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ABSTRACT 

Background The neurobiological heterogeneity of schizophrenia is widely accepted, 

but it is unclear how mechanistic differences converge to produce the observed 

phenotype. 

 

Aims Establishing a pathophysiological model that accounts for both heterogeneity 

and phenotypic similarity is essential to inform stratified treatment approaches. 

 

Method In this cross-sectional diffusion tensor imaging (DTI) study, we recruited 77 

healthy controls (HC), and 70 patients with DSM-IV diagnosis of schizophrenia 

(SCZ). Heterogeneity was assessed by inter-subject similarity and clustering for 

subgroups. Common feature was established at a system-level as the diversity (or 

statistically, the variance) of topographic distribution of structural connectivity (SC). 
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Discriminative powers were demonstrated by classifier using topographic diversity as 

an input feature. 

 

Results We first confirmed the heterogeneity in SC by showing a reduced 

between-individual similarity in SCZ compared to HC. Moreover, we found it was not 

possible to cluster patients into subgroups with shared patterns of dysconnectivity, 

indicating a high degree of mechanistic divergence in schizophrenia. Topographic 

diversity was significantly reduced in SCZ (P = 7.21×10-7, T142 = 5.19 [95% CI: 

3.37−7.52], Cohen’s d=0.91), and this affected 65 of the 90 brain regions examined 

(False Discovery Rate < 5%). When topographic diversity was used as a discriminant 

feature for classifying patients from controls, we achieved a classification accuracy of 

80.97% (sensitivity 77.14%, specificity 84.42%). 

 

Conclusions This finding suggests highly individualized pattern of structural 

dysconnectivity underlies the heterogeneity of schizophrenia, but these disruptions 

likely converge on an emergent common pathway to generate the clinical phenotype 

of the disorder. 
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INTRODUCTION 

Schizophrenia is characterised by dysconnectivity in the brain (1), and structural 

dysconnectivity has been reported by diffusion imaging studies (2-6). Nevertheless, 

the spatial localisations of white matter (WM) abnormalities have been diffuse (4, 5, 7, 

8) (including corpus callosum, cingulate bundle, and uncinate fasciculus, fibres from 

superior frontal gyrus, superior temporal gyrus, thalamus, the internal capsule, 

cerebellum, hippocampus, the parietal lobe, and the occipital lobe), with only 

moderate effect size given by a large sample size (Cohen’s d < 0.42) (7). This lack of 

consistency has often been ascribed to neurobiological heterogeneity of schizophrenia 

where region-specific pathology results in distinct subgroups of patients (4, 9). While 

the between-individual variations in the severity of symptom dimensions and 

cognitive ability appear to be linked to differential WM integrity (10-13), it is 

important to note that most studies to date have linked distributed WM deficits to the 

broad clinical phenotype of schizophrenia, rather than hitherto unknown 

neurobiological subgroups. If aberrant brain connectivity is indeed a neurobiological 

substrate of the schizophrenia phenotype, then it is likely that these spatially distinct 

WM changes converge to deviate certain emergent features of WM architecture. In 

other words, we hypothesized to see a large effect-size deficit in WM architecture at a 

system-level despite a low degree of between-individual similarity in spatial 

distribution of WM abnormalities in schizophrenia. We are going to test this 

hypothesis in this paper.  
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METHODS 

Subjects and Image Acquisition 

In the current sample (Table 1, Table S1), we had 70 patients with schizophrenia 

(35 Male, 35 Female, age 42.1 ± 9.4) and 77 age matched healthy controls (33 Male, 

44 Female, age 42.1 ± 9.1). The authors assert that all procedures contributing to this 

work comply with the ethical standards of the relevant national and institutional 

committees on human experimentation and with the Helsinki Declaration of 1975, as 

revised in 2008. All procedures involving human subjects/patients were approved by 

the Institutional Review Board of Taipei Veterans General Hospital. All participants 

were recruited from the Taipei Veterans General Hospital, and this study was 

approved by the Institutional Review Board of Taipei Veterans General Hospital. 

Written informed consent was obtained from all participants. The age of all 

participants varied from 20 to 55, and the education years varied from 9 to 17. They 

are all right-handed. The total score of the Positive and Negative Syndrome Scale 

(PANSS) was over 35 in all patients at the time of scanning. The PANSS scores were 

low because of the long-term treatment (Table S1). All images were acquired using a 

3T MR system (Siemens Magnetom Tim Trio, Erlangen, Germany) at National 

Yang-Ming University, equipped with a high-resolution 12-channel head array coil. 

To minimize the head motion during the scan, each subject’s head was immobilized 

with cushions inside the coil during the scan. A high-resolution anatomical 

T1-weighted image was acquired with sagittal 3D magnetization-prepared rapid 
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gradient echo (MPRAGE) sequence: repetition time (TR) = 3500 ms, echo time (TE) 

= 3.5 ms, inversion time = 1100 ms, flip angle = 7°, field of view (FOV) = 256 mm × 

256 mm, 192 slices, slice thickness = 1 mm, voxel size =1.0 mm × 1.0 mm × 1.0 mm. 

The diffusion images gradient encoding schemes include 30 non-collinear directions 

(according to the minimal energy arrangement of electron distribution) 

(http://www2.research.att.com/~njas/electrons/dim3) with b-value 1000 s/mm2 and 3 

non-diffusion weighted image volume. With the consideration of total brain coverage, 

each volume consisted of 70 contiguous axial slices (thickness: 2 mm) acquired using 

a single shot spin-echo planar imaging (EPI) sequence (TR: 11000 ms, TE: 104 ms, 

NEX: 6, Matrix size: 128 × 128, voxel size: 2 mm × 2 mm × 2 mm, matrix size: 128 × 

128).  

 

Image Preprocessing and Construction of Connectivity Matrix  

Brain was extracted from all images using FSL's brain extraction tool (14, 15). 

The diffusion-weighted volumes were corrected for eddy-current induced distortions 

and movements by affine registration to the no diffusion-weighted (B0) image using 

the diffusion-specific FSL’s EDDY tool (16).  

Fiber-tracking was performed by the MRtrix0.2.12 package 

(http://www.nitrc.org/projects/mrtrix/, (17)). We first extracted the b=0 image and 

constructed the brain mask. By the MRtrix, we acquired the diffusion tensor 

parameters and fractional anisotropy (FA) map. Next, the response function of each 
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voxel above FA threshold of 0.7 was estimated from the DWI, and this was used as 

the input of the constrained spherical deconvolution computation (18). Finally, we 

performed deterministic fiber-tracking within whole brain using the orientations 

provided by constrained spherical deconvolution, with an FA cutoff of 0.15, step size 

of 0.2 mm, minimum length of 10 mm, maximum length of 200 mm, until 2,000,000 

fibers were reconstructed for each individual. The AAL template (19) (without 

parcellations in cerebellum) was registered from MNI standard space into the space of 

each subject’s diffusion data by the program Statistical Parametric Mapping (SPM8, 

http://www.fil.ion.ucl.ac.uk/spm/, (20)). For each subject, each fiber was labelled 

according to its termination to the AAL template in native space. From these data, we 

constructed a 90 × 90 structural connectivity (SC) matrix A, whose element Aij was 

computed as the mean of the FA values of all included fibers that formed the 

connection between regions i and j and incorporated the information on the integrity 

of the interregional white matter connection. The diagonal elements Aii of A was 0 

because we only considered the inter-regional connections here.  

 

Between-individual Similarity of Whole Brain Connectivity 

Increased heterogeneity in patients would result in a decrease in 

between-individual similarity. We estimated the between-individual similarity by 

calculating the correlations of the whole brain connectivity (i.e., the FA-weighted SC 

matrix A) between subjects of the same group. This resulted in a similarity matrix for 
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each group. This similarity distribution (elements of upper triangular of similarity 

matrix) was then compared between healthy subjects and patients with schizophrenia 

by t-test to examine whether the similarity was significantly different in group level.  

 

Clustering Patients with Schizophrenia 

Decreased similarity might be explained by forming of subgroups with distinct 

patterns of SC in patients with schizophrenia. We tried to identify these subgroups, if 

any, by applying different clustering methods to the connectivity pattern, i.e., the FA 

weighted SC between brain regions. Because of the high dimension of 4005 unique 

structural connections, we utilized two different dimensionality reduction methods to 

reduce the dimension of features for clustering. 

Principal components analysis (PCA): We first selected 740 connections which 

were significantly different between patients and healthy controls (P < 0.05, 

uncorrected). Then PCA was applied to these connections, and different numbers of 

components (ranging from 15 to 60 components which explained at least 30% of all 

variability) were selected as features for clustering.  

Canonical correlation analysis (CCA): Following the approach of detecting 

subgroups in patients (21), the SC was first selected according to their (Spearman’s 

rank) correlations with the PANSS scales (Positive scale, or Negative scale, or 

General Psychopathology scale with P < 0.005, uncorrected) in patients. Secondly, by 
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CCA, we identified different numbers of canonical components (i.e. linear 

combinations of those symptom-associated SC) as features for clustering.  

To avoid the possibility that the clustering result was affected by the inherent 

limitations of a particular clustering method, we systematically tested four different 

combinations between two clustering methods and two features selection approaches, 

including PCA-based k-means, CCA-based k-means, PCA-based hierarchical 

clustering and CCA-based hierarchical clustering.  

K-means clustering: We applied k-means clustering to patients with 

PCA-selected features (PCA-based k-means) and CCA-selected features (CCA-based 

k-means). The number of clusters (k value) in our analysis ranged from 1 to 6. The 

optimal number of clusters was determined by the GAP statistics (22), measuring the 

quality of the resulting clusters.  

Hierarchical clustering: We also applied a hierarchical clustering method to 

identify subgroups of patients with PCA-selected features (PCA-based hierarchical 

clustering) or CCA-selected features (CCA-based hierarchical clustering, which had 

been successfully applied recently to define neurophysiological subtypes of 

depression (23)). The results were tested with different cutoffs (a critical inconsistent 

value for constructing agglomerative clusters) from 0.6 to 1.6 with step 0.01.  

 

The Stability of K-means Clustering 
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To assess the stability of k-means clustering, we applied bootstrap to the adjusted 

Rand index (ARI) (24-26). Firstly, the original patients’ data with PCA-selected 

features or CCA-selected features were analyzed with k-means for a given cluster 

number k which could be ranged from 2 to 6, resulting in a clustering solution Pk and 

the k cluster centroid locations Ck. Secondly, from all patients, 70 objects were drawn 

with replacement to yield a bootstrap sample. The bootstrap procedure was repeated 

1000 times. Thirdly, every bootstrap sample was analyzed with k-means to get the 

corresponding k cluster centroid locations ��
� for b = 1, 2, … , 1000. Fourthly, ��

� 

was used to construct the cluster solution ��
� for all patients in the original data by 

assigning each subject to the cluster with the closest centroid (26). Finally, for each 

bootstrap, we computed an ARI value with ��
� and Pk, and took the meanof 1000 

bootstrap ARI values as the final stability Rk for k. The scale of Rk helped us to 

understand the stability of our clustering results and the maximum value of Rk gave us 

an idea about the number of clusters in patients (25).  

 

The Topographic Diversity of SC 

We computed the variance of the brain SC for each subject as follows: 

Vbrain = 1
4005 ∑i<j (Aij − μ)2, 

where μ was the mean of 4005 structural connections. A larger Vbrain indicated a 

higher global topographic diversity of SC. Similarly, for each brain region defined by 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 4, 2018. ; https://doi.org/10.1101/282145doi: bioRxiv preprint 

https://doi.org/10.1101/282145


11 

 

the AAL template, the variance of its regional connectivity pattern was calculated to 

represent the regional topographic diversity for every subject as follows: 

Vi 
region=

1
89 ∑j≠i (Aij – μi)

2, 

where μi was the FA-weighted mean of 89 structural connections connected to region 

i. For group comparison, we implemented a linear regression to compare these 

variances between patients and controls with age, gender, education used as 

covariates. To confirm the findings of group differences, we applied 1000 bootstraps 

to establish 95% confidence intervals of the corresponding statistics. To examine the 

heterogeneity of regional diversity in patients, we estimated the between-individual 

similarity by calculating the correlations of the 90 regional diversities between 

subjects of the same group. This similarity distribution was then compared between 

two groups by t-test.  

 

Comparison of Top 10 or Last 10 Connections 

For a fixed region i, we ranked its FA weighted connections to the other 89 brain 

region in a descending order. To explore the origins of the group difference in the 

regional diversity, we calculated the mean FA of the top 10 connections and that of 

the bottom 10 connections. For each region, the mean value of top 10 (bottom 10) was 

linearly regressed on age, gender, education and diagnostic group identity 

(schizophrenia: 0; healthy control: 1) for all participants. After FDR correction for 

multiple comparisons, this allowed us to test whether the disrupted topographic 
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diversity emerged from aberrations in strong (top 10), rather than weakly connected 

(bottom 10) WM pathways. The effects of different number of top (bottom) 

connections range from 5 to 15 were also tested.  

 

Classification of Patients and Controls 

To study if the topographic diversity provided any incremental value in 

distinguishing patients from healthy controls, we used a random forest classification 

approach (27). This machine learning approach is particularly useful in this case as it 

has a built-in cross-validation process to provide ranking of the discriminative 

features. After the feature selection, another cross-validation procedure was applied to 

fit the model and evaluate the model performance. Such separation of feature 

selection and model fitting has been proved to be a promising strategy to prevent 

over-fitting (28). Two models were built on the basis of: (Model 1. Connectivity 

model) 4005 SC among 90 brain regions; (Model 2. Combined model) variance of 

each region, mean FA of the top 10 connections in the regional connectivity pattern, 

combined with SC.  

Firstly, from 4005 structural connections we selected 50 connections as predictors 

which were most significantly different between patients and controls. For Model 2, 

we also chose 50 brain regions whose regional diversity differed most obviously 

between two groups, and used the regional diversity and the mean FA of top 10 

connections of those regions as the predictors. Secondly, we ran the random forest 
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algorithm for each model with 2000 trees for 200 times on the predictors to obtain a 

median importance score for each predictor. The highest 6−15 predictors were used in 

the final model to classify the subjects into patients and controls. Notably, this 

technique utilizes bootstrapped cross-validation to reduce overfitting when generating 

permutation importance scores. Thirdly, using five-fold cross-validation, we 

compared the classification accuracies of these two models by McNemar's test (29)，

and also estimated an accuracy of classification for each model. The results were 

validated by exploring different numbers of selected predictors for these models. 

 

RESULTS 

Heterogeneity Observed in SC Patterns of Patients 

Compared with healthy controls, patients had decreased between-individual 

similarity of SC (P = 2.82 × 10-64, T145 = 17.16, Cohen’s d = 0.47), indicating notable 

within-group heterogeneity among patients (Figure 1A). 

Furthermore, we found SC patterns in patients were too heterogeneous to detect 

any distinct SC pattern shared by any subgroup of patients, as no subgroup could be 

clearly identified by neither k-means nor hierarchical clustering. According to the 

quality of clusters given by the GAP statistic for k-means (22), we found that the 

optimal number of clusters was 1 in patients (Figure 1B-C; Figures S1), despite 

systematically varying of the complexity of feature space (principal components or 

canonical components; Tables S2 and S3). According to the stability of clusters 
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assessed by 1000 bootstraps of adjusted Rand index (ARI), we found all clustering 

results had low stabilities (<0.77) (Table S4 and S5). Similarly, no cluster could be 

clearly defined by hierarchical clustering as shown more intuitively in dendrograms 

(Figure 1D-1E; Figures S2).  

 

Topographic Diversity of SC Decreased More Homogenously in Patients  

Compared with patients, HC had greater diversity in the whole brain SC (P = 

7.21 × 10-7; T142 = 5.19 [95% CI: 3.37−7.52]; Cohen’s d = 0.91), indicating that the 

difference between strong connections and weak connections were larger in HC 

(Figure 2A). In contrary to SC, patients compared with HC became more similar to 

each other in terms of topographic diversity as they had increased between-individual 

similarity of topographic diversity (P = 4.66 × 10-11, T145 = -6.60, Cohen’s d = 0.18) 

(Figure 2B).  

After FDR correction, we found that the regional diversity of 65 brain regions 

(72.2% of 90 brain regions) were reduced in patients compared with controls (Figure 

2C). Areas showing reduced diversity were mainly located in frontal lobe, prefrontal 

lobe, parietal lobe, occipital lobe and subcortical areas. The top 5 most abnormal 

regions were SMA.L (P = 2.55 × 10-8; T142 = 5.90 [95% CI: 3.90−8.00]; Cohen’s d = 

1.04), SMA.R (P = 6.04 × 10-6; T142 = 4.70 [95% CI: 2.83−6.89]; Cohen’s d = 0.83), 

ORBmid.R (P = 1.22 × 10-5; T142 = 4.53 [95% CI: 2.43−6.42]; Cohen’s d = 0.80), 
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ORBinf.L (P = 5.08 × 10-6; T142 = 4.74 [95% CI: 2.73−6.92]; Cohen’s d = 0.84) and 

PoCG.L (P = 1.26 × 10-5; T142 = 4.53 [95% CI: 2.59−6.26]; Cohen’s d = 0.80).  

Furthermore, we found for 64 out of 65 brain regions identified above, the 

connectivity strength of the top 10 strongest connections but not the bottom 10 

weakest connections (P < 0.05 FDR corrected) were reduced in patients (Figure 2D; 

Table S6). We also confirmed this finding using different number of top (bottom) 

connections ranging from 5 to 15. 

Current antipsychotic dose equivalents had no association with the regional or the 

global diversity (Table S7). 

 

Topographic Diversity Improved the Classification between Patients and 

Controls 

The accuracy rate of Model 1 was 73.45% (sensitivity 72.86% and specificity 

74.03%) with nine connections, predominantly frontal (Table S8), selected by the 

random forest. Introducing the topographic diversity to the model the accuracy rate 

increased to 80.97% (sensitivity 77.14% and specificity 84.42%) in Model 2. Such 

improvement of classification accuracy was significant (P = 0.01 , χ1 = 1.34 by 

McNemar's test (29); Figure 3A). The effects of topographic diversity in classification 

were consistently positive when varying the number of predictors selected (Figure 

3B).  
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DISCUSSION  

To the best of our knowledge, this is the first study to systematically examine if 

the individually distinct WM changes seen in patients with schizophrenia lead to a 

convergent effect that is relevant to the expressed clinical phenotype. We report 3 

major findings from the current study. 1) The between-individual spatial similarity in 

WM connectivity is greatly reduced in schizophrenia compared to healthy controls. 2) 

Despite the spatial dissimilarity, patients with schizophrenia, as a group, show large 

effect-sized reductions in topographic diversity, which when used in conjunction with 

the observed pattern of regional changes in each patient, results in successful 

discrimination of the patients from controls. 3) The reduced topographic diversity 

relates almost exclusively to disruptions in strongly connected WM pathways.  

Our findings add an important clarification to the divergent results of DTI studies 

in schizophrenia. In patients with schizophrenia, subtle disruptions in WM 

connectivity occur in a person-specific (idiosyncratic) fashion. The patterns of 

resulting deficits, when combined, are sufficiently discriminative of the phenotype, 

but this is not due to a generalized non-specific deficit affecting all WM pathways. 

Our results suggest that the WM deficit in schizophrenia is likely to be specific to the 

strongly connected pathways that are more liable to have direct axonal connections. 

This inference reconciles the spatial divergence (30) with the discriminatory 

accuracy(31-34) (generally 70-90%) when using multivariate approaches in the DTI 

studies.  
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We lacked neuropsychological data to examine cognitive specificity of regional 

WM aberrations. Interestingly, there was no discernible association between 

topographic diversity and symptom burden, but we observed a notable canonical 

relationship between symptom severity and regional WM aberrations. This supports 

the notion that the highly variable, small magnitude, lower-level mechanistic markers 

may operate to produce individual symptoms, while the system-level indicators are 

more relevant to the emergence if the broader clinical phenotype of schizophrenia. In 

this sense, topographic diversity may represent the elusive neural integrative deficit 

(35) that is proximal to clinical phenotype but relatively distal to etiological factors 

(36).  

There is an enthusiastic acceptance that schizophrenia is such a disorder with 

neurobiological heterogeneity; but the evidence demonstrating such heterogeneity is 

not yet available, or at best, weak (37). In most studies, the absence of clear 

demarcation of a neurobiological feature between patients and controls (i.e., small 

effect size) or the demonstration of increased variance (38) among patients is taken to 

be supportive of the underlying heterogeneity. While this is certainly a viable 

explanation, we report that convergent neurobiological abnormalities at a systemic 

level can stem from diverse changes. Thus, the neurobiological heterogeneity inferred 

at a lower level, may not be observable at the ‘systems’ level. It is important to note 

that the lack of clustering solutions does not negate the neurobiological heterogeneity 

of schizophrenia. On the contrary, these results are expected if there is a very high 
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level of heterogeneity. But the large effect-size reduction in systems-level property 

(diversity), reminds us that it may be premature to dismiss the possibility that 

schizophrenia, as observed by contemporary clinicians, could be a system-level deficit 

in WM architecture that may vary only in degree across individuals (Figure S3 

summarizes the possible mechanistic nature of schizophrenia). 

 

Limitation 

It is important to consider 2 important caveats in this study. We recruited a 

sample of medicated patients with an established history of schizophrenia. While this 

reduced the heterogeneity that is typically seen in early stage, drug-naïve samples 

with relatively weaker diagnostic stability, a selection-bias towards a single group of 

patients with relatively more severe illness and poor prognosis cannot be excluded. It 

is rather surprising that this bias has not improved the between-individual similarity in 

WM aberrations. Secondly, compared to recent consortium-based neuroimaging 

studies (7), our sample size was relatively modest. This might explain the lack of 

clustering solutions within the patient group. Nevertheless, it is acknowledged that the 

heterogeneity in psychiatric disorders are expected to be diffuse (39); as a result, an 

‘optimal’ clustering solution may not be achieved even in large samples (40).  

 

Conclusion 
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In summary, the convergence of highly individualized (idiosyncratic) pattern of 

structural dysconnectivity resulting in reduced topographic diversity in schizophrenia 

validates the century-old concept of dysconnectivity or integration deficit as a binding 

feature that brings together seemingly disparate dimensions of symptoms in patients 

with schizophrenia. When parsing the heterogeneity of psychosis, it is critical to 

accommodate emergent system-level properties that can capture the gestalt of the 

currently used clinical construct of schizophrenia. 
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Figure 1. Higher heterogeneity of SC in patients resulted in no robust subgroups. 

A) Between-individual similarity matrices of two groups, and group comparison of 

the between-individual similarity; B) The quality of the resulting clusters measured by 

the GAP statistics for PCA-based k-means clustering, with 50 principal components 

as features and k = 1, 2, 3, 4, 5 and 6; C) The quality of the resulting clusters 

measured by the GAP statistics for CCA-based k-means clustering, with three 

canonical components and k = 1, 2, 3, 4, 5 and 6; C) PCA-based hierarchical 

clustering for patients using 50 principal components. D) CCA-based hierarchical 

clustering for patients using three symptom-associated canonical components of the 

SC. 
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Figure 2. Topographic diversity of brain structural connectivity reduced in 

patients.  

A) Comparison of the within-individual variance in the whole brain SC (structural 

connectivity); B) Between-individual similarity matrices of regional diversity in two 

groups; C) Spatial distribution of the 65 brain regions with significantly reduced 

variances in their regional connectivity patterns in patients compared with controls; D) 

The P value of between-group comparison for the mean FA of both the top 10 (upper 

part in the figure) and bottom 10 (lower part in the figure) connections in the regional 

connectivity pattern of these 65 brain regions, the abscissa axis represented brain 

regions and the vertical axis was –log10(P).  
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Figure 3. Topographic diversity as a system-level feature improved the 

classification accuracy between patients and controls. A) Two models with 

different sets of features and the accuracies; B) The accuracies of two different 

models with the number of selected features ranging from 6 to 15.  
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Table 1. Demographics and behavioral statistics for schizophrenia and control groups 

 Schizophrenia Control Test Statistics 

Sex (F—female; M—male) 35 F, 35 M 44 F, 33 M χ�
� = 0.75, P = 0.39 

Age (year) 42.1 ± 9.4 42.1 ± 9.1 T145 = 0.03, P = 0.98 

Education (year) 12.8 ± 2.2 14.2 ± 2.1 T145 = -3.96, P < 0.01 

Duration (year) 15.8 ± 9.2 / / 

PANSS 

Positive scale 10.1 ± 3.0 / / 

Negative scale 9.8 ± 2.3 / / 

General Psycho-

pathology scale 
22.0 ± 3.4 / / 
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