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2 

Abstract 33 

 34 
The human genome contains hundreds of thousands of missense mutations. However, only 35 

a handful of these variants are known to be adaptive, which implies that adaptation through 36 

protein sequence change is an extremely rare phenomenon in human evolution. 37 

Alternatively, existing methods may lack the power to pinpoint adaptive variation. We have 38 

developed and applied an Evolutionary Probability Approach (EPA) to discover candidate 39 

adaptive polymorphisms (CAPs) through the discordance between allelic evolutionary 40 

probabilities and their observed frequencies in human populations. EPA reveals thousands 41 

of missense CAPs, which suggest that a large number of previously optimal alleles had 42 

experienced a reversal of fortune in the human lineage. We explored non-adaptive 43 

mechanisms to explain CAPs, including the effects of demography, mutation rate 44 

variability, and negative and positive selective pressures in modern humans. Our analyses 45 

suggest that a large proportion of CAP alleles have increased in frequency due to beneficial 46 

selection. This conclusion is supported by the facts that a vast majority of adaptive 47 

missense variants discovered previously in humans are CAPs, and that hundreds of CAP 48 

alleles are protective in genotype-phenotype association data. Our integrated 49 

phylogenomic and population genetic EPA approach predicts the existence of thousands of 50 

signatures of non-neutral evolution in the human proteome. We expect this collection to be 51 

enriched in beneficial variation. EPA approach can be applied to discover candidate 52 

adaptive variation in any protein, population, or species for which allele frequency data 53 

and reliable multispecies alignments are available. 54 

 55 

Keywords: adaptation, evolution, missense  56 
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Introduction 57 

Over half a million missense variants have been identified in human populations, of which 58 

a substantial number occurs at significant frequency (> 1%; 33,369 missense variants) 59 

(1000 Genomes Project Consortium 2015). While previous studies have shown the 60 

potential for ample adaptive coding variation in the human genome (Boyko et al. 2008; 61 

Enard et al. 2014), they have pinpointed only a few missense polymorphisms to be adaptive 62 

(Grossman et al. 2013; Hernandez et al. 2011) (Table 1). It is possible that virtually all of 63 

the common human missense polymorphisms are either selectively neutral or deleterious 64 

(i.e., subject to purifying selection), but an alternative explanation is that existing methods 65 

lack sufficient power to locate adaptive coding variation. Furthermore, population genomic 66 

approaches to date are typically designed to identify recent selective pressures acting on 67 

candidate genes or genetic regions that vary within modern human populations, a segment 68 

of time that is only a minor fraction of the depth of the human lineage. We, therefore, have 69 

the opportunity to discover thousands of novel adaptive changes by using complementary 70 

approaches. 71 

In this article, we integrate phylogenomics and population genomics to discover 72 

candidate adaptive polymorphisms and apply it to the human exome. Our approach 73 

advances beyond the current phylogenetic methods that compare patterns across species, 74 

but are blind to variation segregating within a given species (Anisimova and Yang 2007; 75 

Goldman and Yang 1994; Hurst 2002; Lindblad-Toh et al. 2011; Muse and Gaut 1994; 76 

Nielsen et al. 2005; Peter et al. 2012; Pollard et al. 2006; Shapiro and Alm 2008; Yang and 77 

Bielawski 2000). It is also distinct from the current population genomic methods that utilize 78 

within-population variation to identify candidate adaptive genes or genetic regions, but do 79 

not distinguish specific amino acid variants (Akey 2009; Akey et al. 2002; Grossman et al. 80 

2013; Li and Stephan 2006; Moon and Akey 2016; Sabeti et al. 2007; Teshima et al. 2006; 81 

Voight et al. 2006). We applied this new approach to over 500,000 polymorphic missense 82 

alleles (1000 Genomes Project Consortium 2015) reported in human proteins, which 83 

revealed over 18,000 variants that exhibit non-neutral evolutionary patterns. We explored 84 

a wide variety of non-adaptive phenomena to explain the existence of these variants and 85 

investigated available genotype-phenotype association studies to determine if the non-86 

neutral variants revealed by our new approach have had significant impact on human 87 
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phenotypic variation. 88 

 89 

New Approaches 90 

Our approach exploits the neutral theory framework, where variation arising from long-91 

term molecular evolution among species informs a null model of observed within-species 92 

patterns of selectively neutral variation (i.e., no fitness effect) (Kimura 1983). This 93 

relationship is useful to identify adaptive proteins that deviate from neutral expectations 94 

and have undergone adaptive evolution (Hudson et al. 1987; McDonald and Kreitman 95 

1991). In our novel allelic approach, we first capture long-term evolutionary history with 96 

estimates of the neutral evolutionary probability (EP) of observing each of the possible 20 97 

segregating amino acid residue alleles at a given amino acid position. EP is computed using 98 

a Bayesian framework and a multispecies alignment; it is an average of posterior 99 

probabilities weighted by the divergence time of each of the species relative to humans in 100 

the species timetree used (Liu et al. 2016). The sum of all allelic EPs is 1.0 for each amino 101 

acid position. Importantly, EP for an amino acid allele at a given protein position is not 102 

affected by the presence of a consensus base at that position in the human reference genome 103 

or by the corresponding alleles that segregate in humans, because this information is 104 

excluded from the multispecies alignment when EP is calculated (Liu et al. 2016). EP of 105 

an allele at a given position is, therefore, completely independent of intra-specific variation. 106 

Under neutral theory, residue alleles with low EP (< 0.05) are not expected to persist within 107 

populations and are, therefore, predicted to impact function and fitness (Liu et al. 2016). 108 

Indeed, less than 1% of simulated neutral EPs fall below 0.05 in computer simulations, 109 

where we used the 46 species time tree in Fig. 1a, branch lengths from UCSC (Kent et al. 110 

2002; Liu et al. 2016; Murphy et al. 2001; Siepel and Haussler 2005), and pyvolve  111 

(Spielman and Wilke 2015) to simulate amino acid sequences (see Methods). 112 

Therefore, EP can serve as a null expectation that predicts the neutral probability of 113 

observed within-species variation. Contrasting the former against the latter produces a 114 

direct neutrality comparison, e.g., non-neutral residue alleles with low EP (< 0.05) are 115 

expected to correspond to missense mutations that are found at low allele frequencies (AFs) 116 

due to purifying selection (Liu et al. 2016). Consistent with this expectation, 91% of 117 

disease-associated missense variants in HumVar (Adzhubei et al. 2010) have low EP (< 118 
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0.05) and low AF (< 1%). More generally, EP shows agreement with observed global AFs 119 

calculated from the 1000 Genomes data (Fig. 1b; R2 = 0.83, P < 10-15). 120 

We used the above considerations to build an Evolutionary Probability Approach (EPA) 121 

to identify non-neutral (EP < 0.05) alleles that occur with unexpectedly high population 122 

AF. When applied to protein sequence variation, such alleles will likely impact protein 123 

function, and their prevalence may be due to adaptive pressures. Therefore, we refer to 124 

them as candidate adaptive polymorphisms (CAPs). An observed allele is designated a CAP, 125 

if it has an EP < 0.05 and AF > 5%. These thresholds were chosen because the empirical 126 

probability of observing a CAP for neutral alleles, Pneu, falls below 0.05 for 1000 Genomes 127 

Project data (Fig. 1c), which represents a significant departure from selective neutrality 128 

and forms the basis of EPA. EPA is analogous to empirical outlier approaches frequently 129 

utilized in population genomics, including those that identify candidate adaptive 130 

polymorphisms with metrics such as FST or Tajima’s D (Lewontin and Krakauer 1973; 131 

Tajima 1989). A critical difference is that we use information from both phylogenomics 132 

(EP) and population genetics (AF) to identify CAPs, which makes EPA a two-dimensional 133 

approach and complementary to available methods. 134 

 135 

Results and Discussion 136 

We applied EPA to 515,700 polymorphic missense alleles (1000 Genomes Project 137 

Consortium 2015) reported in human proteins. We retrieved EPs for each allele from 138 

http://www.mypeg.info (Kumar et al. 2012; Liu and Kumar 2013). The EPs were calculated 139 

by Liu et al. (2016) using a 46 species alignment of orthologous amino acid sequences 140 

(Kent et al. 2002; Liu et al. 2016). The timetree (Hedges et al. 2006) of these species covers 141 

a very large evolutionary timespan (~5.8 billion years(Hedges et al. 2015); Fig. 1a), such 142 

that each amino acid position has had ample time to experience mutation and purifying 143 

selection.  144 

EPA revealed 18,724 candidate adaptive polymorphisms (EP < 0.05) whose allele 145 

frequencies showed significant departure from neutrality (Pneu < 0.05). These CAPs were 146 

found in 7,815 proteins (see www.mypeg.info/caps for a list of residues) distributed across 147 

all autosomal chromosomes (Fig. 2a). Many proteins harbor multiple CAPs (Fig. 3a), e.g., 148 

more than 20 CAPs were found in HLA (Fig. 2b) and MUC genes. Both of these gene 149 
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families play a role in immune response (Parham 2005; Pelaseyed et al. 2014) and are 150 

implicated in human adaptation (Andres et al. 2009; Vahdati and Wagner 2016). Several 151 

biological processes are significantly enriched for CAP-containing proteins (Mi et al. 2016), 152 

including sensory perception, immunity, and metabolism (Fig. 3b; Supplementary Table 153 

1). 154 

Furthermore, a vast majority (> 70%) of known adaptive amino acid polymorphisms 155 

were found to be CAPs (Table 1; Supplementary Table 2), which is a significant 156 

enrichment (permutation P < 10-7). EPA also discovers a majority of the protein 157 

polymorphisms predicted to be adaptive in previous population genomic analyses 158 

(Supplementary Table 3), which suggested that the CAP catalog contains many truly 159 

adaptive alleles. Still, the size of the CAP catalog is over 200 times larger than the number 160 

of previously identified adaptive polymorphisms (Table 1, Supplementary Tables 2 and 161 

3).  162 

Previous work would lead us to believe that the majority of common missense 163 

mutations are either selectively neutral, in which case allele frequencies are primarily 164 

driven by genetic drift, or are mildly deleterious (Kryukov et al. 2007; Zhu et al. 2011), in 165 

which case allele frequencies could reflect some combination of drift, compensatory 166 

variation, or epistasis. In addition, several non-adaptive phenomena could artificially 167 

inflate neutral or deleterious missense allele frequencies. We, therefore, examined the 168 

extent to which genomic features and demographic processes could have given rise to 169 

CAPs. 170 

Mutation rate differences and biased gene conversion 171 

Given that mutation rates are known to affect allele frequencies (Harpak et al. 2016), we 172 

investigated the potential for mutation rate variation to result in false positive CAPs. We 173 

first examined if mutation rates were elevated in codons containing CAPs by comparing 174 

the rate of occurrence of synonymous variants in codons that contained CAPs with codons 175 

that did not contain CAPs. These two rates were very similar, as 5.7% of the CAP-176 

containing codons also harbored a synonymous polymorphism and 5.4% of non-CAP 177 

codons harbored a synonymous polymorphism. This result suggests that mutation rate 178 

differences do not explain the observed distribution of CAP allele frequencies. 179 

In addition, the hypermutability of CpG sites did not explain the persistence of low EP 180 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 14, 2018. ; https://doi.org/10.1101/282152doi: bioRxiv preprint 

https://doi.org/10.1101/282152
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

alleles at high frequency due to recurrent mutations. We found a smaller proportion of CpG 181 

overlapping CAPs relative to non-CAPs (26% and 33%, respectively). Furthermore, we 182 

considered whether biased gene conversion could result in false positive CAPs 183 

(Ratnakumar et al. 2010). However, fewer than 1% of CAPs were within regions of known 184 

biased gene conversion (Capra et al. 2013; Rosenbloom et al. 2015), and the frequencies 185 

of weak to strong (W→S) and strong to weak (S→W) changes (Lachance and Tishkoff 186 

2014) for non-CAP alleles (with EP < 0.05 and AF < 5%) were not significantly different 187 

than CAP alleles (P = 0.90). 188 

Relaxation of purifying selection 189 

We also examined the possibility that CAP-containing human proteins have experienced 190 

relaxation of function in the human lineage. While we think this is unlikely, because it 191 

would require a vast fraction of human proteins (> 7,000 out of 22,000) to be under reduced 192 

selection, we investigated missense mutations that cause Mendelian diseases and compared 193 

the frequency of these mutations in CAP-containing proteins and non-CAP proteins (see 194 

Methods). We did not find a significant difference in the preponderance of disease 195 

mutations in CAP and non-CAP proteins. Therefore, it is unlikely that CAP-containing 196 

proteins have become less functionally important relative to other human proteins. 197 

Adaptive hitchhiking 198 

Deleterious alleles located in genomic regions, which have undergone selective sweeps, 199 

can hitchhike to higher than expected frequencies merely due to proximity to and linkage 200 

disequilibrium with nearby adaptive alleles (Chun and Fay 2011). Only a small number of 201 

CAPs (6.7%) are located in selective sweep regions (Schrider and Kern 2016). This 202 

observation is supported by previous studies (Chun and Fay 2011) that investigated the 203 

impact of hitchhiking on deleterious allele frequencies and found only a few hundred 204 

deleterious hitchhiking nonsynonymous SNPs with common allele frequencies (≥ 5.9%) in 205 

the 1000 Genomes Project data. Therefore, hitchhiking of deleterious alleles with selective 206 

sweeps does not appear to explain an overwhelming majority of CAPs. 207 

Human demography 208 

Human demographic history may explain the prevalence of CAPs, because the migration 209 

of modern humans out of Africa and subsequent population expansions could have resulted 210 
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in higher than expected frequencies of deleterious and mildly deleterious alleles. However, 211 

it is not likely that these alleles overwhelm the set of CAPs identified, since even a purely 212 

neutral model of human evolution does not explain the fraction of alleles found at high 213 

allele frequencies: the SFS of empirical CAPs shows a dramatic skew towards high 214 

frequency alleles relative to neutral expectation (Fig. 4a). We then tested if the CAPs SFS 215 

can be generated by human demographic history in combination with various models of 216 

selection. We employed a model based on differential equations to approximate the 217 

evolution of allele frequencies (Jouganous et al. 2017) and simulated a wide range of 218 

negative and positive selection coefficients for a demographic model of recent human 219 

history (Gravel et al. 2011) with a range of gamma parameter values (see Methods). A 220 

model containing negative and positive selections provided the best fit for the CAPs SFS 221 

(lnL = -3,080; P << 10-10; Fig. 4b). In this model, 47% of the observed alleles were 222 

predicted to be weakly deleterious (s = -8×10-4) and the remaining 53% were beneficial 223 

(s = +1×10-3). 224 

However, even the best-fit simulated selection model failed to explain the 225 

preponderance of polymorphisms with very high frequency (>95%). The number of 226 

empirical CAPs in this category was over three times greater than expected (Fig. 4b). This 227 

result led us to consider whether CAPs were common in the ancestors of modern humans 228 

and represent ancestral standing variation. We examined the proportion of CAPs that were 229 

shared with archaic hominins (Neanderthals and Denisovans) (Green et al. 2010; Meyer et 230 

al. 2012; Prufer et al. 2014) and found that 43% of CAPs are shared with modern humans. 231 

This proportion is significantly higher than what is expected by chance (permutation P < 232 

10-7). While some of the shared CAPs could have resulted from archaic gene flow, the 233 

majority of these CAPs were likely present in the last common ancestor of modern humans 234 

and archaic hominids, because most (93.6%) shared CAPs occur at very high frequencies 235 

(AF > 95%) in modern humans. One such possibility is a CAP (rs4987682) in TRPV6, 236 

which is present in the Altai Neanderthal genome (Prufer et al. 2014). TRPV6 is involved 237 

in calcium absorption (Hughes et al. 2008) and located in a region of the genome that has 238 

been identified in several previous genome-wide scans for selection (Akey et al. 2006; 239 

Hughes et al. 2008). This region is hypothesized to have been subjected to multiple 240 

selective events (Hughes et al. 2008). 241 
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Validating CAPs 242 

Generally, traditional functional evaluation of CAPs that arose in the human lineage is 243 

challenging, because in vitro and in vivo approaches are low-throughput, require a priori 244 

functional information for experimental design, and do not provide the impact of individual 245 

alleles on higher-level human phenotypes. Furthermore, it is not possible to test human 246 

fitness in a controlled/laboratory setting, and it is often not relevant to test the functional 247 

impact of CAPs in non-human model systems. It is, however, possible to take an 248 

organismal approach to investigate allelic impact on natural, population-level human 249 

variation using phenotype-association studies. For example, many well-known adaptive 250 

missense variants (Table 1) are also significantly associated with phenotypes in genome-251 

wide studies: rs334 with malaria and severe malaria (Band et al. 2013; Timmann et al. 252 

2012), rs4987667 with intermediate gene expression phenotypes involving HLA  253 

(Fehrmann et al. 2011), and rs1426654 with skin pigmentation (Stokowski et al. 2007).  254 

Therefore, we searched the Human Gene Mutation Database (HGMD) (Stenson et al. 255 

2009) for high EP alleles associated with reduced fitness, i.e., the low EP CAP alleles 256 

associated with fitness benefits. That is, the evolutionarily preferred allele prior to the 257 

divergence of humans and chimpanzees (high EP, EP > 0.5) has experienced a reversal of 258 

fortune and become detrimental. We found 253 high EP alleles to be associated with disease 259 

phenotypes in contemporary humans, where the low EP CAP allele occurs with AF > 5%. 260 

We also scanned the NHGRI-EBI catalog (MacArthur et al. 2017) of curated GWAS 261 

studies to identify additional CAP and found 158 CAPs. Of these, 101 showed odds ratio 262 

(OR) less than one for at least one discrete trait related to reduction in the incidence of the 263 

associated abnormal phenotype. That is, 60% of the CAPs are protective against the 264 

increased disease risk (Supplementary Table 4). One such example is a CAP found in the 265 

LOXL1 protein that confers a 20-fold decrease in risk for developing exfoliation glaucoma, 266 

a leading cause of irreversible blindness (Thorleifsson et al. 2007). Another is APOE, 267 

which decreases risk five-fold for significant cerebral amyloid deposition (Li et al. 2015). 268 

These findings not only suggest functional implications of CAPs, but also that many CAPs 269 

are associated with health benefits. 270 

Beyond the limited number of variants in the NHGRI-EBI GWAS catalog, we 271 

investigated phenotypic associations in GWAS database that contains a large catalog of 272 
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genotype-phenotype association studies. We mined data available from GRASP2 (Leslie 273 

et al. 2014) to determine whether CAPs have had significant impact on human phenotypes 274 

more broadly. We found that 11% of CAPs were significantly associated with tested 275 

phenotypes (2,073 alleles at a significance threshold of P < 10-8), which we refer to as 276 

pheno-CAPs. This prevalence of pheno-CAPs is significantly higher than what is expected 277 

by chance (permutation P < 10-7). Moreover, less than 1% of frequency matched non-CAP 278 

alleles are significantly phenotype-associated in GRASP2 (P < 10-8). We tested the 279 

possibility that low-EP deleterious recessive alleles have persisted at significant population 280 

frequencies. If this had been the case, we would expect an excess of heterozygote CAPs 281 

relative to neutral expectations. However, very few CAPs (2.5%) displayed a significant 282 

excess of heterozygosity (χ2 P-value < 0.05). Moreover, after excluding pheno-CAPs that 283 

are not shared across all 1000 Genomes continental samples (1000 Genomes Project 284 

Consortium 2015), that are located in previously identified selective sweeps (Schrider and 285 

Kern 2016), and that are located in previously identified regions containing CpG sites and 286 

biased gene conversion regions (Rosenbloom et al. 2015), over 1000 proteins contain one 287 

or more pheno-CAPs.  288 

We expect pheno-CAPs to be enriched for causal alleles. There are many reasons for 289 

this expectation. First, amino acid polymorphisms alter the sequence of functional genome 290 

entities (proteins). Second, if pheno-CAPs are causal alleles then we would expect them to 291 

show the strongest association P-values among all tested missense variants. This is indeed 292 

the case for 92% of CAP proteins, where a pheno-CAP has the strongest association of all 293 

missense variants in that protein for a given phenotype in the GRASP2 database (Leslie et 294 

al. 2014). Third, a vast majority of putative adaptive variants in humans are CAPs (Table 295 

1) and are derived variants in modern-humans; they are not shared with archaic hominins.  296 

In conclusion, we have found over 18,000 missense human polymorphisms that are 297 

candidates of beneficial selection. This new adaptive allele catalog is made possible by the 298 

EP approach, which is sensitive to a timeframe that predates the out of Africa migration of 299 

modern humans, but is not limited to fixed differences between species (Anisimova and 300 

Yang 2007; Goldman and Yang 1994; Holt et al. 2008; Hurst 2002; Lindblad-Toh et al. 301 

2011; Muse and Gaut 1994; Nielsen et al. 2005; Peter et al. 2012; Pollard et al. 2006; 302 

Shapiro and Alm 2008; Yang and Bielawski 2000). The former timeframe has been 303 
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addressed by methods that are sensitive to recent classic sweeps and regionally restricted 304 

adaptation, which have been the focus of the majority of human adaptation studies to date  305 

(Akey 2009; Akey et al. 2002; Grossman et al. 2013; Li and Stephan 2006; Moon and Akey 306 

2016; Sabeti et al. 2007; Teshima et al. 2006; Voight et al. 2006). These studies have yielded 307 

only a few adaptive coding variants, leading some to argue that regulatory variation is the 308 

predominant raw material for adaptive change (Akey 2009; Fraser 2013; Grossman et al. 309 

2013). Our results suggest that the temporal sensitivity of the EP approach is able to 310 

generate a catalog of candidate adaptive polymorphisms that is enriched in functional as 311 

well as beneficial variation. We expect many CAPs to be involved in compensatory 312 

evolution and synergistic epistasis to counter genetic load exerted by deleterious variants 313 

that have risen to high frequencies due to human demography and genetic drift. Therefore, 314 

CAPs provide ready hypotheses to test in future computational and experimental 315 

investigations. 316 

  317 
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Materials and Methods 318 

1000 Genomes Allele Frequencies 319 

Global allele frequencies (AFs) for all missense single nucleotide polymorphisms (SNPs) 320 

(n = 515,700) in the 1000 Genomes Project phase 3 data (1000 Genomes Project 321 

Consortium 2015) were calculated for all unrelated individuals (n = 2,405). More 322 

specifically, one of each related pair of individuals identified in the Phase 3 release 323 

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/20140625_related_individual324 

s.txt) was removed before calculating global allele frequencies. For each polymorphic 325 

nucleotide position, EP estimates for the codons corresponding to the reference (hg19) and 326 

non-reference nucleotides were used. For each allele, we tested for an overrepresentation 327 

of potentially deleterious recessive CAP heterozygotes and evaluated the proportion of 328 

CAPs that were in Hardy-Weinberg (HW) disequilibrium (HW χ2 P-value < 0.05).  329 

Evolutionary Probabilities 330 

Evolutionary probabilities (EPs) were calculated for each amino acid residue using the 331 

method of Liu et al.(Liu et al. 2016) and a 46 species alignment of orthologous amino acid 332 

sequences(Kent et al. 2002; Liu et al. 2016) (they are available from 333 

http://www.mypeg.info (Kumar et al. 2012; Liu and Kumar 2013)). The timetree (Hedges 334 

et al. 2006) of these species covers a very large evolutionary timespan (~5.8 billion years 335 

(Hedges et al. 2015); Fig. 1a), such that each amino acid position has had ample time to 336 

experience mutation and purifying selection. We designed a simulation to verify that the 337 

EP was over 0.05 for neutral alleles, by using the 46 species time tree in Fig. 1a and branch 338 

lengths from UCSC(Kent et al. 2002; Liu et al. 2016; Murphy et al. 2001; Siepel and 339 

Haussler 2005). Using pyvolve v0.8.7 (Spielman and Wilke 2015), we generated 1000 340 

replicate datasets of proteins with 500 amino acid positions and calculated EP for alleles at 341 

each site. 342 

Evolutionary Probability Approach Framework 343 

We began with the premise that for a given amino acid position, the probability the position 344 

has been neutral (EP) over long-term evolutionary history (inferred from inter-species 345 

comparisons as described in (Liu et al. 2016)) combined with the orthogonal shorter-term 346 

intra-specific purifying and directional selective pressures (captured by population allele 347 

frequency, AF) produces a categorical framework for genome-wide variation. This 348 
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framework distinguishes neutral, potentially deleterious, and potentially adaptive variation. 349 

The sum of all allelic EPs is 1 for each amino acid position, and residues with low EP (< 350 

0.05) are unexpected under neutral theory (Liu et al. 2016). We developed an empirical 351 

framework to identify candidate adaptive polymorphisms (CAPs): Prob(AF | EP < 0.05), 352 

and for each allele, calculated a one-sided cumulative empirical P-value using a cumulative 353 

distribution function (CDF) implemented with a custom R script (R Core Team 2014). 354 

Misinference of ancestral state 355 

In genomic scans for selection, misidentification of ancestral states may cause false 356 

signatures of selection (Baudry and Depaulis 2003). EPA fortunately does not suffer from 357 

this problem, because it requires EP < 0.05. An allele with such a low EP will likely arise 358 

in the human lineage after their divergence from chimpanzees. Additionally, EP calculation 359 

utilizes a probabilistic model that integrates over all the outgroup species in an alignment, 360 

which makes it better than methods that utilize one or a few outgroups to properly identify 361 

the derived allele (Hernandez et al. 2007; Keightley et al. 2016). Consistent with this 362 

property, we did not find any CAP alleles in all three of the Great Ape species (chimpanzee, 363 

gorilla, and orangutan) in our multispecies protein alignments. A comparison with 364 

chimpanzee proteins revealed 3.5% CAP allele sharing, and gorilla and orangutan showed 365 

0.7% and 1.1% CAP allele sharing, respectively, with humans. We excluded all of these 366 

alleles from all the population genetic analyses, because these CAP residues may have 367 

arisen prior to the origin of human lineage. 368 

Identifying allele sharing with archaic genomes 369 

To determine allele sharing among modern humans and archaic hominins, we collected 370 

genome sequencing data for five archaic hominins (four Neanderthal individuals, and one 371 

Denisovan individual). One Neanderthal sequence and one Denisovan sequence were 372 

acquired from the Max Planck Institute for Evolutionary Anthropology site 373 

(http://cdna.eva.mpg.de/neandertal/altai/Denisovan). The three remaining Neanderthal 374 

alignments were retrieved from the UCSC Neanderthal Sequence Track 375 

(https://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=ntSeqReads). We only used 376 

sequences that provided > 45% genomic coverage. We defined an allele as shared if it was 377 

present in any of these five archaic individuals. A shared allele can be polymorphic or fixed 378 

in this aggregated archaic sample.  379 
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Scanning Genotype-Phenotype Association Catalogs 380 

We scanned 75,810 phenotype associated missense mutations in the Human Gene Mutation 381 

Database (HGMD) (Stenson et al. 2009) for those that occur at CAP sites. We found 973 382 

such mutations, which we checked for high EP risk-alleles (causing the abnormal 383 

phenotype). A high EP risk allele at a CAP site was considered a “reversal”, since this 384 

previously favored allele (based on EP) leads to an unfavorable phenotype. We also 385 

scanned the NHGRI-EBI GWAS catalog (MacArthur et al. 2017) (January 16, 2018 update) 386 

for similar reversals. Filtering the SNPs, we find 158 missense mutations at CAP sites. The 387 

NHGRI-EBI GWAS Catalog always reports the risk-allele (the allele that increases 388 

phenotypic measurement, e.g., increases disease risk). In order to determine the odds ratio 389 

(OR) for the CAP allele, which is often not the reported risk allele, we calculated the 390 

inverse (1 / reported OR) when the risk allele was in fact the reversal (high EP allele). An 391 

OR < 1 indicates that the allele confers a decrease in abnormal phenotype risk, while an 392 

OR > 1 indicates that the allele increases risk for the associated abnormal or case phenotype. 393 

Multiple associations were occasionally found for CAPs in the GWAS catalog. We simply 394 

reported the study that had the lowest risk-factor (OR) for abnormal phenotypes per CAP 395 

allele found. 396 

Gene Ontology Enrichment 397 

We used the Panther Classification System (Mi et al. 2016) to test for enrichment of Gene 398 

Ontology (GO slim) biological processes. As input, we used the list of protein IDs that 399 

contain one or more CAPs. We excluded terms with less than two proteins, and we adjusted 400 

enrichment P values to account for multiple testing with a Bonferroni correction.  401 

Demographic Simulations 402 

We performed 10,000 forward simulations of human history for 58,000 generations before 403 

current time; the simulation scheme includes the out-of-Africa migration of humans (OoA), 404 

as well as a subsequent split between simulated European and East Asian populations. The 405 

population model includes three representative continental groups (African, European, 406 

East Asian). SLiM2 (Haller and Messer 2017) was used for the simulations, with 407 

parameters obtained by Gravel et. Al (Gravel et al. 2011). Using a modified SliM2 script 408 

to output MS (Hudson) format chromosomes, we sampled individual sequences (50,000 409 

base pairs in length) from the simulated populations at each of the following time points: 410 
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(a) the generation immediately before the OoA split (ancestral population), (b) the 411 

generation immediately before the European and East Asian split, (c) the contemporary 412 

African population, (d) the contemporary European population, and (e) the contemporary 413 

East Asian population. Using allele frequencies (AF) from these samples, we followed 414 

variants at different AF (0.1%, 1%, and 10%) in the ancestral population and traced their 415 

trajectories into the modern day human populations (contemporary populations). For each 416 

of these variants, we determined the fraction that achieved > 5% AF (required for CAP 417 

status), and were shared among one, two, and three of the contemporary population 418 

samples. 419 

Simulating selection and fitting distributions of fitness effects 420 

We simulated site frequency spectra (SFS) using Moments (Jouganous et al. 2017) to infer 421 

distributions of fitness effects (DFE) that explain CAPs for which the human alleles were 422 

not shared with any of the three great ape species (chimpanzee, gorilla, and orangutan). 423 

Using dadi (Gutenkunst et al. 2009), we calculated multinomial log-likelihoods (lnLs) of 424 

the observed data (CAPs) for simulated deleterious, neutral, and beneficial selection 425 

models (as above). We also calculated lnL of DFE fit for all possible combinations: 426 

deleterious and neutral; neutral and positive; deleterious and beneficial; and, deleterious 427 

and, neutral, and beneficial. In this case, we used a single point mass fixed for each type of 428 

selection and explored various 2Nes values. The model with the highest lnL provides the 429 

best fit for the observed data. We excluded all CAPs shared with great apes in these 430 

analyses. The best fit model and lnL values for all the CAPs are shown in Fig. 4b. We used 431 

likelihood fits and Akaike information criterion (AIC) to select the best model. 432 

Examination of the Relaxation of purifying selection 433 

We examined the possibility that CAP-containing human proteins have experienced 434 

relaxation of function in the human lineage. We investigated missense mutations that cause 435 

Mendelian diseases and compared the frequency of these mutations in CAP-containing 436 

proteins and non-CAP proteins. This analysis used the HumVar (Adzhubei et al. 2010) 437 

dataset and obtained the number of disease mutations normalized by the total sequence 438 

length and evolutionary rate of CAP and non-CAP proteins. This normalization is required 439 

because longer proteins are known to contain more disease mutations as do slower evolving 440 

proteins (Miller and Kumar 2001). The ratio of two normalized counts was 0.98, which is 441 
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close to the expected value of 1.0 corresponding to no difference in the preponderance of 442 

disease mutations in CAP and non-CAP proteins.  443 

Permutation Testing 444 

In order to determine whether the observed proportion of CAPs that have been previously 445 

identified as adaptive in humans is higher than would be expected by chance, we randomly 446 

sampled 18,724 variants from the set of all human missense variants (regardless of EP), 447 

and calculated Nsim, which captures how often the simulated proportion of phenotype-448 

associated variants was as high or higher than the empirical result. In total, we ran 106 449 

permutations, and calculated a permutation P-value with the following equation: (Nsim + 450 

1)/1000001. 451 

Similarly, we tested whether the observed proportion of CAPs that are shared with archaic 452 

genomes is higher than would be expected by chance. We randomly sampled 18,724 453 

variants from the set of all human missense variants, and calculated Nsim, which captures 454 

how often the simulated proportion of archaic-shared variants was as high or higher than 455 

the empirical result (6,916 for P < 0.05 and 2,075 for P < 10-8). In total, we ran 106 456 

permutations, and calculated a permutation P-value with the following equation: (Nsim + 457 

1)/1000001. 458 

In order to determine whether the observed proportion of CAPs that are also associated 459 

with phenotypes in the GRASP2 database (Leslie et al. 2014) is higher than would be 460 

expected by chance, we randomly sampled 18,724 variants from the set of all human 461 

missense variants with an AF > 1% (regardless of EP), and calculated Nsim, which captures 462 

how often the simulated proportion of phenotype-associated variants was as high or higher 463 

than the empirical result (6,916 for P < 0.05 and 2075 for P < 10-8). In total, we ran 106 464 

permutations, and calculated a permutation P-value with the following equation: (Nsim + 465 

1)/1000001.  466 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 14, 2018. ; https://doi.org/10.1101/282152doi: bioRxiv preprint 

https://doi.org/10.1101/282152
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

References 467 

 468 

1000 Genomes Project Consortium. 2015. A global reference for human genetic variation. 469 

Nature 526(7571):68-74. 470 

Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov 471 

AS, Sunyaev SR. 2010. A method and server for predicting damaging missense 472 

mutations. Nat Methods 7(4):248-9. 473 

Akey JM. 2009. Constructing genomic maps of positive selection in humans: where do we 474 

go from here? Genome Res 19(5):711-22. 475 

Akey JM, Swanson WJ, Madeoy J, Eberle M, Shriver MD. 2006. TRPV6 exhibits unusual 476 

patterns of polymorphism and divergence in worldwide populations. Hum Mol 477 

Genet 15(13):2106-13. 478 

Akey JM, Zhang G, Zhang K, Jin L, Shriver MD. 2002. Interrogating a high-density SNP 479 

map for signatures of natural selection. Genome Research 12(12):1805-1814. 480 

Andres AM, Hubisz MJ, Indap A, Torgerson DG, Degenhardt JD, Boyko AR, Gutenkunst 481 

RN, White TJ, Green ED, Bustamante CD et al. 2009. Targets of balancing 482 

selection in the human genome. Mol Biol Evol 26(12):2755-64. 483 

Anisimova M, Yang ZH. 2007. Multiple hypothesis testing to detect lineages under positive 484 

selection that affects only a few sites. Molecular Biology and Evolution 485 

24(5):1219-1228. 486 

Band G, Le QS, Jostins L, Pirinen M, Kivinen K, Jallow M, Sisay-Joof F, Bojang K, Pinder 487 

M, Sirugo G et al. 2013. Imputation-based meta-analysis of severe malaria in three 488 

African populations. PLoS Genet 9(5):e1003509. 489 

Baudry E, Depaulis F. 2003. Effect of misoriented sites on neutrality tests with outgroup. 490 

Genetics 165(3):1619-1622. 491 

Boyko AR, Williamson SH, Indap AR, Degenhardt JD, Hernandez RD, Lohmueller KE, 492 

Adams MD, Schmidt S, Sninsky JJ, Sunyaev SR et al. 2008. Assessing the 493 

evolutionary impact of amino acid mutations in the human genome. PLoS Genet 494 

4(5):e1000083. 495 

Capra JA, Hubisz MJ, Kostka D, Pollard KS, Siepel A. 2013. A model-based analysis of 496 

GC-biased gene conversion in the human and chimpanzee genomes. PLoS Genet 497 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 14, 2018. ; https://doi.org/10.1101/282152doi: bioRxiv preprint 

https://doi.org/10.1101/282152
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

9(8):e1003684. 498 

Chun S, Fay JC. 2011. Evidence for Hitchhiking of Deleterious Mutations within the 499 

Human Genome. Plos Genetics 7(8). 500 

Enard D, Messer PW, Petrov DA. 2014. Genome-wide signals of positive selection in 501 

human evolution. Genome Res 24(6):885-95. 502 

Fehrmann RS, Jansen RC, Veldink JH, Westra HJ, Arends D, Bonder MJ, Fu J, Deelen P, 503 

Groen HJ, Smolonska A et al. 2011. Trans-eQTLs reveal that independent genetic 504 

variants associated with a complex phenotype converge on intermediate genes, with 505 

a major role for the HLA. PLoS Genet 7(8):e1002197. 506 

Fraser HB. 2013. Gene expression drives local adaptation in humans. Genome Res 507 

23(7):1089-96. 508 

Goldman N, Yang Z. 1994. A codon-based model of nucleotide substitution for protein-509 

coding DNA sequences. Mol Biol Evol 11(5):725-36. 510 

Gravel S, Henn BM, Gutenkunst RN, Indap AR, Marth GT, Clark AG, Yu F, Gibbs RA, 511 

Genomes P, Bustamante CD. 2011. Demographic history and rare allele sharing 512 

among human populations. Proc Natl Acad Sci U S A 108(29):11983-8. 513 

Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, Patterson N, Li H, Zhai 514 

W, Fritz MH et al. 2010. A draft sequence of the Neandertal genome. Science 515 

328(5979):710-22. 516 

Grossman SR, Andersen KG, Shlyakhter I, Tabrizi S, Winnicki S, Yen A, Park DJ, 517 

Griesemer D, Karlsson EK, Wong SH et al. 2013. Identifying recent adaptations in 518 

large-scale genomic data. Cell 152(4):703-13. 519 

Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD. 2009. Inferring the joint 520 

demographic history of multiple populations from multidimensional SNP 521 

frequency data. PLoS Genet 5(10):e1000695. 522 

Haller BC, Messer PW. 2017. SLiM 2: Flexible, Interactive Forward Genetic Simulations. 523 

Mol Biol Evol 34(1):230-240. 524 

Harpak A, Bhaskar A, Pritchard JK. 2016. Mutation Rate Variation is a Primary 525 

Determinant of the Distribution of Allele Frequencies in Humans. PLoS Genet 526 

12(12):e1006489. 527 

Hedges SB, Dudley J, Kumar S. 2006. TimeTree: a public knowledge-base of divergence 528 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 14, 2018. ; https://doi.org/10.1101/282152doi: bioRxiv preprint 

https://doi.org/10.1101/282152
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

times among organisms. Bioinformatics 22(23):2971-2. 529 

Hedges SB, Marin J, Suleski M, Paymer M, Kumar S. 2015. Tree of life reveals clock-like 530 

speciation and diversification. Mol Biol Evol 32(4):835-45. 531 

Hernandez RD, Kelley JL, Elyashiv E, Melton SC, Auton A, McVean G, Genomes P, Sella 532 

G, Przeworski M. 2011. Classic selective sweeps were rare in recent human 533 

evolution. Science 331(6019):920-4. 534 

Hernandez RD, Williamson SH, Bustamante CD. 2007. Context dependence, ancestral 535 

misidentification, and spurious signatures of natural selection. Molecular Biology 536 

and Evolution 24(8):1792-1800. 537 

Holt KE, Parkhill J, Mazzoni CJ, Roumagnac P, Weill FX, Goodhead I, Rance R, Baker S, 538 

Maskell DJ, Wain J et al. 2008. High-throughput sequencing provides insights into 539 

genome variation and evolution in Salmonella Typhi. Nature Genetics 40(8):987-540 

993. 541 

Hudson RR, Kreitman M, Aguade M. 1987. A test of neutral molecular evolution based on 542 

nucleotide data. Genetics 116(1):153-9. 543 

Hughes DA, Tang K, Strotmann R, Schoneberg T, Prenen J, Nilius B, Stoneking M. 2008. 544 

Parallel selection on TRPV6 in human populations. PLoS One 3(2):e1686. 545 

Hurst LD. 2002. The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends in 546 

Genetics 18(9):486-487. 547 

Jouganous J, Long W, Ragsdale AP, Gravel S. 2017. Inferring the Joint Demographic 548 

History of Multiple Populations: Beyond the Diffusion Approximation. Genetics 549 

206(3):1549-1567. 550 

Keightley PD, Campos JL, Booker TR, Charlesworth B. 2016. Inferring the Frequency 551 

Spectrum of Derived Variants to Quantify Adaptive Molecular Evolution in 552 

Protein-Coding Genes of Drosophila melanogaster. Genetics 203(2):975-+. 553 

Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D. 2002. 554 

The human genome browser at UCSC. Genome Res 12(6):996-1006. 555 

Kimura M. 1983. The neutral theory of molecular evolution. Cambridge: Cambridge 556 

University Press. 557 

Kryukov GV, Pennacchio LA, Sunyaev SR. 2007. Most rare missense alleles are 558 

deleterious in humans: implications for complex disease and association studies. 559 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 14, 2018. ; https://doi.org/10.1101/282152doi: bioRxiv preprint 

https://doi.org/10.1101/282152
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

Am J Hum Genet 80(4):727-39. 560 

Kumar S, Sanderford M, Gray VE, Ye J, Liu L. 2012. Evolutionary diagnosis method for 561 

variants in personal exomes. Nat Methods 9(9):855-6. 562 

Lachance J, Tishkoff SA. 2014. Biased gene conversion skews allele frequencies in human 563 

populations, increasing the disease burden of recessive alleles. Am J Hum Genet 564 

95(4):408-20. 565 

Leslie R, O'Donnell CJ, Johnson AD. 2014. GRASP: analysis of genotype-phenotype 566 

results from 1390 genome-wide association studies and corresponding open access 567 

database. Bioinformatics 30(12):i185-94. 568 

Lewontin RC, Krakauer J. 1973. Distribution of Gene Frequency as a Test of Theory of 569 

Selective Neutrality of Polymorphisms. Genetics 74(1):175-195. 570 

Li HP, Stephan W. 2006. Inferring the demographic history and rate of adaptive substitution 571 

in Drosophila. Plos Genetics 2(10):1580-1589. 572 

Li QS, Parrado AR, Samtani MN, Narayan VA, Alzheimer's Disease Neuroimaging I. 2015. 573 

Variations in the FRA10AC1 Fragile Site and 15q21 Are Associated with 574 

Cerebrospinal Fluid Abeta1-42 Level. PLoS One 10(8):e0134000. 575 

Lindblad-Toh K, Garber M, Zuk O, Lin MF, Parker BJ, Washietl S, Kheradpour P, Ernst J, 576 

Jordan G, Mauceli E et al. 2011. A high-resolution map of human evolutionary 577 

constraint using 29 mammals. Nature 478(7370):476-482. 578 

Liu L, Kumar S. 2013. Evolutionary balancing is critical for correctly forecasting disease-579 

associated amino acid variants. Mol Biol Evol 30(6):1252-7. 580 

Liu L, Tamura K, Sanderford M, Gray VE, Kumar S. 2016. A Molecular Evolutionary 581 

Reference for the Human Variome. Mol Biol Evol 33(1):245-54. 582 

MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E, Junkins H, McMahon A, 583 

Milano A, Morales J et al. 2017. The new NHGRI-EBI Catalog of published 584 

genome-wide association studies (GWAS Catalog). Nucleic Acids Research 585 

45(D1):D896-D901. 586 

McDonald JH, Kreitman M. 1991. Adaptive protein evolution at the Adh locus in 587 

Drosophila. Nature 351(6328):652-4. 588 

Meyer M, Kircher M, Gansauge MT, Li H, Racimo F, Mallick S, Schraiber JG, Jay F, Prufer 589 

K, de Filippo C et al. 2012. A high-coverage genome sequence from an archaic 590 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 14, 2018. ; https://doi.org/10.1101/282152doi: bioRxiv preprint 

https://doi.org/10.1101/282152
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

Denisovan individual. Science 338(6104):222-6. 591 

Mi H, Poudel S, Muruganujan A, Casagrande JT, Thomas PD. 2016. PANTHER version 592 

10: expanded protein families and functions, and analysis tools. Nucleic Acids Res 593 

44(D1):D336-42. 594 

Miller MP, Kumar S. 2001. Understanding human disease mutations through the use of 595 

interspecific genetic variation. Hum Mol Genet 10(21):2319-28. 596 

Moon S, Akey JM. 2016. A flexible method for estimating the fraction of fitness 597 

influencing mutations from large sequencing data sets. Genome Res 26(6):834-43. 598 

Murphy WJ, Eizirik E, O'Brien SJ, Madsen O, Scally M, Douady CJ, Teeling E, Ryder OA, 599 

Stanhope MJ, de Jong WW et al. 2001. Resolution of the early placental mammal 600 

radiation using Bayesian phylogenetics. Science 294(5550):2348-51. 601 

Muse SV, Gaut BS. 1994. A likelihood approach for comparing synonymous and 602 

nonsynonymous nucleotide substitution rates, with application to the chloroplast 603 

genome. Mol Biol Evol 11(5):715-24. 604 

Nielsen R, Bustamante C, Clark AG, Glanowski S, Sackton TB, Hubisz MJ, Fledel-Alon 605 

A, Tanenbaum DM, Civello D, White TJ et al. 2005. A scan for positively selected 606 

genes in the genomes of humans and chimpanzees. Plos Biology 3(6):976-985. 607 

Parham P. 2005. MHC class I molecules and KIRs in human history, health and survival. 608 

Nat Rev Immunol 5(3):201-14. 609 

Pelaseyed T, Bergstrom JH, Gustafsson JK, Ermund A, Birchenough GM, Schutte A, van 610 

der Post S, Svensson F, Rodriguez-Pineiro AM, Nystrom EE et al. 2014. The mucus 611 

and mucins of the goblet cells and enterocytes provide the first defense line of the 612 

gastrointestinal tract and interact with the immune system. Immunol Rev 260(1):8-613 

20. 614 

Peter BM, Huerta-Sanchez E, Nielsen R. 2012. Distinguishing between Selective Sweeps 615 

from Standing Variation and from a De Novo Mutation. Plos Genetics 8(10). 616 

Pollard KS, Salama SR, Lambert N, Lambot MA, Coppens S, Pedersen JS, Katzman S, 617 

King B, Onodera C, Siepel A et al. 2006. An RNA gene expressed during cortical 618 

development evolved rapidly in humans. Nature 443(7108):167-172. 619 

Prufer K, Racimo F, Patterson N, Jay F, Sankararaman S, Sawyer S, Heinze A, Renaud G, 620 

Sudmant PH, de Filippo C et al. 2014. The complete genome sequence of a 621 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 14, 2018. ; https://doi.org/10.1101/282152doi: bioRxiv preprint 

https://doi.org/10.1101/282152
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

Neanderthal from the Altai Mountains. Nature 505(7481):43-9. 622 

R Core Team. 2014. R: A language and environment for statistical computing. Vienna, 623 

Austria: R Foundation for Statistical Computing. 624 

Ratnakumar A, Mousset S, Glemin S, Berglund J, Galtier N, Duret L, Webster MT. 2010. 625 

Detecting positive selection within genomes: the problem of biased gene 626 

conversion. Philosophical Transactions of the Royal Society B-Biological Sciences 627 

365(1552):2571-2580. 628 

Rosenbloom KR, Armstrong J, Barber GP, Casper J, Clawson H, Diekhans M, Dreszer TR, 629 

Fujita PA, Guruvadoo L, Haeussler M et al. 2015. The UCSC Genome Browser 630 

database: 2015 update. Nucleic Acids Res 43(Database issue):D670-81. 631 

Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C, Xie XH, Byrne EH, 632 

McCarroll SA, Gaudet R et al. 2007. Genome-wide detection and characterization 633 

of positive selection in human populations. Nature 449(7164):913-U12. 634 

Schrider DR, Kern AD. 2016. Soft sweeps are the dominant mode of adaptation in the 635 

human genome. bioRxiv preprint. 636 

Shapiro BJ, Alm EJ. 2008. Comparing patterns of natural selection across species using 637 

selective signatures. Plos Genetics 4(2). 638 

Siepel A, Haussler D. 2005. Phylogenetic hidden Markov models. Statistical methods in 639 

molecular evolution. Springer. p. 325-351. 640 

Spielman SJ, Wilke CO. 2015. Pyvolve: A Flexible Python Module for Simulating 641 

Sequences along Phylogenies. PLoS One 10(9):e0139047. 642 

Stenson PD, Mort M, Ball EV, Howells K, Phillips AD, Thomas NST, Cooper DN. 2009. 643 

The Human Gene Mutation Database: 2008 update. Genome Medicine 1. 644 

Stokowski RP, Pant PV, Dadd T, Fereday A, Hinds DA, Jarman C, Filsell W, Ginger RS, 645 

Green MR, van der Ouderaa FJ et al. 2007. A genomewide association study of skin 646 

pigmentation in a South Asian population. Am J Hum Genet 81(6):1119-32. 647 

Tajima F. 1989. Statistical-Method for Testing the Neutral Mutation Hypothesis by DNA 648 

Polymorphism. Genetics 123(3):585-595. 649 

Teshima KM, Coop G, Przeworski M. 2006. How reliable are empirical genomic scans for 650 

selective sweeps? Genome Res 16(6):702-12. 651 

Thorleifsson G, Magnusson KP, Sulem P, Walters GB, Gudbjartsson DF, Stefansson H, 652 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 14, 2018. ; https://doi.org/10.1101/282152doi: bioRxiv preprint 

https://doi.org/10.1101/282152
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

Jonsson T, Jonasdottir A, Jonasdottir A, Stefansdottir G et al. 2007. Common 653 

sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma. 654 

Science 317(5843):1397-400. 655 

Timmann C, Thye T, Vens M, Evans J, May J, Ehmen C, Sievertsen J, Muntau B, Ruge G, 656 

Loag W et al. 2012. Genome-wide association study indicates two novel resistance 657 

loci for severe malaria. Nature 489(7416):443-6. 658 

Vahdati AR, Wagner A. 2016. Parallel or convergent evolution in human population 659 

genomic data revealed by genotype networks. BMC Evol Biol 16:154. 660 

Voight BF, Kudaravalli S, Wen XQ, Pritchard JK. 2006. A map of recent positive selection 661 

in the human genome (vol 4, pg 154, 2006). Plos Biology 4(4):659-659. 662 

Yang ZH, Bielawski JP. 2000. Statistical methods for detecting molecular adaptation. 663 

Trends in Ecology & Evolution 15(12):496-503. 664 

Zhu Q, Ge D, Maia JM, Zhu M, Petrovski S, Dickson SP, Heinzen EL, Shianna KV, 665 

Goldstein DB. 2011. A genome-wide comparison of the functional properties of 666 

rare and common genetic variants in humans. Am J Hum Genet 88(4):458-68. 667 

 668 

  669 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 14, 2018. ; https://doi.org/10.1101/282152doi: bioRxiv preprint 

https://doi.org/10.1101/282152
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

Acknowledgements 670 

We thank Drs. Jody Hey, Rob Kulathinal, Joshua Shraiber, and Heather Rowe for their 671 

critical comments on previous versions of this manuscript. We would also like to thank 672 

Michael Li and Keith Davis for technical assistance. This work was funded by research 673 

grants from NIH (R01HG008146-01 and R01DK098242-04). 674 

 675 

Author Contributions 676 

S.K., L.B.S., and R.P. designed the research study, directed the analysis, and wrote the 677 

manuscript, A.P. designed one analysis, and contributed to the manuscript, T.R.L. 678 

conducted analyses, M.S. helped with data collection, web development, and analysis, and 679 

K.T., B.S.G., K.X., and J.T.D assisted with statistical analysis and contributed to the 680 

manuscript. 681 

 682 

Competing Financial Interests 683 

The authors declare no competing financial interests.  684 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 14, 2018. ; https://doi.org/10.1101/282152doi: bioRxiv preprint 

https://doi.org/10.1101/282152
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 

Figure Legends 685 

Figure 1 | Evolutionary Probability Approach. The evolutionary probabilities (EPs) and 686 

their application to discover candidate adaptive polymorphisms (CAPs). Panel a displays 687 

a timetree of 46 vertebrates and lamprey, including 36 mammalian species, which was used 688 

along with alignments of orthologous amino acid sequences for all human proteins(Kent et 689 

al. 2002) to compute the probability of observing each amino acid residue at a given 690 

position. Under neutral theory, we expect a strong relationship between EP and allele 691 

frequency (AF) such that evolutionarily unexpected alleles (EP < 0.05) will be rare. Panel 692 

b displays the relationship between EP and AF. Average EP (y-axis) was calculated for 0.05 693 

sized AF bins (x-axis) for all polymorphic missense alleles in the 1000 Genomes Project 694 

Phase 3 whole genome sequencing data, which confirms the general relationship between 695 

EP and AF to be consistent with neutral expectations. The standard deviation is visualized 696 

with grey lines (averages are in blue), which is expected to be large because contemporary 697 

AFs are a product of time of origin, natural selection, and genetic drift experienced by a 698 

mutation. Panel c displays the distribution of empirical P values (–log10) generated from 699 

the empirical framework (AF | EP < 0.05). The cutoff used to identify CAPs is shown with 700 

a dashed red line and is more extreme than a false positive rate of 0.05. 701 

 702 

Figure 2 | Chromosomal distribution of CAPs. (a) The distribution of candidate adaptive 703 

alleles (CAPs) across autosomal chromosomes (red points). Chromosomal banding 704 

patterns are also visualized for reference. (b) A plot of –log10(Pneu) generated from the 705 

Evolutionary Probability Approach (y-axis) against chromosome position (x-axis) for the 706 

MHC region of chromosome 6. CAPs are shaded red and non-CAPs are shaded grey. The 707 

CAP Pneu cutoff is shown with a dashed red line. Notable HLA genes with more than 20 708 

CAPs are indicated. 709 

 710 

Figure 3 | Properties of candidate adaptive alleles. (a) Distribution of all (red bars) and 711 

phenotype-associated (pink bars) CAP counts across proteins. (b) Biological processes that 712 

are significantly enriched for CAPs after Bonferonni correction for multiple testing. The 713 

y-axis displays GO-slim biological process category names, and the x-axis displays the 714 

number of CAPs annotated to a given GO-slim biological process category. Several 715 
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categories were significantly enriched with a fold enrichment > 1.5 (Supplementary Table 716 

1). 717 

 718 

Figure 4 | Selection model fits to observed CAPs. Site frequency spectra (SFS) for SNPs 719 

with AF > 5%. Site frequency spectra (SFS) were scaled to have the same number of sites 720 

for AF > 5%. Black bars represent all EP < 0.05 alleles observed in 1000G Phase 3 721 

individuals. (a) Observed and fitted SFS for all candidate adaptive polymorphisms (CAPs). 722 

A neutral model (blue) does not explain the preponderance of alleles found at very high AF, 723 

and does not fit the observed data well (lnL= -4,124) (b) Observed and fitted SFS for all 724 

CAPs. A model with weakly deleterious (purple) and beneficial (green) showed the best fit 725 

(lnL = -3,080). It was significantly better than any other combination of models (LRT P << 726 

10-10). All CAP alleles shared with great apes (5%) were excluded from observed SFS. 727 

  728 
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Tables 729 

Table 1. Known adaptive missense polymorphisms 

and their candidate adaptive polymorphism (CAP) 

status with empirical probability (Pneu). 

Protein SNP Identifier CAP?  P-value 

ALMS1 

rs10193972 yes  < 0.02 

rs2056486 yes  < 0.02 

rs3813227 yes  < 0.02 

rs6546837 yes  < 0.02 

rs6546838 yes  < 0.02 

rs6546839 yes  < 0.02 

rs6724782 yes  < 0.02 

APOL1 rs73885319 no n/a 

DARC rs12075 yes  < 0.02 

EDAR rs3827760 yes  < 0.03 

G6PD 
rs1050828 marginal n/a 

rs1050829 yes  < 0.03 

HBB rs334 marginal n/a 

MC1R 

rs1805007 no n/a 

rs1805008 no n/a 

rs885479 yes  < 0.03 

SLC24A5 rs1426654 yes  < 0.02 

SLC45A2 rs16891982 yes  < 0.02 

TLR4 
rs4986790 yes  < 0.04 

rs4986791 marginal n/a 

TLR5 rs5744174 no n/a 

TRPV6 

rs4987657 yes  < 0.01 

rs4987667 yes  < 0.01 

rs4987682 yes  < 0.01 
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Note. A candidate adaptive polymorphism (CAP) is 

an amino acid polymorphism with the evolutionary 

probability (EP) < 0.05 and population allele 

frequency (AF) > 5%. n/a marks alleles for which at 

least one of these two conditions was not met. 

Supplementary Table 2 presents more details on 

each of these polymorphisms and the source 

references. Marginal status is given to alleles with 

EP < 0.05 and global AF > 2%. 
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