For example habitat conservation may be prioritized based on the suitability of the 84 

habitat for certain species, with such weightings often being determined by expert 85 

opinion (Lehtomäki et al., 2009). Such approaches have also been used to assess 86 

trade-offs, for example between conservation and carbon sequestration (Thomas et al., 87 

2013). As well as expert opinion, weighting may be based on more quantitative 88 

measures of data quality; for example by the frequency of sampling of a population to 89 

estimate abundances, or the percentage of a habitat sampled when counting 90 

individuals, both of which have been shown to affect the reliability of early warning 91 

signals (Clements et al., 2015). However, practitioners must first discern if non-92 

uniform weightings convey an advantage before implementing such an approach for 93 

wild populations. 94 
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Here we assess whether non-uniform weightings improve the predictive ability 95 

of composite EWS of population collapse using data from an experimental protozoa 96 

study. We take the most reliable composite early warning metric (as identified by 97 

Clements & Ozgul (2016a)), and alter the relative weighting of the abundance and 98 

trait data when calculating whether an early warning signal is present or not. We then 99 

reanalyze the data from an experimental protist microcosm system, presented in 100 

Clements & Ozgul (2016a), and show that alternate weightings can improve the 101 

predictive ability of composite EWS by decreasing the frequency of false positive 102 

signals, and increasing the frequency of true positive signals.  103 

 104 

Methods 105 

Experimental Data 106 

Data on the population dynamics and body-size (width, μm – a proxy for 107 

mass) of individuals of a predatory ciliate protozoa (Didinium nasutum) feeding on a 108 

bactiverous ciliate protozoa (Paramecium caudatum) were collected over a 47-day 109 

period (Fig. 1). Populations of D. nasutum were subjected to four different treatments 110 

(15 replicates per treatment), where the number of P. caudatum fed to each population 111 

per day was manipulated. In one treatment (“Constant”) populations of D. nasutum 112 

were fed 300 P. caudatum per day for the 47 days of the experiment, whilst in the 113 

other three treatments the number of P. caudatum declined through time at three 114 

different rates (“Slow”, “Medium”, “Fast”) driving the populations of D. nasutum to 115 

extinction at varying points in time, and with varying population dynamics prior to 116 

extinction (Fig. 1). None of the populations in the Constant treatment went extinct. 117 

For each population the time at which it passed through a tipping point, if at all, was 118 

calculated (as in Drake & Griffen, 2010), and early warning signals were then 119 
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calculated prior to the occurrence of each of these tipping points. Because of the size 120 

of the microcosms it was impractical to count every individual of a population, hence 121 

a subsample was taken (10% of the habitat, a volume that allowed all individuals to 122 

be easily counted with close to zero error) and we assumed that the total number of 123 

individuals in each microcosm was reflected by the abundance in the subsample. 124 

Whilst this undoubtedly introduced some minor error into the abundance estimates, 125 

EWSs were still detectable using this uncorrected subsample data (Clements & Ozgul, 126 

2016a). We believe that this uncertainty in abundances is very representative of the 127 

ubiquitous spatial subsampling associated with the monitoring of all wild populations, 128 

and hence applying such methods to this data is a reliable reflection of the challenges 129 

of applying them to real world population dynamics.  For full details of the 130 

experimental design and protocols see Clements & Ozgul (2016a).  131 

 132 

Early warning signals 133 

Previous work has identified a composite index comprised of the coefficient of 134 

variation of the abundance time series (cv), shifts in mean body size of the individuals 135 

in the population (size), and shifts in the standard deviation of mean body size 136 

(sd.size) as producing the most reliable estimates of whether a population was at risk 137 

of collapse in these experimental data (Clements & Ozgul, 2016a). Here we test this 138 

composite index by systematically altering the weighting of these three competent 139 

parts as a proof of concept of non-uniform weighting increasing the predictive 140 

accuracy of the composite metric.  141 

Here we implement the approach developed by Clements & Ozgul (2016a). 142 

Each of the three leading indicators (cv, size, sd.size) was calculated at each day 143 

observations were made, and for each experimental population independently. Each 144 
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leading indicator was then normalized by subtracting the long-run mean of that 145 

indicator from the value of that indicator at each time point, and dividing it by the 146 

long run standard deviation (Drake & Griffen, 2010; Clements & Ozgul, 2016a) 147 

(Supplementary Information). The value of the composite early warning signal was 148 

then calculated by summing the value of each leading indicator (cv, size, sd.size) at 149 

each time point. Previous work has suggested an EWS could be considered present 150 

when the value of this composite EWS exceeds its running mean by either 1 or 2σ 151 

(Drake & Griffen, 2010). Recent evidence suggesting a 2σ threshold provides more 152 

reliable results (Clements & Ozgul, 2016a) and consequently here we consider a 153 

signal present at a 2σ threshold. 154 

The weighting of each of the three leading indicators was altered by 155 

multiplying the normalized value of each metric prior to summing them together to 156 

calculate the composite EWS. Each leading indicator was weighted from 1 to 10, with 157 

every combination of weightings tested (e.g. cvw=1:sizew=2:size.sdw=5, 158 

cvw=8:sizew=4:size.sdw=1). The performance of each weighting was assessed by using 159 

a “normalized metric score” (Clements & Ozgul, 2016a), calculated by subtracting the 160 

proportion of false positives (EWS present in data from the constant treatment) from 161 

the proportion of true positives (EWS present in data from the slow, medium, and fast 162 

treatments). The highest scoring weighting for each of the slow, medium, and fast 163 

treatments was compared to uniform weighting in each of these treatments (Fig. 2a). 164 

The best metric when data from all three treatments were grouped together was 165 

calculated as the weighting with the highest normalized metric score, and the 166 

minimum difference in normalized metric scores between treatments (Fig. 2b). This 167 

gave an indication as to the weighting that was most robust to different rates of 168 
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environmental change, and thus potentially most widely applicable to different 169 

scenarios.  170 

All analyses were carried out using the statistical software R (R Development 171 

Core Team, 2016), and the code to implement weighted trait-abundance early warning 172 

signals is available as supplementary information.  173 

 174 

Results 175 

Experimental data 176 

Non-uniform weighting of the importance of abundance and trait data in early 177 

warning indicators can improve the reliability of these methods in predicting 178 

population collapses (Fig. 2). The largest improvement (62.5%) was seen when data 179 

from the Medium treatment was analyzed, possibly because uniform weighting 180 

performed relatively poorly (Fig. 2a). The highest achieved normalized metric score 181 

was 0.8 (in the slow treatment), suggesting very high numbers of true positive EWS, 182 

and low numbers of false positive EWS (Fig. 2a).  183 

When data from three deteriorating treatments was grouped together the 184 

weighting that produced the greatest improvement in predictive accuracy weighted 185 

the relative importance of cv, size.sd, size as 4:7:4, although the improvement over 186 

uniform weighting was not large (Fig. 2b), suggesting that the how fast the pressure 187 

on the system changes (known as the rate of forcing (Clements & Ozgul, 2016b)) may 188 

be an important factor in determining not only  the correct weighting to apply, but 189 

also our ability to reliably predict population declines. To highlight this, the 4:7:4 190 

weighting performed as well as the best weighting in the fast treatment, average in the 191 

medium treatment, and worse than both the uniform and best weighting in the slow 192 

treatment (Fig. 2a).  193 
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 194 

Discussion 195 

Predicting population collapse is a key but challenging goal in conservation 196 

biology. Because previously developed EWS that take into account both trait and 197 

abundance data are non-system specific, and thus widely applicable, they may be of 198 

particular interest. Here we analyze data from a small-scale experimental system and 199 

show that non-uniform weighting can improve the reliability and strength of trait-200 

abundance early warning signals, but that the strength of this improvement is not 201 

uniform across different rates of environmental change. 202 

Previous work in small-scale experimental systems has identified a composite 203 

metric of cv, size, and size.sd as the most reliable predictor of population collapse in 204 

experimental microcosm populations. This method provides improved reliability over 205 

methods that are based on either abundance-only or size-only data; however, the 206 

method still produces false positive and false negative signals in some populations. 207 

Because of the known susceptibility of abundance-based early warning signals to poor 208 

quality data (Clements et al., 2015), non-uniformly weighting the components of 209 

composite metrics provides an obvious extension to this previous work.  210 

Here we demonstrate, using the same experimental data with which the 211 

original trait-abundance method was developed, that a weighting of 4:7:4 212 

(cv:size.sd:size) provides the greatest overall improvement across all three treatments, 213 

with the minimum between-treatment variation in this result (Fig. 2b). Resilience to 214 

treatment variation in performance in the experiment is important, as it maximizes the 215 

reliability of applying such methods to systems where the rate of change remains 216 

unknown. However, the among-treatment variation in the potential advantages of 217 

non-uniform weighting should not be ignored, as with weightings other than 4:7:4 218 
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there were significantly higher normalized metric scores in the medium and slow 219 

treatments (Fig 3a). Such a result is likely to be driven by the rate of forcing, known 220 

to potentially alter the detectability of EWSs (Clements & Ozgul, 2016b), of the 221 

system altering the rates of change of the mean and σ body size of individuals. For 222 

example, mean body size rapidly declines in the fast treatment (Fig. 1), whilst in the 223 

medium treatment body size decline is more gradual and a weighting towards the 224 

coefficient of variation of abundance, rather than towards body size, improves 225 

predictive accuracy (Fig. 2). These results suggest that the rate of forcing a system 226 

can alter the weighting that produces the most reliable predictions of an approaching 227 

population collapse.  228 

Generalizing such a result to real-world systems may be problematic, as we 229 

cannot assume that the population and trait dynamics of the microcosm system 230 

analyzed here are truly representative of all real-world population collapses. Ideally 231 

one would select the weighting based on an estimate of the reliability of the available 232 

abundance or trait data, and possibly based on the rate of forcing of the system, 233 

although doing so is likely to be non-trivial. If, for example, available abundance data 234 

are known to be estimated from a survey conducted on a small proportion of the 235 

known range of a species, or are temporally limited, it may be prudent to calculate the 236 

presence of early warning signals with a bias in favor of trait-based data. A less 237 

quantitative option would be to weight metrics based on expert opinion of the 238 

reliability of the available data. However, whilst criticism has been leveled at the use 239 

of expert opinion in conservation management, it has been shown to be useful if 240 

approached with caution (Johnson & Gillingham, 2004; Martin et al., 2005, 2012). 241 

Similar caution must be applied to the non-uniform weighting of trait and abundance 242 

data in the models presented here, however the significant improvements in the 243 
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predictive accuracy of these approaches when weighting is non-uniform mean that 244 

canvasing expert opinion may be a relatively simple and cost-effective solution to 245 

improve predictive accuracy.  246 

In conclusion, we demonstrate the possible advantages of non-uniform 247 

weighting in an early warning signals framework. This work provides a first step to 248 

improving the reliability of recently proposed abundance-trait methods (Clements & 249 

Ozgul, 2016a), and may be used to negate some of the known issues that affect 250 

abundance-based EWSs (Clements et al., 2015). Future work may seek to make more 251 

concrete recommendations on weightings based on qualitative measures such as 252 

expert opinion, or more quantitative measures such as measures of data quality, the 253 

known level of threat to a species or a population, the trophic level of the species, or 254 

its connectedness in a network. One option to tackle this is to use complex size-255 

structured community models, such as those commonly used in fisheries (Blanchard 256 

et al., 2012; Scott, Blanchard & Andersen, 2014), to simulate shifts in the trait 257 

dynamics and abundances of multiple interacting species, allowing alternative 258 

weightings of data from various trophic levels to be tested on communities where 259 

collapse can be invoked by, for example, overfishing or changing climatic variables.  260 

 261 
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Figure 1. Black lines describe the population and body size dynamics of
individual populations of Didinium nasutum subjected to four different
experimental treatments (constant, fast, medium, and slow rates of decline in
prey availability). Data from day 0 to 12 were removed to minimize the effects of
transitory dynamics. Each vertical gold line indicates an inferred tipping points for
a collapsing population.
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Figure 2. (a) The highest scoring weighting across each of the experimental
treatments compared to even weighting and the best weighting when data
from all treatments were combined, and (b) the weighting with the highest
normalized metric score across all three treatments, and the lowest difference
in normalized metric score amongst treatments.
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