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Abstract:  

A long-standing question in molecular biology relates to why the testes express the largest 

number of genes relative to all other organs. Here, we report a detailed gene expression map of 

human spermatogenesis using single-cell RNA-Seq. Surprisingly, we found that 20 

spermatogenesis-expressed genes contain significantly fewer germline mutations than 

unexpressed genes, with the lowest mutation rates on the transcribed DNA strands. These results 

suggest a model of ‘transcriptional scanning’ to reduce germline mutations by correcting DNA 

damage. This model also explains the rapid evolution in sensory- and immune-defense related 

genes, as well as in male reproduction genes. Collectively, our results indicate that widespread 25 

expression in the testes achieves a dual mechanism for maintaining the DNA integrity of most 

genes, while selectively promoting variation of other genes. 
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Main Text:  

Human tissues and organs are distinguished by the genes that they express and those that they do 

not 
1,2

.  Tissues have transcriptomes of different complexities in terms of uniquely-expressed 

genes, as well as those genes expressed at differential levels 
3–6

. One overarching goal in the life 

sciences is to characterize the specific transcriptomic signatures of all human tissues, and 5 

ultimately each different cell type at the single-cell level 
7
.  

In males, the testis is unique in comparison with somatic tissues in that it contains germ 

cells which pass the genetic information on to the next generation 
8
. Interestingly, it has been 

known for many years that the testis stands out as having the most complex transcriptome with 

the highest number of expressed genes 
9–12

. Widespread transcription in the testes has been 10 

reported to account for an amazing expression of over 80% of all our protein-coding genes 

10,11,13
, as well as across many other mammals 

3,10
. 

Several hypotheses have been proposed to explain this observation. Widespread 

expression may represent a functional requirement for the gene-products in question 
12

. 

However, other more complex organs such as the brain do not exhibit a corresponding number of 15 

expressed genes despite the fact that they consist of a substantially greater number of distinct cell 

types 
3,10,14–16

. Moreover, recent animal studies have shown that many testis-enriched and 

evolutionarily-conserved genes are not required for male fertility in mice 
17

. A second hypothesis 

implicates leaky transcription during the massive chromatin remodeling that occurs throughout 

spermatogenesis 
12,18,19

. However, this model predicts more expression during later stages of 20 

spermatogenesis – when the genome is undergoing the most chromatin changes – contradicting 

the observation 
13,18

. Additionally, the energetic requirements for the observed widespread 

expression are sufficiently large that such leaky expression would be expected to be under tighter 
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control 
20

. Given this lack of a compelling explanation for widespread testes transcription, the 

topic remains an interesting and yet unanswered question. 

Here we propose a model that widespread testis transcription modulates gene evolution 

rates. Beyond functional requirements for reproduction, widespread transcription acts as a 

scanning mechanism through the majority of human genes, detecting and repairing bulky DNA 5 

damage events through transcription-coupled repair (TCR) 
21,22

, which ultimately reduces 

germline mutations rates and gene evolution rates. Genes that are not expressed in the male 

germline do not benefit from the reduced mutation rates. These genes do not constitute a random 

set but rather are enriched in sensory and defense-immune system genes, accounting for previous 

observations that these genes evolve faster 
23,24

. We also found that transcription-coupled 10 

damage (TCD) overwhelms this pattern in the very highly expressed genes, which are enriched 

in spermatogenesis-related functions, implicating TCD-modulated gene evolution. By 

understanding the uneven germline mutation patterns and the intrinsic mechanism of germline 

DNA damage removal, we will be in a better position to understand human genome evolution 

and genetic diseases 
25

. 15 

 

Single-cell RNA-Seq reveals the developmental trajectory of spermatogenesis. 

The developmental process of spermatogenesis includes mitotic amplification, meiotic 

specification to generate haploid germ cells, and finally differentiation and morphological 

transition to mature sperm cells (Fig. 1A) 
26

. Technical limitations confined previous gene 20 

expression analyses of spermatogenesis to its broad stages: spermatogonia, spermatocytes, round 

spermatids and spermatozoa 
10,13

. To systematically characterize the detailed transcriptomic 
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signatures throughout the entirety of spermatogenesis, we applied high-throughput single-cell 

RNA-Seq to the human testes (Fig. S1A) 
27

.  

 

 

Fig. 1. Single-cell RNA-Seq (scRNA-Seq) reveals a detailed molecular map of human 5 

spermatogenesis. (A) Developmental stages of human spermatogenesis. (B) Principal 

components analysis of testis scRNA-Seq data. Colors indicate the main spermatogenic and 

somatic cell types, as defined by marker genes (insets). (C) Principal components analysis on the 

spermatogenic-complement of the single-cell data. Arrows indicate the developmental trajectory 

as inferred from the relationship between the spliced and unspliced transcriptomes 
28

 (SI 10 

methods). (D) Heatmap of the correlation coefficients between single-cell spermatogenesis 

transcriptomes. 
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A principal component analysis (PCA) revealed clusters of cells including a large 

continuous cluster (Fig. 1B). Using previously determined stage markers to infer the identity of 

the cells, we annotated the main spermatogenic stages, as well as the somatic Leydig and Sertoli 

cells (Fig. 1B, right). Excluding the somatic cells, PCA on the germ cells revealed a horseshoe-

shaped cluster suggesting that the order of the cells corresponds to developmental time (Fig. 1C, 5 

S1C, SI methods). Three independent lines of evidence support this projection. First, the order of 

expression of known marker genes across the horseshoe-shaped cluster matches their 

developmental order (Fig. S1C). Second, the Monocle2 algorithm which identifies 

developmental trajectories also revealed the same order of cells (Fig, S1D-E) 
29

. Finally, using 

the pattern of unspliced versus spliced transcripts across the cluster as a means to predict the 10 

developmental trajectory 
28

 also reinforced this interpretation (Fig, 1C and SI methods). The 

arrows in Figure 1C relate the unspliced transcriptome of cells with the spliced transcriptome of 

other cells, allowing the inference of developmental time. From these lines of evidence, we 

concluded that the germ cell transcriptomes could be ordered as successive stages throughout 

spermatogenesis. This detailed delineation of spermatogenic stages provides stage-specific 15 

marker-gene expression with unprecedented resolution of molecular signatures of 

spermatogenesis (Figs. 1D and S2). 

 

TCR-induced reduction of germline mutation rates 

We hypothesized that the widespread transcription in spermatogenesis may lead to two scenarios 20 

(Fig. 2A): 1) open chromatin in transcribed regions leads to a higher mutagenic likelihood by 

transcription-coupled damage (TCD) 
30

, and consequently to higher germline mutation rates and 

divergence across species; and/or 2) the transcribed regions are subject to transcription-coupled 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 14, 2018. ; https://doi.org/10.1101/282129doi: bioRxiv preprint 

https://doi.org/10.1101/282129
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

6 

 

repair (TCR) of the DNA 
21

, thus reducing germline mutation rates and safeguarding the 

germline genome, leading to lower divergence across species. To study these hypotheses, we 

first utilized our single-cell RNA-Seq data and assigned a spermatogenic stage to each gene 

according to its period of maximal expression (Fig. 2B, SI methods). Overall, we detected the 

expression of 87% of all protein-coding genes in one or more stages throughout spermatogenesis 5 

(Fig. 2B), consistent with previous observations 
10,13

.  

 

 

Fig. 2. Widespread transcription in spermatogenic cells is associated with reduced germline 

mutation rates. (A) Two possible consequences of widespread transcription in spermatogenic 10 

cells. (B) Pie chart indicating the number of genes expressed at each spermatogenic stage. Genes 

are associated with the stage in which they are maximally expressed (SI methods). (C) Total 

germline mutation rates across the gene categories of spermatogenesis stages. (D) Germline 
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mutations associated with genes were retrieved from Ensembl 
31

 and classified into the six 

mutation classes, which were further distinguished in terms of coding and template strands, as 

previously introduced 
32

. (E) A>T transversion mutation rates for the coding and the template 

strands for the spermatogenic gene categories. Dashed lines indicate the average level of 

mutations in the unexpressed genes. (F) Asymmetry scores throughout spermatogenic gene 5 

categories, computed as the log2 ratio of the coding to the template mutation rates (shown in E). 

Significance is computed by the Mann-Whitney test. *, P<0.005; **, P<0.00001; n.s., not 

significant. Error bars indicate 99% confidence intervals. 

 

The public databases have amassed over 200 million germline variants detected in the 10 

human population, providing a rich resource for studying germline mutation rates 
31

. Since ~80% 

of these germline variants are thought to have originated in males 
33,34

, we used this dataset to 

query for widespread transcription-induced effects on the pattern of germline mutations. We thus 

sought to compare the number of DNA variants between genes expressed and unexpressed in 

spermatogenesis as a proxy for a difference in the level of DNA damage 
35,36

. Interestingly, we 15 

found that spermatogenesis expressed-genes, regardless of spermatogenic stage of expression, 

generally have a lower level of germline mutations, relative to the unexpressed genes (Fig. 2C), 

consistent with previous notion of transcription-coupled repair in spermatogenic cells 
37,38

. This 

difference is not observed in the gene flanking sequences (5kb of upstream and downstream), 

indicating a stronger effect in the genic region (Fig. S3) and supporting the notion that the 20 

widespread spermatogenesis transcription reduces the level of germline mutations.  

If the reduction of mutations follows from a TCR-induced process, we would expect an 

asymmetry between the mutation levels of the coding and the template strands in the 
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spermatogenesis expressed genes, but not in the unexpressed genes 
32,38–41

. The asymmetry 

would be such that the template strand accumulates fewer mutations since, in TCR, the RNA 

polymerase on the template strand detects DNA damage 
21

. To distinguish between mutations 

occurring on the coding and template strands, we adapted previous approaches to identify strand-

asymmetries in the mutation rate (Fig. 2D) 
32,38

. By studying mutation categories with reference 5 

to the coding and template strand, Haradhvala et al. inferred a bias in mutation rates (Fig. 2D, 

schematic) 
32

 and such strategy was also utilized by Chen et al. 
38

. We applied this approach to 

germline mutations and found that a lower mutation rate was inferred on the template strands of 

expressed genes during spermatogenesis, while such effect is unapparent in the unexpressed 

genes, as represented by A>T transversion mutations in Figure 2E and in the other mutation 10 

types (Fig. S4A). In addition, for the coding strand, we observed an inferred rate of mutations 

that is lower in the expressed relative to that in the unexpressed genes, suggesting that antisense 

transcription in spermatogenesis may be used to further reduce mutation levels 
42

. 

We next computed an ‘asymmetry score’ to study the ratio between mutation levels 

inferred to occur in the coding and template strands (Fig. 2E-F) 
32

. As expected, the unexpressed 15 

group of genes has minimal level of asymmetry scores (Fig. 2F and Fig. S4E), indicating no 

transcription-induced removal of DNA damage. Examining this measure across the 

spermatogenic stages, we observed that the asymmetry scores are highest in the early stages of 

spermatogenesis (spermatogonia and spermatocytes) and gradually decrease along the 

spermatogenesis lineage (Figs. 2F, S4D), consistent with a stronger transcription-induced 20 

removal of DNA damage earlier in spermatogenesis. Such a pattern is also reflected in the 

expression levels of TCR genes which show higher expression levels in early spermatogenesis 

(Fig. S7). As negative controls, we found that mutational asymmetry was not observed when 
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comparing Watson and Crick strands (instead of gene-specific coding and template strands, Fig. 

S5), nor did we detect difference between the gene groups when shuffling the spermatogenic 

gene group assignments (while maintaining the group sizes, Fig. S6). 

 

Bidirectional transcription signatures of mutation asymmetries 5 

While the Figure 2 analysis examined transcription in the gene body (start to end of mRNA 

transcription), transcription in the human genome contains additional levels of complexity. For 

example, while expression is usually considered as transcribing the gene body, transcription in 

the opposite direction is common 
43,44

, leading to bidirectional transcription initiation on opposite 

strands (Fig. 3A). If lower mutation rates are indeed transcription-induced, we would predict that 10 

mutation asymmetry scores would display an inverse pattern between the opposite strands of the 

initiation of bidirectional transcription. Consistently, we detected an inverse pattern of 

asymmetry scores between the gene body and the upstream sequences (Figs. 3B,C, S4). Since 

transcription may extend beyond the annotated end or alternative polyadenylation sites (Fig. 3A) 

45
, we would also predict that the asymmetry scores between the gene body and the downstream 15 

sequences would display a coherent pattern. Again, we find the expected pattern whereby the 

gene body and the downstream sequences have the same pattern of asymmetry scores (Figs. 

3B,D, S4). Together, these analyses provide striking support for transcription-induced germline 

mutation reduction. 

 20 
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Fig. 3. TCR-associated mutation asymmetry scores show bidirectional transcription and 

extended transcription signatures. (A) Gene model indicating bidirectional and extended 

transcription. The model shows that relative to the promoter, upstream and gene body 

transcription occur on opposite strands, while downstream transcription occurs on the same 5 

strand as the gene body. (B-D) Asymmetry scores in the upstream 5kb region (B), gene body (C) 

and downstream 5kb region (D). Three mutation types are shown here (A>G, G>T and C>G); 

the rest are shown in Fig. S4. 

 

‘Transcriptional scanning’ is tuned by gene-expression level.  10 

Our results led us to propose a model whereby widespread spermatogenesis transcription 

functions for ‘transcriptional scanning’ to reduce DNA damage-induced mutagenesis and thus 
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safeguard the germline genome (Fig. 4A). Such a model suggests that mutation rates of scanned 

genes might be tuned by their expression levels in the testis. First, we expect that even minimally 

expressed genes should show fewer mutations than unexpressed genes, since a single round of 

transcription would pick up any damage. To test this, we binned all genes into seven groups 

according to their peak level of expression (Fig. 4B, SI methods). Consistently, we found that 5 

even the most lowly-expressed genes have lower levels of germline mutations than the 

unexpressed genes (Figs. 4C, S8A-B).  
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Fig. 4. ‘Transcriptional scanning’-induced mutation reduction is tuned by gene-expression 

level. (A) Model for transcriptional scanning of DNA damage in male germ cells. (B) Genes 

were binned to seven gene expression level groups, from unexpressed (Unexp) to highly-

expressed (High-exp) (SI methods). (C) Distributions of the indicated germline mutation types 

across gene expression level categories, and distinguished by coding and template strands. 5 

Dashed lines indicate the average level of mutations in the unexpressed genes. (D) Distribution 

of asymmetry scores between coding and template strand for the mutation types indicated in (C). 

(E) A model for gene expression level tuning of germline mutation rates following additive 

contributions by transcription-coupled repair (TCR-reduced) and transcription-coupled damage-

induced (TCD-induced) effects. 10 

 

The ‘transcriptional scanning’ model predicts that higher expression levels would lead to 

additional scanning, and consequently further reduced mutation rates on the template strand. 

Indeed, examining our asymmetry score according to different expression levels, we observed 

that as expression level increases, the overall mutation level drops (Fig. 4C). Surprisingly, 15 

however, the very highly expressed genes showed the opposite effect: asymmetry between the 

strands is reduced and a paradoxically higher level of germline mutations relative to the 

unexpressed genes is observed (Figs. 4C,D, S8A,B). This pattern is consistent with observations 

that very high expression levels can lead to transcription-coupled DNA damage (Fig. 2A), as 

previously reported for transcription-associated mutagenesis in highly expressed genes in other 20 

systems 
46

. The mutation type in which TCD is most evident is A>G (Fig. 4C), and similarly, 

such TCD was readily observed in somatic A>G mutation in liver cancer samples 
32

. Our 
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findings therefore extend support for TCD occurring for all mutation types in highly expressed 

genes (Figs. 4C-D, S8). 

Our analyses suggest that spermatogenesis gene-expression levels tune germline mutation 

levels and we interpret our results as follows (Fig. 4E). ‘Transcriptional scanning’ reduces 

mutation rates even in genes with low-expression. Increasing expression levels are correlated 5 

with further reductions in mutation rates, but only to a point. In the very highly expressed genes, 

TCD overwhelms the TCR-induced reductions, and produces an overall higher mutation rate 

than genes expressed at low and moderate levels (Fig. S8A). 

 

Transcriptional scanning and differential rates of genome evolution 10 

We hypothesized that the reduction in mutation rates by transcriptional scanning would have 

cumulative effects over evolutionary time-scales. Specifically, since we observed lower mutation 

rates for spermatogenesis expressed genes at the level of the human population, we expected that 

these genes would be more conserved at the sequence level across orthologues in other apes (Fig. 

S9A), than the unexpressed genes. Consistently, examining across our stage-specific gene 15 

groups, we found that unexpressed genes show the highest level of divergence when comparing 

across the apes (Fig. 5A). Examining divergence across expression levels, we found a negative 

correlation between increased expression and divergence (Fig. 5D). However, the most highly 

expressed genes showed higher divergence. These observations are fully consistent with our 

analyses implicating higher mutation rates by TCD (Fig. 4). Collectively, as expected, the same 20 

mutation-level pattern is detected both in the population (Figs. 2-4) and across species (Fig. 5).  
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Fig. 5. Evolutionary consequences of ‘transcriptional scanning’ in male germ cells. (A) 

DNA divergence levels of human genes with their ortholog in the indicated apes, according to 

spermatogenic stages. (B) Same as (A) for dN/dS values. (C) Gene ontology categories enriched  

in the set of genes unexpressed during spermatogenesis (P-value is indicated). (D) Same as (A), 5 

according to gene expression level categories. (E) Same as (D) for dN/dS values. (F) Gene 

ontology categories enriched in the set of genes that are very highly expressed during 

spermatogenesis. 

 

The observation of different evolutionary rates between spermatogenesis expressed and 10 

unexpressed genes suggests a distinct selective regime acting upon the unexpressed genes. To 

test this, we studied the ratio of nonsynonymous to synonymous substitution rates (dN/dS) of 

evolution for stage-specific and expression-level specific gene groupings. We found that the 

unexpressed genes have a higher dN/dS ratio than the expressed genes, indicating that they are 
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subject to weaker levels of purifying selection (Figs. 5B, S9B,C). Thus, the higher divergence 

levels of the unexpressed genes follows from both their higher mutation rates (Fig. 2C) and their 

weaker levels of purifying selection. Studying the set of 2,623 unexpressed genes at the 

functional level, we found that this set is enriched for environmental sensing, immune and 

defense systems, and signaling genes (Fig. 5C and Table S1). These functions strikingly coincide 5 

with those known to be fast-evolving in the human genome 
23,24

. Our results suggest that, beyond 

differential levels of purifying selection, the underlying levels of mutations are increased in this 

important set of genes by virtue of their being unexpressed during spermatogenesis. Our analysis 

into expression levels further revealed that the very highly expressed genes will also have high 

mutation levels (Fig. 4). We found that the very highly expressed genes also exhibit low levels of 10 

purifying selection (high dN/dS, Fig. 5E). Functionally, this set of genes is enriched for roles in 

male reproduction and mitochondrial function (Fig. 5F and Table S2). 

 

Discussion 

Our findings led us to propose a model whereby widespread transcription at fine-tuned levels of 15 

expression leads to a rugged landscape of germline mutations by transcriptional scanning (Fig. 

6). Given that this process is carried out in the germline, the variable mutation rates have 

important implications for genome evolution. In this model, the widely transcribed genes in male 

germ cells benefit from transcription-coupled repair (TCR), which scans through the expressed 

genes, thereby reducing germline mutations and safeguarding the germ cell genome. Over long 20 

time-scales these genes evolve slower (Fig. 6 middle). The small group of genes that are 

unexpressed throughout spermatogenesis are enriched for sensory and defense-immune system 

genes (Fig. 5C) and exhibit higher mutation rates, which in our model is explained by the lack of 
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a TCR-induced germline mutation reduction (Fig. 6 left). Defense and immune system genes are 

known to evolve faster 
23,24

 and our selective transcriptional scanning model provides insight into 

how variation is preferentially provided to this class of genes. Such rapid evolution may be under 

strong selective biases for adaptation at the population-level in rapidly changing environments. A 

third class of genes are characterized by very high germline expression. These genes have higher 5 

germline mutation rates since their transcription-coupled DNA damage obscures the effect of 

transcription-coupled repair (Fig. 6 right). This model provides more comprehensive view of 

TCR-TCD crosstalk in spermatogenic cells with expression level-tuned mutation rates 

fluctuation (Fig. 4E), and corrects the previous observation that the germline mutation rates 

increase with expression levels 
38

. In this Discussion, we address the issues of the full spectrum 10 

of mutagenesis pattern in the male germline, a proxy for detecting important genomic regions, 

and testable predictions of our model.  
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Fig. 6. A model for widespread transcriptional scanning in male germ cells. The 

transcriptional scanning model predicts reduced germline mutation rates across most expressed 

genes. Genes unexpressed in spermatogenesis have higher relative mutation rates and 

consequently experience more evolutionary divergence. In the very highly-expressed genes, 

transcription-coupled DNA damage overwhelms the effects of TCR, resulting in higher mutation 5 

rates in these genes, highly enriched for male reproductive function genes. 

 

The transcriptional scanning model can account for a reduction of ~15-20% of mutagenic 

DNA damage by detecting and removing bulky germline DNA damage (as estimated from the 

Fig. 2C analysis). Such a mechanism is critical for germ cell viability as retained bulky DNA 10 

damage may lead to cell death
47

. On the other side, the expressed genes of male germ cells still 

retain mutations that cannot be repaired by the TCR machinery
22,48

. These male germline 

mutations likely originate from DNA replication errors, accumulating with paternal age 
49

. Thus, 

it would be of great interest to further analyze the observed germline mutation pattern, in 

particular relative to replication fork directionality 
50

. 15 

Beyond the protein-coding genes expressed here, it would be interesting to study non-

coding genomic regions that are also expressed in the testes. Previous studies have reported that 

testis also expressed large numbers of non-coding genes
10

. These genomic regions may be 

inferred to be biologically important given that they are subjected to TCR-induced mutation 

reduction. According to this logic, it might follow that sensory and defense-immune system 20 

genes are unimportant since they are not generally expressed in the testes. Instead, we argue that 

this gene set is the exception that highlights the rule. In other words, most genes benefit from 

TCR mutation reduction excepting those under selection for faster evolution. Similarly to 
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phylogenetic profiling for identifying functionally important regions of the genome 
51

, 

identification of testis-expressed regions – for example non-coding genes and retrotransposons – 

may be an efficient method for identifying these important regions.  

Our model leads to important testable predictions and may provide deeper insights into 

human genetics and diseases originated from de novo germline mutations. First, we predict that 5 

de novo male-derived mutations would be enriched for genes unexpressed in spermatogenesis. 

Second, the same process should also hold in other mammals. Finally, we would expect that 

TCR-deficient animals should produce offspring with an increase in the number of de novo 

mutations. For patients with TCR gene-associated mutations, such as Cockayne syndrome and 

xeroderma pigmentosum 
52

, our model predicts higher germline mutation rates. It would also be 10 

of interest to study TCR/TCD processes in the female germline, though widespread gene 

expression has not been reported in the ovaries 
11

. The brain is another organ with a highly 

complex transcriptome 
3,10

, and it would be interesting to explore whether transcriptional 

scanning might have a function in certain somatic tissues. For example, such a function might 

help prevent somatic mutation induced neurodegenerative diseases in the aging brain 
53

.   15 
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Materials and Methods 

 

Human testes sample 

Human testis tissue was obtained from New York University Langone Health (NYULH) 

Fertility Center; this was approved by the NYULH Institutional Review Board (IRB). Fresh 5 
seminiferous tubules were collected from testicular sperm extraction (TESE) surgery of a healthy 

patient with an obstructive etiology for infertility; there were no drug or hormonal treatments 

prior to TESE surgery. The research donor was fully informed before signing consent to 

donating excess tissue for research use; this was again done in fashion consistent with the IRB 

(including tissue sample de-identification). 10 
 

Single cell suspension preparation 

After TESE surgery, samples were kept in cell culture PBS and transported to the research 

lab on ice within 1h of surgery for single-cell preparation. Testicular single-cell suspension was 

prepared by adapting existing protocols 
54

. Specifically, samples from TESE surgery was washed 15 
once with PBS and resuspended in 5mL PBS. Seminiferous tubules were minced quickly in a 

cell culture dish and spun down at 100g for 0.5min to remove supernatants. The minced tissue 

was resuspended in 8mL of 37°C pre-warmed tissue dissociation enzyme mix (See below). 

Tissue dissociation was done by incubating at 37°C for 20min with mechanical dissociation with 

pipetter every 5min. After digestion, the reaction was quenched by adding 2mL of 100% FBS 20 
(Gibco, Cat. 16000044) to a final concentration of 10%. Dissociation mix was filtered through a 

100um strainer to remove remaining seminiferous tubule chunks. Cells were washed once with 

DMEM medium (Gibco, Cat. 11965092) with 10% of FBS and twice with PBS. Cell viability 

was checked with Trypan-blue staining (with expectation of over 85% viable cells) before 

moving to the inDrop microfluidics platform. The tissue dissociation enzyme mix (8mL) was 25 

composed of 7.56mL of 0.25% Trypsin-EDTA (Gibco, Cat. 25200056), 400uL of 20mg/mL type 

IV Collagenase (Gibco, Cat. 17104019) and 40uL of 2U/uL TURBO DNase (Invitrogen, Cat. 

AM2238). 

 

Single-cell RNA-Seq 30 
       Single-cell barcoding was carried out with the inDrop microfluidics platform 

27
 as instructed 

by the manufacturer (1CellBio). Briefly, the microfluidic chip and barcoded hydrogel beads were 

primed ahead of single cell preparation. The ready-to-use single-cell suspension in PBS (after 

two times wash with PBS buffer) was adjusted to 0.1 million/mL by counting with 

hemocytometer. Next, the prepared cells, reverse transcription reagents (SuperScript III Reverse 35 
Transcriptase, Invitrogen, Cat. 18080085), barcoded hydrogel beads and droplet-making oil were 

loaded onto the microfluidic chip sequentially. Encapsulation was done by adjusting microfluidic 

flow rates as instructed. Single-cell barcoding and reverse transcription in the droplets were done 

by incubating at 50°C for 2h followed by heat inactivation at 70°C for 15min. Barcoded single-

cells in droplets were aliquoted as desired and then decapsulated by adding demulsifying agent.  40 

 

Sequencing library preparation 

       Single-cell RNA-Seq library preparation after inDrop was carried out as instructed by the 

manufacturer (1CellBio) and similar to the CEL-Seq2 method 
55

. Basically, barcoded single-cell 

cDNA was purified with Agencourt RNAClean XP magnetic beads (Beckman Coulter, Cat. 45 
A63987) followed by second-strand synthesis reaction with NEBNext mRNA Second Strand 
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Synthesis KIT (New England Biolabs, Cat. E6111S). Then linear amplification of cDNA was 

carried out through in vitro transcription (IVT) using HiScribe T7 High Yield RNA Synthesis kit 

(New England Biolabs, Cat. E2040S). IVT-amplified RNA was fragmented and purified again 

with Agencourt RNAClean XP magnetic beads. The second reverse transcription was done with 

PrimeScriptTM Reverse Transcriptase (Takara Clonetech, Cat. 2680A) followed with cDNA 5 
purification with Agencourt AMPure XP magnetic beads (Beckman Coulter, Cat.A63881). 

cDNA quantity was determined by qPCR on a fraction (5%) of purified cDNA. Final PCR 

amplification was done according to qPCR results and purified with Agencourt AMPure XP 

magnetic beads. Library concentration was determined by Qubit dsDNA HS Assay Kit 

(Invitrogen, Cat. Q32851). Library size was determined by Bioanalyzer High Sensitivity DNA 10 
Kit (Agilent, Cat. 5067-4626). 

 

Sequencing 

       Single-cell RNA-Seq library sequencing was carried out with Illumina NextSeq 500/550 75 

cycles High Output v2 kit (Cat. FC-404-2005). Custom sequencing primers were used as 15 
instructed by manufacturer 

27
. In addition, 5% of PhiX Control v3 (Illumina, Cat. FC-110-3001) 

library was added to give more complexity to scRNA-Seq libraries. Pair-end sequencing was 

carried out with read1 (barcodes) for 34bp, index read for 6bp and read2 (transcripts) for 50bp. 

 

Sequencing data processing 20 

Raw sequencing data obtained from the inDrop method were processed using a custom-built 

pipeline, available at (https://github.com/flo-compbio/singlecell). Briefly, the “W1” adapter 

sequence of the inDrop RT primer was located in the barcode read (the second read of each 

fragment), by comparing the 22-mer sequences starting at positions 9-12 of the read with the 

known W1 sequence (“GAGTGATTGCTTGTGACGCCTT”), allowing at most two 25 

mismatches. Reads for which the W1 sequence could not be located in this way were discarded. 

The start position of the W1 sequence was then used to infer the length of the first part of the 

inDrop cell barcode in each read, which can range from 8-11 bp, as well as the start position of 

the second part of the inDrop cell barcode, which always consists of 8 bp. Cell barcode 

sequences were mapped to the known list of 384 barcode sequences for each read, allowing at 30 
most one mismatch. The resulting barcode combination was used to identify the cell from which 

the fragment originated. Finally, the UMI sequence was extracted, and reads with low-

confidence base calls for the sex bases comprising the UMI sequence (minimum PHRED score 

less than 20) were discarded. The reads containing the mRNA sequence (the first read of each 

fragment) were mapped by STAR 2.5.1 with parameter “—outSAMmultNmax 1” and default 35 
settings otherwise

56
. Mapped reads were split according to their cell barcode and assigned to 

genes by testing for overlap with exons of protein-coding genes and long non-coding RNA 

genes, based on genome annotations from Ensembl release 90. For each gene, the number of 

unique UMIs across all reads assigned to that gene was determined (UMI filtering), 

corresponding to the number of transcripts expressed and captured. Cells with a total transcript 40 

count of less than 1,000 or more than 20% of transcripts originating from mitochondrial genes 

(i.e., genes that are part of the mitochondrial genome) were removed for downstream analysis. 

The resulting gene expression matrix contained UMI counts for 27,378 genes across 783 cells. 

 

Inferring the transcriptomic trajectory of spermatogenesis  45 
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To obtain a temporal ordering of our cells that reflected the developmental process of 

spermatogenesis, we first filtered the expression matrix for protein-coding genes, retaining 

19,788 genes. We then applied a variant of our recently proposed kNN-smoothing method 
57

, 

with k=3. This variant differed from the published version in that it relied on the Anscombe 

transform (𝑦 = 2√𝑥 + 3/8) instead of the Freeman-Tukey-transform as a variance-stabilizing 5 

transformation, and in that it identified all neighbors in a single step, rather than adopting a step-

wise approach. Briefly, all single-cell expression profiles were normalized to median number of 

total transcripts per cell 
58

, the Anscombe transform was applied to all expression values, and the 

k=3 closest neighbors of each cell were identified using Euclidean distance. The expression 

profile of each cell was then combined with those of its neighbors, thus obtaining its smoothed 10 
expression profile.  

We next transformed the smoothed data using principal component analysis, and applied 

multidimensional scaling (MDS) to the cell scores for the first four principal components. Based 

on the two-dimensional results, we constructed a nearest-neighbor graph in which we connected 

each cell to its closest 32 neighbors, with a maximum distance of 80. We calculated the 15 
minimum spanning tree of this nearest-neighbor graph, determined the longest path in the tree, 

and applied smoothing by averaging the x and y coordinates of four consecutive vertexes. This 

created a continuous “backbone” representing the transcriptomic trajectory of spermatogenesis.  

To obtain the temporal ordering of all cells, we then projected all cells onto this path in the 

manner described by Qiu et al 
29

 and excluded 42 cells (5.4 %) with a distance of 25 or greater, 20 
which likely presented rare cell types or damaged cells.  We used the expression of the PRM1 

gene 
59

 to determine which “end” of the ordering corresponded to the last stage of 

spermatogenesis. Minimal manual adjustments to the cell ordering inferred through the 

aforedescribed process were made by comparison with unsupervised hierarchical clustering 

results. Finally, we obtained a temporal ordering (from early to late) for 741 cells that formed the 25 

basis for our downstream analyses.   

 

Cell stage and cell type identification 

Following MDS ordering of cells, several marker genes were used to determine cell types or 

spermatogenic stages. CSF1, CYP11A1 and IGF1 
60–62

 genes were used to distinguish Leydig 30 
cells. WT1 and SOX9 

61,63
 were used to distinguish Sertoli cells. Both Leydig cells and Sertoli 

cells were then excluded from the dataset to determine developmental stages of spermatogenesis. 

FGFR3 and DMRT1 
26,64

 were used to determine spermatogonia. SYCP3 and TEX101 
61,65

 were 

used to determine spermatocytes. ACRV1 and ACTL7B 
61,65

 were used to determine round 

spermatids. TNP1, PRM1, PRM2, YBX1 and YBX2 
18,59,65,66

 were used collectively to determine 35 
elongating spermatids, condensing spermatids and condensed spermatids. Based on the main 

spermatogenic stages, a more detailed spermatogenesis staging were defined by hierarchical 

clustering to increase resolution.  

 

Principal component analysis (PCA) 40 
       The PCA plots in Figure 1 and S1 were perform on the UMI expression matrix of all 

testicular cells (741 cells, Fig. 1B) or spermatogenic cells (664 cells, Fig. 1C). In both cases, 

expression matrices were first normalized to 100,000 transcripts per cell. Fano factor or 

variance-to-mean ratio (VMR) was computed for each gene to determine dynamically expressed 

genes. PCA was then performed on the normalized and log2 transformed expression matrix using 45 
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the dynamically expressed genes. For all testicular cells (Fig. 1B), 860 dynamic expressed genes 

were included. For spermatogenic cells (Fig. 1C), 1648 dynamic expressed genes were used.  

 

Spermatogenic cell ordering by Monocle2 

       With the same smoothed spermatogenic cell expression matrix for building developmental 5 
trajectory as input, we used Monocle2 (version 2.6.0)

 29
 to infer the pseudotime track. We 

performed the required processes with default parameters according to the user manual 

(http://cole-trapnell-lab.github.io/monocle-release/docs/): 1) Set “negbinomial.size()” for 

expression distribution, and estimated size factors and dispersions. 2) Selected genes detected 

among at least 5% of 664 cells to project cells to 2D space using “DDRTree” method. 3) Ordered 10 
cells and visualized pseudotime track as shown in Fig. S1D. The increasing order of pseudotime 

values was consistent to the pattern of marker genes during spermatogenesis (data not shown). 

Pseudotime values were unique so the index of cell order was determined. The Monocle2-

determined and MDS-determined cell index were plotted and Pearson correlation coefficient was 

calculated as shown in Fig. S1E. 15 

 

Cell fate prediction with “RNA velocity” 

We used the R package velocyto.R (version 0.5) to estimate RNA velocity 
28

. This 

required three separate counts matrices (emat, nmat, and spmat) which were composed of the 

intronic UMIs, exonic UMIs and intron/exon spanning UMIs, respectively. They were generated 20 
by the dropEst pipeline (https://github.com/hms-dbmi/dropEst). 1) The raw sequencing reads 

was tagged by droptag with the default “inDrop v1&v2” config file except “r1_rc_length” was 

set as 3. 2) The tagged reads were mapped to the human reference genome GRCh38 using STAR 

(version 2.5.3a) 
56

 with default settings. 3) The alignments were processed by dropest with gene 

annotation GTF file (Ensembl release 90) and the default settings except the “--merge-barcodes” 25 

option was additionally called as suggested. The result contained 655 of the 664 spermatogenic 

cells. Pearson correlation coefficient between the UMI count profile of each cell estimated by 

custom-built single-cell RNA-Seq pipeline (https://gitlab.com/yanailab/singlecell) and dropEst 

pipeline was calculated and the median of all 655 cells was 0.968. 

We followed the velocyto.R manual (https://github.com/velocyto-team/velocyto.R)  and 30 
used emat and nmat to estimate and visualize RNA velocity. With predefined cell stage, we 

performed gene filtering with the parameter “min.max.cluster.average” set to 0.1 and 0.03 for 

emat and nmat, respectively. RNA velocity using the selected 4266 genes was estimated with the 

default settings except parameter “kCells” and “fit.quantile” which were set to was 3 and 0.05, 

respectively. RNA velocity field was visualized on a separate PCA embedding as shown in Fig. 35 
1C. 

 

Stage-marker identification 

        To identify gene markers for stages throughout spermatogenesis, we searched for genes 

exclusively expressed in the corresponding stage. We constructed an idealized gene expression 40 

pattern exclusive to each stage (main or detailed), which was used as a reference to find gene 

expression pattern. A correlation coefficient higher than 0.5 and P-value lower than 0.0001 was 

used as thresholds to detect stage-specific marker genes. The top 50 genes with the highest 

correlation coefficient values to each stage are shown in Fig. S2.  

 45 
Delineating the stage and expression level groups 
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        To assign genes to specific stages, we computed for each, its average gene expression levels 

across the six main stages (Sg, Sc, RS, ES, CS, CedS). Genes were then assigned to a main stage 

in which they have highest level of expression. Unexpressed genes formed a separate group.  

To assign groups based on expression levels, we binned the peak expression level to 7 

groups: 5 
Group 1: log2(UMI

mean_peak
) = 0, unexpressed; 

Group 2: log2(UMI
mean_peak

) ≤ −5; 

Group 3: −5 < log2(UMI
mean_peak

) ≤ −2.5; 

Group 4: −2.5 < log2(UMI
mean_peak

) ≤ 0; 

Group 5: 0 < log2(UMI
mean_peak

) ≤ 2.5; 10 
Group 6: 2.5 < log2(UMI

mean_peak
) ≤ 5; 

Group 7: 5 < log2(UMI
mean_peak

) , highly expressed. 

 

Human germline variations  

Human germline variations were downloaded from the Ensembl FTP site 15 
(ftp://ftp.ensembl.org/pub/release-91/variation/vcf/homo_sapiens). We selected from these, the 

variations from dbSNP_150 and used BEDOPS together with custom Bash scripts to associate 

them with gene body, upstream 5kb and downstream 5kb genomic regions. The gene body 

region was defined as the genomic interval between the gene start site and gene end site 

annotated in GTF file (Ensembl release 91). Upstream and downstream 5kb region was defined 20 
according to gene body region and with reference to gene strand information. We classified the 

variants into the six mutation classes: (A>T/T>A; A>G/T>C; T>G/A>C; C>T/G>A; G>T/C>A; 

C>G/G>C). Each variant was them further distinguished in terms of the coding and the template 

strands, as previously introduced 
32

. The same procedures were also performed on upstream and 

downstream genomic regions, with the strand specificity (coding strand versus template strand) 25 

being assigned in consistent with the associated genes. 

The germline mutation rates of the coding and the template stands were calculated by 

normalizing to a length of 1kb. Specifically, for germline mutations in total, the mutation rates 

were calculated as the sum of all germline short variants normalized to a length of 1kb. For 

specific base substitution mutation type, the mutation rates were calculated as the number of 30 
specific mutation type normalized to 1kb of the reference base type.  

 

Gene divergence datasets 

The sequence divergence datasets of human to apes were downloaded from Ensembl release 

91
31

. Percent divergences in Figure 5 were calculated as: Divergence = 100% − Identity (human 35 
to other apes). dN and dS values were also retrieved from Ensembl and we excluded genes zero 

dN or dS. The mean values shown in Figure 5 were computed on non-outlier values, where an 

outlier value is defined as more than three scaled median absolute deviations (MAD) away from 

the median. For a set of divergence or dN/dS values made up N genes, MAD is defined as: MAD 

= median ( |Ai − median(A)| ), for i = 1,2,...,N.  40 

 

Statistical Analysis 

Statistical significance was computed by the Mann-Whitney test (Mann-Whitney-Wilcoxon 

test or rank-sum test) to test whether two groups of genes have distinct value distributions. Error 

bars of bar plots represents 99% percent confidence intervals, calculated as 2.58×standard error, 45 
as values are all normal distributed or close to normally distributed. 
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Fig. S1. Single-cell transcriptomic analysis of human spermatogenesis. (A) Schematic of 5 
single-cell RNA-seq of human testes sample with the inDrop microfluidics platform (see 

Methods). (B) Determining the developmental program of spermatogenic cells. A 

multidimensional scaling (MDS)-embedding on the single cell data was constructed using a no-

branching minimum spanning tree, and the cell order is corrected with hierarchical clustering of 

the cells to determine the developmental time (see Methods). (C) Same PCA as in Figure 1C for 10 
the indicated markers of stages. Color indicates gene expression levels. (D) Monocle2-ordering 

of spermatogenic cells. (E) Comparison of MDS ordering with the Monocel2-determined cell 

ordering. 

 
 15 
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Fig. S2. Heatmap of stage-specific marker gene expression levels. Expression data for both 

main stages (bottom) and detailed spermatogenic stages (top) marker genes is shown. Gene 

names are indicated for one representative gene of each stage. Expression levels of at most 50 

genes are displayed for each stage.  5 
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Fig. S3. Germline mutation rates in the flanking regions of human genes. Germline mutation 

rates in both upstream 5kb (A) and downstream 5kb (B) of genes are shown. 

 
 5 
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Fig. S4. Germline mutation rates and asymmetry scores of gene body and flanking regions 

of all base-substitution mutation types. (A-C) Germline mutation rates in the gene body region 

(A), upstream 5kb (B) and downstream 5kb (C). Dashed lines indicate the average level of 

mutations in unexpressed genes. (D-F) Germline mutation asymmetry scores between coding and 5 
template strands in the upstream 5kb (D), gene body region (E) and downstream 5kb (F). 

 
 
 
  10 
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Fig. S5. Mutation rate asymmetry is not detected between the Watson and Crick strands in 

expressed genes. (A) Schematic of two neighboring genes, each on a different strand. Across the 

genome, genes are randomly disposed with respect to strand. (B-C) Germline mutation rates (B) 

and asymmetry scores (C) of all base substitution mutation types across spermatogenesis 5 
expressed and unexpressed genes. Mutation rates and asymmetry scores are computed by 

distinguishing between the Watson and Crick strands, instead of coding and template strands (as 

shown in Fig. 2D and S4). Dashed lines indicate the average level of mutations in unexpressed 

genes. 

 10 
 
 
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 14, 2018. ; https://doi.org/10.1101/282129doi: bioRxiv preprint 

https://doi.org/10.1101/282129
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

30 

 

 

 

Fig. S6. Shuffling gene assignments loses the mutation-level difference between expressed- 

and unexpressed genes. (A) Shuffling gene group assignments. Genes assigned to all stages 

were shuffled, while maintaining the size of each group. (B-C) Germline mutation rates (B) and 5 
asymmetry scores (C) of all base substitution mutation types according to shuffled gene-

grouping in (A). Mutation rates and asymmetry scores are computed by distinguishing between 

the coding and template strands (same as in Fig. 2D and S4). Dashed lines indicate the average 

level of mutations in unexpressed genes. 
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Fig. S7. Gene expression profiles of genes involved in transcription-coupled repair (TCR). 

Gene expression levels of each TCR gene (A) and their sum (B) across all spermatogenic single 

cells are displayed, respectively.  5 
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Fig. S8. ‘Transcriptional scanning’-induced mutation reduction is tuned by gene-

expression level. (A) Germline mutation rates across gene expression level categories. 

Spermatogenesis unexpressed- or highly expressed genes have higher level of germline 5 
mutations. (B-C) Same as Fig. 4C and D, showing more mutation types. Germline mutation rates 

(B) and associated asymmetry scores (C) of the indicated mutation types across gene expression 

level categories as determined in Fig. 4B. Dashed lines in (B) indicate the average level of 

mutations in unexpressed genes.  
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Fig. S9. Evolutionary consequences of ‘transcriptional scanning’ across apes. (A) 

Phylogenic tree of apes with sequenced genome data in Ensembl 
31

. (B-C) dN (B) and dS (C) 

values of human genes with their orthologues across apes, according to stages of 5 
spermatogenesis expression. Red dashed box highlights the unexpressed genes. (D-E) Same as 

B-C, according to gene expression level categories.  
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Table S1. Gene Ontology (GO) terms showing enrichment in the set of genes unexpressed 

in spermatogenesis. The GO term analysis was done by GOrilla 
67

. ‘FDR q-value’ is the 

correction of p-values for multiple testing using the Benjamini and Hochberg method 
68

. 

Enrichment (N, B, n, b) is defined as ‘Enrichment = (b/n) / (B/N)’. N, total number of genes; B, 

total number of genes associated with a specific GO term; n, number of genes in the input list; b, 5 
number of genes in the intersection. The highlighted GO terms are displayed in Fig. 5C. 

 
GO Term Description P-value FDR q-

value 

Enrichment N B n b 

GO:0050907 detection of chemical 

stimulus involved in 

sensory perception 

3.88E-134 5.58E-130 5.54 15260 369 1793 240 

GO:0007186 G-protein coupled receptor 

signaling pathway 

1.48E-133 1.07E-129 3.43 15260 1029 1793 415 

GO:0009593 detection of chemical 

stimulus 

1.42E-132 6.83E-129 5.34 15260 394 1793 247 

GO:0050906 detection of stimulus 

involved in sensory 

perception 

1.98E-127 7.13E-124 5.15 15260 408 1793 247 

GO:0050911 detection of chemical 

stimulus involved in 

sensory perception of smell 

1.18E-123 3.39E-120 5.62 15260 330 1793 218 

GO:0051606 detection of stimulus 6.82E-107 1.64E-103 4.22 15260 529 1793 262 

GO:0031424 keratinization 6.42E-45 1.32E-41 4.72 15260 175 1793 97 

GO:0007165 signal transduction 6.02E-39 1.08E-35 1.52 15260 3825 1793 683 

GO:0007606 sensory perception of 

chemical stimulus 

3.28E-33 5.25E-30 4.28 15260 159 1793 80 

GO:0007608 sensory perception of smell 8.62E-33 1.24E-29 4.73 15260 126 1793 70 

GO:0050896 response to stimulus 3.58E-32 4.67E-29 1.44 15260 4167 1793 705 

GO:0032501 multicellular organismal 

process 

5.80E-28 6.95E-25 1.53 15260 2853 1793 513 

GO:0006952 defense response 4.24E-25 4.69E-22 2.07 15260 824 1793 200 

GO:0006955 immune response 4.51E-21 4.63E-18 2.06 15260 699 1793 169 

GO:0098542 defense response to other 

organism 

1.26E-20 1.21E-17 2.64 15260 319 1793 99 

GO:0007600 sensory perception 8.91E-20 8.01E-17 2.27 15260 476 1793 127 

GO:0003008 system process 9.19E-18 7.77E-15 1.73 15260 1112 1793 226 

GO:0010469 regulation of receptor 

activity 

2.05E-17 1.64E-14 2.21 15260 455 1793 118 

GO:0051707 response to other organism 7.01E-16 5.30E-13 2.19 15260 424 1793 109 

GO:0050877 nervous system process 1.01E-15 7.24E-13 1.87 15260 730 1793 160 

GO:0045087 innate immune response 6.50E-15 4.45E-12 2.26 15260 358 1793 95 

GO:0002323 natural killer cell activation 

involved in immune 

response 

1.17E-13 7.62E-11 7.23 15260 20 1793 17 

GO:0043207 response to external biotic 

stimulus 

1.28E-13 8.02E-11 1.89 15260 600 1793 133 

GO:0042742 defense response to 

bacterium 

1.56E-13 9.33E-11 2.79 15260 174 1793 57 

GO:0006959 humoral immune response 3.06E-13 1.76E-10 3.05 15260 134 1793 48 
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GO:0009607 response to biotic stimulus 3.79E-13 2.10E-10 1.85 15260 627 1793 136 

GO:0033141 positive regulation of 

peptidyl-serine 

phosphorylation of STAT 

protein 

5.44E-13 2.90E-10 6.89 15260 21 1793 17 

GO:0009617 response to bacterium 6.15E-13 3.16E-10 2.63 15260 194 1793 60 

GO:0033139 regulation of peptidyl-

serine phosphorylation of 

STAT protein 

2.13E-12 1.06E-09 6.58 15260 22 1793 17 

GO:0002376 immune system process 2.69E-12 1.29E-09 1.47 15260 1587 1793 275 

GO:0050912 detection of chemical 

stimulus involved in 

sensory perception of taste 

4.96E-12 2.30E-09 5.06 15260 37 1793 22 

GO:0001580 detection of chemical 

stimulus involved in 

sensory perception of bitter 

taste 

5.37E-12 2.41E-09 5.26 15260 34 1793 21 

GO:0070268 cornification 3.83E-11 1.67E-08 3.07 15260 108 1793 39 

GO:0030101 natural killer cell activation 4.22E-11 1.79E-08 4.68 15260 40 1793 22 

GO:0006954 inflammatory response 6.47E-11 2.66E-08 2.05 15260 349 1793 84 

GO:0009605 response to external 

stimulus 

1.23E-10 4.90E-08 1.55 15260 1067 1793 194 

GO:0007187 G-protein coupled receptor 

signaling pathway, coupled 

to cyclic nucleotide second 

messenger 

3.17E-10 1.23E-07 2.57 15260 159 1793 48 

GO:0007218 neuropeptide signaling 

pathway 

3.78E-09 1.43E-06 2.96 15260 95 1793 33 

GO:0042100 B cell proliferation 3.57E-08 1.32E-05 4.54 15260 30 1793 16 

GO:0018149 peptide cross-linking 5.64E-08 2.03E-05 3.47 15260 54 1793 22 

GO:0051607 defense response to virus 6.76E-08 2.37E-05 2.44 15260 136 1793 39 

GO:0007200 phospholipase C-activating 

G-protein coupled receptor 

signaling pathway 

9.40E-08 3.22E-05 3.03 15260 73 1793 26 

GO:0002250 adaptive immune response 1.47E-07 4.91E-05 2.35 15260 145 1793 40 

GO:0043330 response to exogenous 

dsRNA 

2.34E-07 7.66E-05 3.74 15260 41 1793 18 

GO:1904892 regulation of STAT 

cascade 

2.75E-07 8.78E-05 2.39 15260 132 1793 37 

GO:0002286 T cell activation involved 

in immune response 

3.50E-07 1.09E-04 3.52 15260 46 1793 19 

GO:0007188 adenylate cyclase-

modulating G-protein 

coupled receptor signaling 

pathway 

3.84E-07 1.17E-04 2.33 15260 139 1793 38 

GO:0050832 defense response to fungus 5.06E-07 1.52E-04 4.12 15260 31 1793 15 

GO:0043331 response to dsRNA 5.22E-07 1.53E-04 3.44 15260 47 1793 19 

GO:0019221 cytokine-mediated 

signaling pathway 

6.24E-07 1.79E-04 1.69 15260 434 1793 86 

GO:0046425 regulation of JAK-STAT 

cascade 

6.72E-07 1.89E-04 2.34 15260 131 1793 36 

GO:0097746 regulation of blood vessel 

diameter 

1.26E-06 3.50E-04 2.59 15260 92 1793 28 
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GO:0035296 regulation of tube diameter 1.26E-06 3.43E-04 2.59 15260 92 1793 28 

GO:0051480 regulation of cytosolic 

calcium ion concentration 

2.46E-06 6.55E-04 1.92 15260 231 1793 52 

GO:0042110 T cell activation 2.49E-06 6.51E-04 2.17 15260 149 1793 38 

GO:0050878 regulation of body fluid 

levels 

2.66E-06 6.82E-04 1.78 15260 306 1793 64 

GO:0001906 cell killing 2.68E-06 6.76E-04 3.04 15260 56 1793 20 

GO:0035150 regulation of tube size 3.07E-06 7.60E-04 2.44 15260 101 1793 29 

GO:0070098 chemokine-mediated 

signaling pathway 

3.67E-06 8.95E-04 2.99 15260 57 1793 20 

GO:0007204 positive regulation of 

cytosolic calcium ion 

concentration 

3.78E-06 9.07E-04 1.96 15260 204 1793 47 

GO:0007267 cell-cell signaling 3.82E-06 8.99E-04 1.57 15260 527 1793 97 

GO:0052695 cellular glucuronidation 4.82E-06 1.12E-03 5.47 15260 14 1793 9 

GO:0061844 antimicrobial humoral 

immune response mediated 

by antimicrobial peptide 

5.28E-06 1.21E-03 3.55 15260 36 1793 15 

GO:0060337 type I interferon signaling 

pathway 

6.11E-06 1.37E-03 2.99 15260 54 1793 19 

GO:0050880 regulation of blood vessel 

size 

7.68E-06 1.70E-03 2.38 15260 100 1793 28 

GO:0009620 response to fungus 7.92E-06 1.73E-03 3.45 15260 37 1793 15 

GO:0052697 xenobiotic glucuronidation 8.88E-06 1.90E-03 6.62 15260 9 1793 7 

GO:0052696 flavonoid glucuronidation 8.88E-06 1.88E-03 6.62 15260 9 1793 7 

GO:0050830 defense response to Gram-

positive bacterium 

9.39E-06 1.96E-03 2.75 15260 65 1793 21 

GO:0002252 immune effector process 9.87E-06 2.03E-03 1.47 15260 678 1793 117 
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Table S2. Gene Ontology terms showing enrichment in the set of genes that are highly-

expressed throughout spermatogenesis. The GO term analysis was done as described in Table 

S1. 

 5 

GO Term Description P-value FDR q-

value 

Enrich

ment 

N B n b 

GO:0022414 reproductive process 4.58E-10 6.77E-06 3.58 16863 1249 113 30 

GO:0022900 electron transport chain 7.20E-09 5.32E-05 10.59 16863 155 113 11 

GO:0022412 cellular process involved in 

reproduction in multicellular 

organism 

1.22E-08 6.01E-05 7.01 16863 298 113 14 

GO:0022904 respiratory electron transport 

chain 

1.43E-08 5.29E-05 14.14 16863 95 113 9 

GO:0006091 generation of precursor 

metabolites and energy 

2.46E-08 7.26E-05 6.63 16863 315 113 14 

GO:0003006 developmental process involved 

in reproduction 

2.97E-08 7.31E-05 4.83 16863 556 113 18 

GO:0048609 multicellular organismal 

reproductive process 

1.26E-06 2.65E-03 4.47 16863 501 113 15 

GO:0007276 gamete generation 1.77E-06 3.28E-03 5.05 16863 384 113 13 

GO:0007283 spermatogenesis 4.11E-06 6.75E-03 5.1 16863 351 113 12 

GO:0048232 male gamete generation 4.36E-06 6.44E-03 5.07 16863 353 113 12 
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