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ABSTRACT
The additive genomic variance in linear models with random marker effects can be defined as a random variable that is in
accordance with classical quantitative genetics theory. Common approaches to estimate the genomic variance in random-effects
linear models based on genomic marker data can be regarded as the unconditional (or prior) expectation of this random additive
genomic variance, and result in a negligence of the contribution of linkage disequilibrium.
We introduce a novel best prediction (BP) approach for the additive genomic variance in both the current and the base population
in the framework of genomic prediction using the gBLUP-method. The resulting best predictor is the conditional (or posterior)
expectation of the additive genomic variance when using the additional information given by the phenotypic data, and is
structurally in accordance with the genomic equivalent of the classical additive genetic variance in random-effects models. In
particular, the best predictor includes the contribution of (marker) linkage disequilibrium to the additive genomic variance and
eliminates the missing contribution of LD that is caused by the assumptions of statistical frameworks such as the random-effects
model. We derive an empirical best predictor (eBP) and compare its performance with common approaches to estimate the
additive genomic variance in random-effects models on commonly used genomic datasets.
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Introduction

The additive genetic variance is defined as the variance of the
breeding value (BV) and is the most important determinant

of the response of a population to selection (Falconer and
Mackay 1996). The additive variance can be estimated from
observations made on the population and is a principal
component of the (narrow-sense) heritability, which is one of
the main quantities of interest in many genetic studies (Falconer
and Mackay 1996). The heritability is eminent, amongst other
things, for the prediction of the response to selection in the
breeder’s equation (Piepho and Moehring 2007; Hill 2010).
Although non-additive genetic variation exists, most of the
genetic variation is additive, such that it is usually sufficient
to investigate the additive genetic variance (Hill et al. 2008).
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More specifically, epistasis is only important on the gene level
but not for the genetic variance (Hill et al. 2008), and Zhu et al.
(2015) show that for human complex traits, dominance variation
contributes little. Nevertheless, linkage disequilibrium (LD) is
an important factor especially when departing from random
mating and Hardy-Weinberg equilibrium, which is often the
case in animal breeding (Hill et al. 2008; Dempfle 2018).
The additive genomic variance is defined as the variance of
a trait that can be explained by a linear regression on a set of
markers (de los Campos et al. 2015). Many authors have been
chasing what is sometimes coined “missing heritability” (Maher
2008) which means that only a fraction of the “true” genetic
variance can be captured by regression on influential markers.
Initially, researchers have used genome-wide association
studies (GWAS) in order to find quantitative trait loci (QTL) by
single-marker fixed effect regression combined with variable
selection. After having added the estimated corresponding
genomic variances of the single statistically significant loci, they
asserted that they could only account for a fraction of the “true”
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genetic variance. For instance, Maher (2008) found that only 5%
instead of the widely accepted heritability estimate of 80% of
human height could be explained. Golan et al. (2014) state that
the “true” genetic variance is generally underestimated when
applying variable selection, e.g. GWAS, to genomic datasets
which are typically characterized by their high dimensionality,
where the number of variables (markers) p is much larger than
the number of observations n. It is well known that a lot of
traits are influenced by many genes and that at least some loci
with tiny effects are missed when using variable selection or
even single-marker regression models. Consequently, Bernardo
(1994) decided to fit all (RFLP-) markers in maize jointly using
genomic best linear unbiased prediction (gBLUP), where he
assumes the marker effect vector to be random. In animal
breeding, Meuwissen et al. (2001) used Bayesian approaches
(BayesA and BayesB) to fit all markers jointly in order to predict
breeding values. Then, Yang et al. (2010) estimated the genomic
variance in an approach that they termed genome-wide complex
trait analysis genomic restricted maximum likelihood (GCTA-
GREML) (Yang et al. 2011). They showed that quantifying the
combined effect of all single-nucleotide polymorphisms (SNPs)
explains a larger part of the heritability than only using certain
variants quantified by GWAS methods. They illustrate their
results on the dataset on human height by pointing out that
they could explain a heritability, also termed “chip heritability”
(Zhou et al. 2013), of about 45%. They concluded that the main
reason for the remaining missing heritability was incomplete
LD of causal variants with the genotyped SNPs, which refers
to the general difference between the genetic variance and the
genomic variance (Powell et al. 2010; de los Campos et al. 2015).
However, the GCTA-GREML approach can be biased upwards
as well as downwards (Wolc et al. 2013; de los Campos et al.
2015; Lehermeier et al. 2017; Fernando et al. 2017a). Recently,
there has been a general discussion whether estimators for
the genomic variance account for linkage disequilibrium (LD)
between markers, which is defined as the covariance between
the marker genotypes (Bulmer 1971). Some authors argue that
estimators similar to GCTA-GREML lack the contribution of
LD (Kumar et al. 2015, 2016; Lehermeier et al. 2017) whereas
others (Yang et al. 2016) resolutely disagree. More specifically,
Kumar et al. (2015, 2016) state that in GCTA-GREML the
contributions of the p markers to the phenotypic values are
assumed to be independent normally distributed random
variables with equal variances. Thus, they claim that the
random contribution made by each marker is not correlated
with the random contributions made by any other marker which
leads to a negligence of the contribution of LD to the additive
genomic variance. In a study on the model plant Arabidopsis
thaliana (The 1001 Genomes Consortium 2016), Lehermeier
et al. (2017) use Bayesian ridge regression (BRR) to relate the
phenotype flowering time to the genomic data. They use an
estimator (termed M2) based on the posterior distribution of
the marker effects obtained by Markov Chain Monte Carlo
(MCMC) methods and show that this estimator explains a
larger proportion of the phenotypic variance than the estimator,
termed M1, based on gBLUP (VanRaden 2008; Yang et al. 2010,
2011). Lehermeier et al. (2017) argue that the reason for the
better performance of the Bayesian estimator for the additive
genomic variance (already mentioned in Sorensen et al. (2000);
Zhou et al. (2013); Fernando and Garrick (2013); Fernando et al.
(2017b)) is the explicit inclusion of linkage disequilibrium.

We show that the additive genomic variance in linear models
with random marker effects (REM) can be defined as a random
variable. Based on this premise, we propose a novel predictor of
the additive genomic variance and place existing estimators in a
joint framework permitting comparison with the new predictor.
We contribute to the solution of many of the above mentioned
controversies by reviewing common approaches to estimate the
additive genomic variance, e.g. GCTA-GREML, and show that
they estimate the unconditional (or prior) expectation of the
random additive genomic variance. Combined with the assump-
tions on the unconditional distribution of the marker effects in
the gBLUP-method this leads to an insufficient adaptation to the
data and a negligence of the contribution of LD.
We introduce a novel best prediction approach for the additive
genomic variance in both the current and the base population,
i.e. we use the conditional (or posterior) expectation of the ran-
dom additive genomic variance given the additional information
by the phenotypic values for an improved adaptation to the data.
We decompose the best predictor into the GCTA-GREML esti-
mator and a function for the contribution of marker LD which
determines whether GCTA-GREML is biased up- or downwards.
The best predictor is structurally in accordance with the genomic
equivalent of the additive genetic variance from classical quanti-
tative genetics, i.e. it explicitly includes the contribution of LD.
We propose an empirical best predictor (eBP) and illustrate our
theoretical results on several commonly used genomic datasets.

Material and Methods

Linear Models
The connection of the n-vector y of phenotypic values and the
mean-centered n-vector g of genomic values is given by

y = µ1n + g + ε, (1)

where µ denotes a fixed intercept, 1n := (1, ..., 1)> is a n-row-
vector containing 1’s, ε ∼ N (0, σ2

ε 1n×n) denotes environmental
deviations, and 1n×n is the identity matrix of dimension n. For
simplicity, we restrict the sample mean of the genotypic values
to be 0 (ḡ := 1

n1
>
n g = 0).

In the following, we assume that the genome is mapped with
p ∈ N markers and we denote by X the n × p design matrix
coding the genotypes of the markers. Then, the genomic values
can be separated into the coded genotypes of the single markers
and their corresponding p-vector β of marker effects:

g := PXβ =

[
p

∑
j=1

(
xij − x̄·j

)
β j

]
i=1,...,n

, (2)

where P := 1n×n − 1n1
>
n /n is the idempotent n × n-matrix

used for column-wise mean-centering and x̄·j := ∑n
i=1 xij/n for

j = 1, ..., p. The restriction of the column-means of the marker
genotype matrix to be 0 guarantees that the sample mean of the
genomic values in (1) equals 0. This ensures the uniqueness of
the definition of the vector g of genomic values in (2). Other-
wise, different coding of the marker genotypes lead to different
genomic values g.
Model (1) is called linear equivalent model (Henderson 1984) to
the “standard” additive linear regression model

y = µ1n + PXβ + ε. (3)

Model (3) allows for marker specific investigations and
inferences on the genomic contribution to the phenotypic
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values, whereas estimation of parameters in model (1) has
computational advantages.

Model (3) is a realization of n draws from the underlying
data-generating process of the (mean-centered) marker geno-
types (X1, ..., Xp) (Bühlmann and van de Geer 2011). This distri-
bution as well as the corresponding genomic values in (2) relate
to the current population of individuals.
When we are interested in the genomic values in the correspond-
ing consistent base population, we should take the relationship
(correlation) between the individuals into account (Powell et al.
2010; Legarra 2015). Assume that we have given a n× n rela-
tionship matrix R. Instead of the genomic values g or PXβ we
investigate the uncorrelated genomic values defined by

g∗ := R−0.5g = R−0.5PXβ =: X∗β. (4)

These are realizations of n draws from the underlying
data-generating process (X∗1 , ..., X∗p) of marker genotypes
in the base population. The sample mean of the genomic
values in the base population, 1

n1
>
n g∗, is usually different from 0.

The random-effects model is the statistical model that is prob-
ably most popular in genomic applications. Inferences on quan-
tities based on genomic data in model (1) and (3) are often
performed with the genomic best-linear-unbiased-prediction
(gBLUP) method (Bernardo 1994). In this framework, we con-
sider the single p components of the marker effect vector β in
set-up (3) as independent normal random variables:

β j ∼ N
(

0, σ2
β

)
, j = 1, ..., p, (5)

which implies that the effects are drawn at random from a com-
mon fixed normal distribution for each marker genotype.
In order to maintain the equivalence of models (1) and (3) we
have to ensure the following equality in distribution:

g d
= PXβ.

This can, for instance, be achieved by setting

g ∼ N
(

0, σ2
g G
)

,

where σ2
g := cσ2

β and

G := PXX>P/c (6)

for some arbitrary c > 0. The n× n-matrix G is called genomic
relationship matrix (GRM) and often c := 2 ∑ pj(1− pj), where
pj is the frequency of the minor allele at marker j (VanRaden
2008). For additional information on the gBLUP-method we
refer to Appendix Genomic Best Linear Unbiased Prediction.

Definitions of the Genomic Variance
We give an overview of the different approaches to define a ge-
nomic variance in the framework of the linear models (1) and (3).

Without further assumptions on the nature of the genome,
we can define the sample variance

s2
g :=

1
n− 1

g>g =
1

n− 1
β>X>PXβ = β>Σ̂X β (7)

of the mean-centered n-vector of genomic values g = PXβ, see
(2), in the current population (Ould Estaghvirou et al. 2013). Here,

Σ̂X := X>PX/(n− 1) defines the sample variance-covariance
matrix of the marker genotypes in the current population.
In the base population, we define the sample variance

s2
g∗ :=

1
n− 1

(g∗)>Pg∗ =
1

n− 1
β>(X∗)>PX∗β = β>Σ̂X∗β (8)

of the uncorrelated genomic values g∗ = X∗β, see (4). Here,
Σ̂X∗ := (X∗)>PX∗/(n − 1) defines the sample variance-
covariance matrix of the marker genotypes in the base
population.

Alternatively, we can define the theoretical variance of the ge-
nomic values directly in the REM. The linear model is generated
by drawing from the data-generating process of the marker geno-
types (representative individual), and the model assumptions in
the REM dictate that marker effects are random variables. This
gives rise to three different sources of variance of the genomic
values in the REM (marker genotypes random, marker effects
random, or both random).
The additive genomic variance of a randomly sampled (repre-
sentative) individual (Gianola et al. 2009; de los Campos et al.
2015; Fernando et al. 2017b) equals

Var(Xβ | β) = β>ΣX β, (9)

where ΣX denotes the variance-covariance matrix of the marker
genotypes.
The variance of a randomly sampled (representative) individual
with random marker effects is given by

Var(Xβ) = σ2
βtr
(
ΣX
)
. (10)

This is not the additive genomic variance (Gianola et al. 2009;
de los Campos et al. 2015).
The variance of a randomly sampled trait averaged over indi-
viduals with fixed genotypes X equals

1
n

tr(Cov(Xβ |X)) = σ2
β

n− 1
n

tr
(
Σ̂X
)
≈ σ2

βtr
(
Σ̂X
)
, (11)

and does not equal the additive genomic variance.
We derive the equalities in (9), (10) and (11) in more detail in
the Appendix Theoretical Variances of the Genomic Values in
the REM. These quantities refer to the genotypes in the current
population. We can apply the same definitions in the base
population by considering the data-generating process of the
genotypes in the base population (exchange X by X∗).
In Table 1 we give an overview of the different possibilities to
define the variance of the genomic values in the REM.

In actual applications, we have to replace ΣX in (9) by its
estimator Σ̂X . Consequently, the sample variance (7) as well
as the theoretical (9) effectively represent the additive genomic
variance, the genomic equivalent of the additive genetic vari-
ance (Bulmer 1971; Falconer and Mackay 1996), in the current
population. In the following, we do not explicitly distinguish
between the sample or the theoretical version of the variance,
and will speak only of the additive genomic variance.
In the following, we focus on the estimation of the additive
genomic variance in the general form

s2
g,B :=

1
n− 1

g>Bg =
1

n− 1
β>X>PBPXβ, (12)

which is a non-negative quadratic form of the genomic
values. By specifying the positive semi-definite and symmetric
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n × n-matrix B we determine whether the genomic variance
refers to the current population (B = 1n×n), see (7), or the base
population (B = R−0.5PR−0.5), see (8). Because the randomness
of the marker genotypes is not explicitly necessary to derive
(12), we can easily express all results in the terminology of the
genomic values g defined in the equivalent model.

In the framework of the REM, the marker effects β in model
(3) and the genomic values g in model (1) are random variables.
Consequently, the additive genomic variance in (12) is also a
random variable, and has to be predicted in an optimal way
before finally being estimated.
First, we will show that estimators for the unconditional expec-
tation of (12), like GCTA-GREML, are of the form (10) and (11),
and therefore do not estimate the additive genomic variance.
Then, we introduce the (frequentist) best predictor for the addi-
tive genomic variance s2

g,B and show that this approach main-
tains the structure of the additive genomic variance in (12), the
genomic equivalent of the additive genetic variance.

Table 1 Overview of different definitions of the variance of
the genomic values in the current population and their ex-
pression in the random-effects model. Analogous quantities
for the base population can be obtained by exchanging X
by X∗. The sample variance s2

g and the theoretical variance
Var(Xβ|β) define the sample and theoretical version of the
additive genomic variance.

Variance of Genomic Values

Sample Variance Theoretical Variance

s2
g Var(Xβ) tr(Cov(Xβ|X)) Var(Xβ|β)

β>Σ̂X β σ2
βtr(ΣX) nσ2

βtr(Σ̂X) β>ΣX β

The Expectation of the Additive Genomic Variance
The expectation of the random variable s2

g,B in (12) minimizes
the quadratic form

E
[(

s2
g,B − a

)2
]
,

with respect to all real numbers a, i.e. ã := E
[
s2

g,B
]

is the best

approximation of s2
g,B in the absence of additional information

(van der Vaart 2007). The unconditional (or prior) expectation of
s2

g,B equals

E
[
s2

g,B

]
= E

[
1

n− 1
β>X>PBPXβ

]
=

1
n− 1

tr
(

X>PBPXE
[

ββ>
])

(5)
=

1
n− 1

σ2
βtr
(

X>PBPX
)

(6)
=

1
n− 1

σ2
g tr
(
BG
)

(13)

because of the properties of the trace.

For the additive genomic variance in the current population,
s2

g, we choose B = 1n×n in (13) and obtain

V := E
[
s2

g

]
= σ2

βtr
(

Σ̂X

)
(14)

in model (3) or

V =
1

n− 1
σ2

g tr
(
G
)

(15)

in the equivalent model (1). Unconditional expectations of the
form V for the additive genomic variance are considered in
Ould Estaghvirou et al. (2013), for example.

For the additive genomic variance in the base population, s2
g∗ ,

we choose B = R−0.5PR−0.5 in (13) and obtain

V∗ := E
[
s2

g∗
]
= σ2

βtr
(

Σ̂X∗
)

(16)

in model (3) or

V∗ =
1

n− 1
σ2

g tr
(

PR−0.5GR−0.5
)

(17)

in the equivalent model. Often (VanRaden 2008; Yang et al. 2010,
2011; Speed et al. 2012; Vinkhuyzen et al. 2014; Legarra 2015), the
matrix R used for the transformation to the base population is as-
sumed to be the GRM G defined in (6). Then, the unconditional
expectation V∗ of the additive genomic variance simplifies to

V∗s :=
1

n− 1
σ2

g tr
(
P
)
= σ2

g , (18)

and the variance component σ2
g from the gBLUP-method is

considered as the (unconditional expectation of the) additive
genomic variance in the base population. We recommend
caution when using this simplification because the GRM G is in
general singular (because P is singular), and therefore G−1 is
not well defined.

We emphasize that only the diagonal elements of the sample
variance-covariance matrix (Σ̂X or Σ̂X∗ ) of the marker genotypes
influence the unconditional expectations V and V∗ of the
additive genomic variance. The model assumptions in the
REM dictate the matrix E

[
ββ>

]
to be diagonal which leads

to a negligence of the off-diagonal elements of Σ̂X or Σ̂X∗ in
(13). The covariances (LD) between the marker genotypes
are not included and V, V∗ and V∗s are of the same form as
Var(Xβ) in (10) and 1

n tr(Cov(Xβ |X)) in (11). This implies that
the unconditional expectation of the random additive genomic
variance s2

g,B is structurally not fully in accordance with the
additive genomic variance.

Explicit formulae for the estimation of the unconditional ex-
pectations V, V∗ and V∗s will be given in the Appendix Estima-
tion of the Additive Genomic Variance in the REM.

Best Prediction of the Additive Genomic Variance

The unconditional expectation of s2
g,B in (13) is strongly influ-

enced by the model assumption on the marginal distribution
of the marker effects and does not use additional information
given by the phenotypic values y in model equations (1) and (3).
By contrast, the conditional expectation, given the phenotypic
values y, can make use of the information in y.
Generally, the conditional (or posterior) expectation of a random
variable Z (in our case Z = s2

g,B) given the knowledge of the
random vector Y is defined as the “best prediction” (Searle et al.
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1992; van der Vaart 2007) of the random variable Z. The best
predictor

BP
(
Z
)

:= E
[
Z |Y

]
(19)

is the unique function g0(Y) that minimizes the mean square
error of prediction

E
[(

Z− g(Y)
)2
]

over all functions in Y, i.e. the conditional expectation is the
projection (closest element in a given set of functions) of Z onto
the linear space of all functions in Y (Searle et al. 1992; van der
Vaart 2007).
The best predictor in (19) is by definition an unbiased predictor
for the random variable Z and g0(Y) maximizes the correlation
Cor

(
Z, g(Y)

)
, i.e. we can replace the target random variable Z

by the best predictor defined in (19) in an optimal way (Searle
et al. 1992). Instead of inferring the unobservable target random
variable, we conduct inferences on the best predictor. Because
the best predictor has realized in a given dataset (Y = y), it is
estimable (Searle et al. 1992).

In the following, we introduce a novel approach of consider-
ing the frequentist best predictor instead of the unconditional
expectation for the random additive genomic variance s2

g,B in
(12). We proceed according to (19) and define

BP
(

s2
g,B

)
:= E

[
s2

g,B | y
]
= E

[
1

n− 1
β>X>PBPXβ

∣∣ y
]

=
1

n− 1
tr
(

X>PBPXE
[

ββ>
∣∣ y
])

for the given phenotypic values y, because X is constant and
therefore independent of y. The matrix of conditional second mo-
ments of the marker effects β is usually non-diagonal (contrary
to E

[
ββ>

]
) and can be expressed as

E
[

ββ> | y
]
= µβ|yµ>β|y + Σβ|y

using the BLUP µβ|y := E
[
β | y

]
of the random vector β and the

variance-covariance matrix Σβ|y := Cov
(

β | y
)

of β given the
data y. Then, the best predictor equals

BP
(

s2
g,B

)
=

1
n− 1

tr
(

X>PBPX
[
µβ|yµ>β|y + Σβ|y

])
=

1
n− 1

tr
(

B
[
µg|yµ>g|y + Σg|y

]) (20)

where the last equality holds because of the connection

µg|y := E
[
g | y

]
= E

[
PXβ | y

]
= PXµβ|y

of the BLUPs and the conditional variance-covariance matrices

Σg|y := Cov
(

g | y
)
= Cov

(
PXβ | y

)
= PXΣβ|yX>P.

in models (1) and (3), see also Appendix Genomic Best Linear
Unbiased Prediction.

For the best predictor of the additive genomic variance in the
current population we set B = 1n×n in (20) and obtain

W := BP
(

s2
g

)
= tr

(
Σ̂X

[
µβ|yµ>β|y + Σβ|y

])
(21)

in model (3) or

W =
1

n− 1
tr
(

µg|yµ>g|y + Σg|y
)

(22)

in the terminology of the equivalent model (1).

For the best predictor of the additive genomic variance in the
base population we set B = R−0.5PR−0.5 in (20) and obtain

W∗ : = BP
(

s2
g∗
)
= tr

(
Σ̂X∗

[
µβ|yµ>β|y + Σβ|y

])
(23)

in model (3) or

W∗ =
1

n− 1
tr
(

PR−0.5
[
µg|yµ>g|y + Σg|y

]
R−0.5

)
(24)

in the terminology of the equivalent model (1).

We emphasize that the best predictor of the additive genomic
variance in the current population (W) as well as in the base
population (W∗) includes the contribution of all elements of
the sample variance-covariance matrix of marker genotypes
(Σ̂X or Σ̂X∗ ), and hence comprise LD information, contrary to
the unconditional expectations V, V∗, and V∗s of the additive
genomic variance from the previous section.

Explicit formulae for the empirical best predictors (eBP) of
the additive genomic variance as well as a formula for W∗s (ap-
proximate approach using the GRM G for transformation to the
base population) will be given in the Appendix Estimation of
the Additive Genomic Variance in the REM. We compare the use
of the unconditional expectation and the best predictor for the
prediction of the random additive genomic variance in the REM
in Tables 3 and 4 in the Appendix.

Statistical Analysis (Genomic Data)
For an illustration of the theoretical results of the previous
sections we used the mice dataset that comes with the R-package
BGLR (Perez and de los Campos 2014). The data originally
stem from an experiment by Valdar et al. (2006a,b) in a mice
population. The dataset contains the matrix X with values
in {0, 1, 2} of p = 10346 polymorphic marker genotypes that
were measured in n = 1814 mice. The trait (n-vector y) under
consideration was body length (BL). The relationship of the
mice is recorded in the n× n pedigree matrix R and is used for
the transformation to the base population.
Additionally, we used the publicly available historical wheat
dataset that also comes with the R-package “BGLR” (Perez and
de los Campos 2014). The data originally stems from CIMMYT’s
Global Wheat Program and consists of n = 599 lines of wheat
where the trait under consideration was average grain yield.
The phenotypes are divided up into four basic target sets of
environments designated as Wheat I, Wheat II, Wheat III and
Wheat IV where we only considered the first one. The dataset
contains the matrix of marker genotypes for p = 1279 markers
as well as a relationship matrix.
Moreover, we analyzed a population of n = 1057 fully se-
quenced Arabidopsis lines for which phenotypes and genotypes
are publicly available by the effort of the Arabidopsis 1001
Genomes project (The 1001 Genomes Consortium 2016). The
lines represent natural inbred lines and we examined the same
trait, namely flowering time at 10°C (FT10), and the same
p = 193697 SNP-markers that were used in Lehermeier et al.
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(2017). For these data no relationship matrix was available.

For each dataset, we used the gBLUP-method in the
equivalent version (computational advantages) implemented
in the R-package “sommer” (Covarrubias-Pazaran 2017) to
fit a REM. We worked with the option REML (restricted
maximum likelihood) to obtain estimates (σ̂2

g and σ̂2
ε ) for the

variance components. The method also returned estimates
of the best predictor of the genomic effects µg|y and the their
variance-covariance matrix Σµ̂g|y .
We used this outcome for the estimation of the unconditional
expecation V and the BP W of the additive genomic variance
in the current population and the as well as the unconditional
expectation V∗ and the BP W∗ for the additive genomic variance
in the base population (except for the Arabidopsis dataset,
where no relationship matrix was available). Although the GRM
is not invertible, we will show in the Appendix Estimation of
the Additive Genomic Variance in the REM how to use the GRM
for a transformation to the base population, and to calculate the
corresponding unconditional expectation V∗s and the BP W∗s for
the additive genomic variance in the base population.

We conducted all calculations with the free software R (R
Development Core Team 2017). Detailed information about the
calculations as well as the programming code with its output is
provided in the supplemental File S1.

Data Availability
The authors affirm that all data necessary for confirming the
conclusions of this article are represented fully within the
manuscript and the supplemental material that has been up-
loaded to figshare. Supplemental File S1 contains a detailed
description of the estimation of the genomic variances for the
gBLUP-method as well as the corresponding R-code and its
output.

Results
In the first section of Table 2 we present the estimation results
for the unconditional expectation V and the best predictor W
for the additive genomic variance in the current population.
In the mice and wheat dataset V̂ exceeds Ŵ, whereas for the
Arabidopsis data, the empirical best predictor is about double
the size of the unconditional expectation.
The sample variance of the phenotypic values has been scaled
to 1. The sum of V̂ and the residual variance is larger than the
phenotyic variance for the mice and wheat data but smaller for
the Arabidopsis data. Technically, it is possible to define the
heritability in two ways, namely with respect to the phenotypic
variance and with respect to the sum of the additive genomic
variance and the residual variance. The sum of the emprical
best predictor Ŵ and the residual variance, however, equals
the scaled phenotypic variance of 1 remarkably exactly for all
datasets considered.

In the second section of Table 2 we first present the estimation
results for the unconditional expectation V∗ and the best predic-
tor W∗ for the additive genomic variance in the base population
using the given relationship matrices for the transformation. For
the mice data, V̂∗ and Ŵ∗ are similar to their analogons V̂ and
Ŵ in the current population. For the wheat data, however, the
estimated unconditional expectation and empirical best predic-

tor in the base population are about five times larger than those
in the current population and exceed the sample phenotypic
variance in the current population. By this approach, it is not
possible to define a heritbility in the base population because
both the estimate of the residual variance and the phenotypic
sample variance refer to the current population.
The estimation results for the unconditional expectation V∗s and
the best predictor W∗s for the additive genomic variance in the
base population using the GRM for the transformation differ
from those using the given relationship matrices by a consider-
able amount. In the mice and wheat data, V∗s is larger than W∗s ,
whereas for the Arabidopsis data the empirical best predictor
exceeds the estimated unconditional expectation. This conforms
to the behavior of V and W in the current population.

Discussion

We have shown that commonly used estimators for the additive
genomic variance in the REM with genomic marker data are
based on the unconditional expectation of the random additive
genomic variance. We have introduced a novel best prediction
approach for the random additive genomic variance in both the
current and the base population. In the following, we discuss
several important implications.

Current and Base population
Common ways of estimating the additive genomic variance
focus on the base population. These approaches are independent
of the actual current population and consequently valid even if
the generations change.
If one aims at the response of a population to selection, however,
it might be more meaningful to estimate the additive genomic
variance in the actual given population. This implies that
the estimation of the genomic variance has to be conducted
again when the individuals change. A formal definition of the
heritability is best possible in the current population, where the
phenotypic and residual variance are estimable.
We have preferred to use given relationship matrices for the
transformation of the genomic values to the base population. In
the case that such a matrix is not available, we have shown how
to use genomic relationship matrices for the transformation,
although a formal inversion of GRM’s is in general not possible.

In Table 2 we have illustrated that we can decompose the
sample phenotypic variance into the sum of the empirical best
predictor of the additive genomic variance in the current popu-
lation and into the estimated residual variance. This is due to
the orthogonal projection property of the conditional expecta-
tion which gives the best approximation of the random additive
genomic variance. This enables a unique definition of the heri-
tability in the current population. It is never possible, however,
to transfer the residual variance to the base population. Conse-
quently, a definition of the heritability in the base population is
not straight-forward.

The gBLUP-method and the Bayesian approach
The frequentist gBLUP-method can also be set-up in the context
of Bayesian regression models (with prior distribution for the
effect vector as defined in (5) and uninformative priors for the
variance components). Lehermeier et al. (2017) considered the
additive genomic variance s2

g in the current population, see (7),
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Table 2 Estimation results for the unconditional expectation V and the best predictor W for the additive genomic variance in the
current population for the mice, wheat, and Arabidopsis datasets. We also present the corresponding heritabilities with respect
to the sample variance of the phenotypic values and with respect to the sum of the additive genomic and residual variance σ2

ε .
In addition, we depict the estimation results for the unconditional expectation V∗ (V∗s when using the GRM for the transforma-
tion) and the best predictor W∗ (W∗s when using the GRM for the transformation) for the additive genomic variance in the base
population.

Genom. Var. / Heritab.

Data
Population Mice Wheat Arabidopsis

V̂
(
= ĥ2

V
)a Current 0.3737749 0.6039708 0.47333803

V̂ + σ̂2
ε

b 1.0754963 1.1449704 0.54832029

h̃2
V := V̂/(V̂ + σ̂2

ε )
c 0.3475371 0.5274990 0.86325098

Ŵ
(
= ĥ2

W
)a 0.2982787 0.4590001 0.92501779

Ŵ + σ̂2
ε

b 1.0000002 0.9999998 1.00000005

h̃2
W := Ŵ/(Ŵ + σ̂2

ε )
c 0.2982787 0.4590002 0.92501774

V̂∗ Base 0.3704021 3.0621134 −

Ŵ∗ 0.3089758 2.0095836 −

V̂∗s 0.3639248 1.3158006 0.80762011

Ŵ∗s 0.3577692 1.2300300 1.30240520

a Heritability with respect to phenotypic sample variance σ̂2
y which has been scaled to 1.

b Alternative definition of the phenotypic variance that depends on the estimate of the genomic variance.
c Alternative definition of the heritability that depends on the alternative definition of the phenotypic variance.

and used Bayesian ridge regression to estimate

M2 :=
1
M

M

∑
m=1

(
β̂(m)

)>
Σ̂X β̂(m),

where
(

β̂(m)
)

m=1,...,M denotes MCMC samples from the poste-
rior distribution of β. In that approach, Lehermeier et al. (2017)
have estimated the posterior mean of the additive genomic vari-
ance s2

g in the current population. This approach is the Bayesian
equivalent of the (frequentist) empirical version of the best pre-
dictor of s2

g in (12) in the current population. M2 does not de-
scribe the genomic variance in the base population and should
not directly be compared with approaches introduced e.g. in
Yang et al. (2010, 2011). Analogously to the best predictor W∗,
see (23), for the genomic variance in the base population, one
can consider

M∗2 :=
1
M

M

∑
m=1

(
β̂(m)

)>
Σ̂X∗ β̂

(m)

as the posterior mean of the genomic variance in the base
population in Bayesian regression models.

The frequentist gBLUP-method provides a more formal ap-
proach to the prediction of the random additive genomic vari-
ance in linear models with random effects than the Bayesian
approach. It enables the derivation of explicit formulas for the
predictors (unconditional expectation and best predictor) of the
random additive genomic variance using the standard output
of the gBLUP-method which goes hand in hand with a fast im-
plementation of the empirical version of the predictors. The
connection between the BLUP µβ|y and its covariance for the
random marker effects with the additive genomic variance are

clearly visible. This enables us, for instance, to derive the decom-
position of the best predictor of the random additive genomic
variance into the unconditional expectation and a function for
the marker LD in the following section.

Influence of Linkage Disequilibrium
In Section Definitions of the Genomic Variance we have seen
that the (random) additive genomic variance equals

s2
g = β>Σ̂X β

=
p

∑
j=1

β2
j (Σ̂X)jj +

p

∑
i=1

p

∑
j=1
j 6=i

βiβ j(Σ̂X)ij

in the current population, and

s2
g∗ = β>Σ̂X∗β

=
p

∑
j=1

β2
j (Σ̂X∗ )jj +

p

∑
i=1

p

∑
j=1
j 6=i

βiβ j(Σ̂X∗
)

ij

in the base population. We emphasize that the variance-
covariance matrix of the marker genotypes (marker LD) plays
a decisive part in the determination of the additive genomic
variances in both the current and the base population. The
variances s2

g and s2
g∗ are structurally in accordance with the

classical additive genetic variance (Bulmer 1971; Falconer and
Mackay 1996), which is caused by the genotypes whereas the
genotypic effects are fixed.

In the REM, however, the marker effects are random with un-
conditional expectation 0 and unconditional diagonal variance-
covariance matrix with equal variances σ2

β. As a consequence,
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the unconditional expectation of the additive genomic variance

E
[
s2

g

]
= σ2

βtr
(

Σ̂X

)
in the current population and

E
[
s2

g∗
]
= σ2

βtr
(

Σ̂X∗
)

in the base population contain only the variances of the marker
genotypes in the corresponding population. In addition, the
unconditional expectation resembles both the variance of a
randomly sampled trait for a randomly sampled individual and
the variance of a randomly sampled trait for individual with
fixed genotypes, see Table 1 for an overview.

We show in the Appendix Estimation of the Additive Ge-
nomic Variance in the REM that we can partition the best predic-
tor of the random additive genomic variance s2

g,B in the follow-
ing way:

BP
(

s2
g,B

)
= E

[
s2

g,B

]
+ Z(y),

where

Z(y) =
p

∑
j=1

[
µβ|yµ>β|y − Σµβ|y

]
jj

(
Σ̂X
)

jj

+
p

∑
i=1

p

∑
j=1
j 6=i

[
µβ|yµ>β|y − Σµβ|y

]
ij

(
Σ̂X
)

ij

in the current population and

Z(y) =
p

∑
j=1

[
µβ|yµ>β|y − Σµβ|y

]
jj

(
Σ̂X∗

)
jj

+
p

∑
i=1

p

∑
j=1
j 6=i

[
µβ|yµ>β|y − Σµβ|y

]
ij

(
Σ̂X∗

)
ij

in the base population (Σµβ|y = Cov(µβ|y)).
The best predictor, therefore, consists of the unconditional
expectation of the additive genomic variance (no contribution
of LD) and a function that explicitly contains the weighted
contribution of marker LD. This function determines whether
estimators like GCTA-GREML (unconditional expectation of the
random genomic variance in the base population) are biased
upwards or downwards, i.e. it determines the direction and the
magnitude of the bias of GCTA-GREML (this method is based
on the assumption that the function Z constantly equals 0). In
addition, we notice that this bias does not depend only on the
sign of the covariance between the marker genotypes, but on
the sign and the magnitude of the weighted covariances.

We emphasize that, contrary to the unconditional ex-
pectation, the best predictor maintains the structure of the
additive genomic variance s2

g and s2
g∗ , because the function Z

can be decomposed into the weighted sample variances and
covariances of the marker genotypes. Instead of the marker
effects, the components of the matrix µβ|yµ>

β|y − Σµβ|y , which
is typically non-zero and non-diagonal, take the part of the
weighting factors of the elements of Σ̂X and Σ̂X∗ . The best
predictor maintains the structure of the additive genomic

variance in both the current (s2
g) and the base population (s2

g∗ )
and thus conforms to the classical genetic variance (Bulmer
1971; Falconer and Mackay 1996).
The difference between the estimators V and W (V∗ and W∗, V∗s
and W∗s ) is given by the estimated Z(y) and can be obtained
from Table 2. We notice that the weighted contribution of marker
LD is large and positive in the case of the Arabidopsis data,
whereas in the mice and wheat data the weighted contribution
of marker LD is slightly negative.

To sum up, the application of the unconditional expectation
of the additive genomic variance combined with the model as-
sumptions on the marker effects in random effect models cause,
at least partially, the missing contribution of LD to the estimated
additive genomic variance. This goes hand in hand with the
critique expressed in Kumar et al. (2015, 2016). It is, however,
less important when estimating the additive genomic variance
in the base population where the individuals are uncorrelated
and less LD persists (although the marker genotypes need not
be uncorrelated).
The best prediction approach eliminates the problem of the miss-
ing contribution of LD to the additive genomic variance that is
caused by mathematical modeling (e.g. the assumptions in the
random-effects model).

Concluding Remarks
The variability in the genomic values and with it the additive ge-
nomic variance, is induced by the marker genotypes. The main
task in investigating the random additive genomic variance in
the REM is to treat the additional randomness of the genomic
variance that is induced by the randomness of the marker effects.
We have shown that commonly used estimators use the uncon-
ditional expectation to handle this randomness. However, we
recommend the use of the best prediction approach (conditional
expectation) that uses the additional information given by the
genomic data, minimizes the mean square error of prediction,
includes the contribution of LD, and maintains the structure of
the genomic equivalent of the classical additive genetic variance.
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Appendix

Genomic Best Linear Unbiased Prediction
In the REM (β j ∼ N (0, σ2

β)) for the model

y = µ1n + PXβ + ε (3)

we have that

y ∼ N
(

µ, PXXP>σ2
β + σ2

ε 1n×n︸ ︷︷ ︸
:=Σ̃−1

)
. (25)

The marker effect vector β cannot be estimated because it is a
random variable. Henderson (1984) introduced the concept of
the prediction of β, which refers to the estimation of the realized
values of the random effects. The best linear unbiased predictor
(BLUP) µβ|y for β is given by µβ|y = E[β | y] (Henderson 1984;
Searle et al. 1992). The conditional expectation is the unique best
predictor, i.e. it is unbiased and has minimal mean square error
of prediction

E
[(

β− g(y)
)>(

β− g(y)
)]

within the whole set of functions g that depend on the data y
(van der Vaart 2007).
The joint distribution of y and β equalsy

β

 ∼ N [
µ1n

0

 ,

 Σ̃−1 σ2
βPX

σ2
βX>P σ2

β1p×p

]

and we obtain

β|y ∼ N
(

σ2
βX>PΣ̃(y− µ1n), σ2

β1p×p − σ2
βX>PΣ̃PXσ2

β

)
, (26)

see e.g. Kotz et al. (2000). Consequently, the BLUP equals

µβ|y = σ2
βX>PΣ̃(y− µ1n) (27)

and is linear in y. The conditional variance-covariance matrix of
β equals

Σβ|y := Cov(β | y) (26)
= σ2

β1p×p − σ2
βX>PΣ̃PXσ2

β, (28)

and the variance-covariance matrix of the BLUP µβ|y equals

Σµβ|y : = Cov
(
µβ|y

)
= Cov

(
E
[
β | y

])
= Cov

(
β
)
−E

[
Cov

(
β | y

)]
(28)
= σ2

βX>PΣ̃PXσ2
β. (29)

The actual estimation of the parameters in model (3) with
the BLUP-method is a two-stage procedure (Das et al. 2004).

In the first stage, a BLUE for the fixed quantities and a BLUP
for the random variables are derived. However, they involve
the variance components σ2

β and σ2
ε as unknown parameters.

In a second stage, these parameters are replaced by estimates,
and the estimators for the BLUE and the BLUP are referred
to as empirical BLUE (eBLUE) and empirical BLUP (eBLUP),
see Kackar and Harville (1984); Jiang (1999). Investigations on
the properties of the eBLUE and the eBLUP are very complex
(Searle et al. 1992), and often only approximate results are
obtained (Kackar and Harville 1984; Jiang 1999; Das et al. 2004).

Assume that we are provided with estimators for the variance
components using e.g. restricted maximum likelihood (REML)
(Patterson and Thompson 1971; Corbeil and Searle 1976; Searle
et al. 1992). These estimated variance components are functions
of the data y and consequently, the eBLUE

µ̂ =
1
>
n

(
PXX>Pσ̂2

β + σ̂2
ε 1n×n

)−1
y

1
>
n

(
PXX>Pσ̂2

β + σ̂2
ε 1n×n

)−1
1n

for the intercept and the eBLUP

µ̂β|y = σ̂2
βX>P

(
PXX>Pσ̂2

β + σ̂2
ε 1n×n

)−1
(y− µ̂), (30)

for the marker effects β are not even linear in the data y anymore
(despite their naming). The unbiasedness of the estimators
eBLUE and the eBLUP can be asserted if the estimated variance
components σ̂2

β and σ̂2
ε are non-negative, even functions in y,

translation-invariant, and if the expectations of the eBLUE and
eBLUP are finite (Kackar and Harville 1984). When using REML
estimates for the variance components, these requirements are
satisfied and the eBLUE µ̂ and the eBLUP µ̂β|y are bias-free
estimators for µ and β (Jiang 1999).

Conditional on the estimation of the variance components
(ignoring the randomness in the second stage of the estimation
of the eBLUP), the variance-covariance matrix of the eBLUP µ̂β|y
equals

Σµ̂β|y : = Cov
(

µ̂β|y

∣∣∣ σ2
β = σ̂2

β, σ2
ε = σ̂2

ε

)
= σ2

βX>PΣ̃Cov
(

y− µ̂1n | σ2
β = σ̂2

β, σ2
ε = σ̂2

ε

)
Σ̃PXσ2

β

= σ2
βX>PΣ̃PXσ2

β −
σ2

βX>PΣ̃1n1
>
n Σ̃PXσ2

β

1
>
n Σ̃1n

, (31)

because

Cov
(

y− µ̂1n

∣∣∣ σ2
β = σ̂2

β, σ2
ε = σ̂2

ε

)
=

=Cov
(
y
)
− 2Cov

(
y, µ̂

∣∣∣ σ2
β = σ̂2

β, σ2
ε = σ̂2

ε

)
1
>
n

+ 1nCov
(

µ̂
∣∣∣ σ2

β = σ̂2
β, σ2

ε = σ̂2
ε

)
1
>
n

=Σ̃−1 − 2Cov
(
y
) Σ̃1n

1
>
n Σ̃1n

1
>
n + 1n

1
>
n Σ̃Σ̃−1Σ̃1n

(1>n Σ̃1n)2
1
>
n

=Σ̃−1 − 1n1
>
n

1
>
n Σ̃1n

holds.
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We can transfer the results derived in model (3) to model

y = µ1n + g + ε (1)

by using their equivalence in distribution. The genomic best
linear unbiased predictor for g equals

µg|y := E[g | y] = E
[
PXβ | y

]
= PXµβ|y
(27)
= PXσ2

βX>PΣ̃(y− µ1n)

(6)
= σ2

g G
(

Gσ2
g + σ2

ε 1n×n

)−1
(y− µ1n). (32)

The conditional variance-covariance matrix of g is obtained as

Σg|y := Cov
(

g | y
)

= PXCov
(

β | y
)
X>P

(28)
= PX

(
σ2

β1p×p − σ2
βX>PΣ̃PXσ2

β

)
X>P

(6)
= σ2

g G− σ2
g G
(

Gσ2
g + σ2

ε 1n×n

)−1
Gσ2

g , (33)

as well as the variance-covariance matrix of the BLUP µg|y

Σµg|y := Cov
(
µg|y

)
= PXCov

(
µβ|y

)
X>P

(29)
= PXσ2

βX>PΣ̃PXσ2
βX>P

(6)
= σ2

g G
(

Gσ2
g + σ2

ε 1n×n

)−1
Gσ2

g . (34)

The variance-covariance matrix of the eBLUP equals

Σµ̂g|y := Cov
(

µ̂g|y

∣∣∣ σ2
g = σ̂2

g , σ2
ε = σ̂2

ε

)
= Cov

(
PXµ̂β|y

∣∣∣ σ2
β = σ̂2

β, σ2
ε = σ̂2

ε

)
= PXΣµ̂β|y X>P

(31)
= PX

[
σ2

βX>PΣ̃PXσ2
β −

σ2
βX>PΣ̃1n1

>
n Σ̃PXσ2

β

1
>
n Σ̃1n

]
X>P

(6)
= σ2

g GΣ̃Gσ2
g −

σ2
g GΣ̃1n1

>
n Σ̃Gσ2

g

1
>
n Σ̃1n

. (35)

Theoretical Variances of the Genomic Values in the REM
We review three different definitions of the theoretical variance
of the genomic values in the REM (marker genotypes random,
marker effects random, or both random). We focus the following
analysis on the linear model (3) because of the explicit separation
of marker genotypes and marker effects. For simplicity, we
focus on the genomic variance in the current population. The
results for the base population are obtained by replacing the
data-generating process X with X∗.

Random Genotypes and Random Effects
If the marker genotypes as well as the marker effects are the
source of genomic variation, we calculate the variance of the
genomic value according to the law of total variance as:

Var(Xβ) = E
[
Var(Xβ | β)

]
+ Var

(
E[Xβ | β]

)
= E

[
β>ΣX β

]
+ Var

(
E[X]β

)
= tr

(
ΣXE

[
ββ>

])
+ E

[
X
]
ΣβE

[
X
]>

= E
[
β
]>ΣXE

[
β
]
+ tr

(
ΣβΣX

)
+ E

[
X
]
ΣβE

[
X
]>.

The unconditional expectation and the variance operator in the
second line apply to the random marker effect vector β. Because
of the model assumptions on the marker effects in (5) and the
mean-centered marker genotypes (E

[
X
]
= 0), we obtain

Var(Xβ) = σ2
βtr
(
ΣX
)

(36)

with the interpretation as the variance of a randomly sampled
(representative) individual for a trait with random effects.

Fixed Genotypes and Random Effects
If the genomic variation is caused by the marker effects only and
the marker genotypes are fixed, then the n-vector of genomic
values is normally distributed:

g = PXβ ∼ N
(

0, PXX>Pσ2
β

)
. (37)

In order to obtain an average theoretical variance of the individ-
uals in the sample, we calculate the mean trace of the variance-
covariance matrix of the genomic values:

1
n

tr
(

Cov
(
PXβ

))
=

1
n

σ2
βtr
(

PXX>P
)

=
n− 1

n
σ2

βtr
(

Σ̂X

)
. (38)

This approximately equals the variance of a randomly sampled
individual for a randomly sampled trait, see (36). Even when the
marker genotypes are fixed, their sample variance-covariance
matrix contributes to the theoretical variance of the genomic
values when averaging over the individuals in the sample.

Random Genotypes and Fixed Effects
Probably the most common assumption on the nature of the
genome is that the marker genotypes are random, whereas the
marker effects are fixed (Falconer and Mackay 1996). In order to
translate these assumption to the variance of the genomic values
in the REM, we have to condition on the marker effects (i.e. we
fix them). Then, the theoretical variance of the genomic values
of a individual with random marker genotypes (representative
individual) and with fixed marker effects equals

Var
(
Xβ | β

)
= β>ΣX β

=
p

∑
j=1

β jVar(Xj) +
p

∑
i=1

p

∑
j=1
j 6=i

βiβ jCov(Xi, Xj), (39)

and describes the genomic equivalent of the definition of the
additive genetic variance (Bulmer 1971; Falconer and Mackay
1996).
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Estimation of the Additive Genomic Variance in the REM
In sections The Expectation of the Additive Genomic Variance
and Best Prediction of the Additive Genomic Variance we have
introduced ways to predict the random additive genomic vari-
ance

s2
g,B :=

1
n− 1

g>Bg =
1

n− 1
β>X>PBPXβ (12)

in the REM, namely by using the unconditional expectation

E
[
s2

g,B

]
=

1
n− 1

σ2
βtr
(

X>PBPX
)

=
1

n− 1
σ2

g tr
(
BG
) (13)

and the best predictor

BP
(

s2
g,B

)
=

1
n− 1

tr
(

X>PBPX
[
µβ|yµ>β|y + Σβ|y

])
=

1
n− 1

tr
(

B
[
µg|yµ>g|y + Σg|y

])
.

(20)

In the following, we introduce estimators for these quantities
and investigate their properties.

Estimation of the Unconditional Expectation

For any given positive semi-definite matrix B, the unconditional
expectation

1
n− 1

σ2
βtr
(

X>PBPX
)

in model (3) can be estimated by

1
n− 1

σ̂2
βtr
(

X>PBPX
)

after having obtained an estimate σ̂2
β of the variance component

σ2
β. In the equivalent model (1), we can estimate

1
n− 1

σ2
g tr
(

BG
)

by using

1
n− 1

σ̂2
g tr
(

BG
)

for any positive semi-definite matrix B.

The specification of B as in Section The Expectation of the
Additive Genomic Variance leads to the explicit form of the
estimators

V̂ = σ̂2
βtr
(

Σ̂X

)
=

1
n− 1

σ̂2
g tr
(
G
)
,

V̂∗ = σ̂2
βtr
(

Σ̂X∗
)
=

1
n− 1

σ̂2
g tr
(

PR−0.5GR−0.5
)

and

V̂∗s = cσ̂2
β = σ̂2

g . (40)

Empirical Best Prediction (eBP)
Because of equalities (28) and (29) and the variance-covariance
matrix Σβ = σ2

β1p×p of β we have that

Σβ|y = Σβ − Σµβ|y = σ2
β1p×p − Σµβ|y .

Consequently, the best predictor of s2
g,B defined in (20) equals

BP
(

s2
g,B

)
=

1
n− 1

tr
(

X>PBPX
[
µβ|yµ>β|y + Σβ|y

])
=

1
n− 1

tr
(

X>PBPX
[
µβ|yµ>β|y + Σβ − Σµβ|y

])
=

1
n− 1

σ2
βtr
(

X>PBPX
)

+
1

n− 1
tr
(

X>PBPX
[
µβ|yµ>β|y − Σµβ|y

])
=E

[
s2

g,B

]
+ Z(y), (41)

where

Z(y) : =
1

n− 1
tr
(

X>PBPX
[
µβ|yµ>β|y − Σµβ|y

])
=

1
n− 1

tr
(

B
[
µg|yµ>g|y − Σµg|y

])
.

(42)

We have partitioned the best predictor of s2
g,B into the uncon-

ditional expectation of s2
g,B and the random variable Z which

is realized in the phenotypic data y. The random variable Z
specifies the adaption of the best predictor to the data and incor-
porates the contribution of (marker) LD. The expectation of Z
over all possible data y is 0 because

E
[
µβ|yµ>β|y − Σµβ|y

]
= Cov

(
µβ|y

)
+ E

[
µβ|y

]
E
[
µβ|y

]> − Σµβ|y

= 0.

The sign of the realization of Z determines whether the best
predictor is larger (positive weighted LD) or smaller (negative
weighted LD) than the unconditional expectation.

The task of finding an eBP for s2
g,B is reduced to estimating

the realized values of Z because of the connection derived in
(41). We replace the BLUP and their variance-covariance ma-
trix in equation (42) by the eBLUP and its estimated variance-
covariance matrix:

Ẑ(y) : =
1

n− 1
tr
(

X>PBPX
[
µ̂β|yµ̂>β|y − Σ̂µ̂β|y

])
.

We assume that we are provided with REML-estimators σ̂2
β and

σ̂2
ε for the variance components. Then, we find

E
[
µ̂β|yµ̂>β|y

]
= Cov

(
µ̂β|y

)
+ E

[
µ̂β|y

]
E
[
µ̂β|y

]>
(31)
= Σµ̂β|y ,

because the eBLUP is unbiased for β, i.e. E[µ̂β|y] = E[β] = 0
(Jiang 1999). Unfortunately, the unbiasedness of the estimated
variance-covariance matrix of the eBLUP can only be asserted in
a trivial way by conditioning on the estimated variance compo-
nents:

E
[
Σ̂µ̂β|y | σ

2
β = σ̂2

β, σ2
ε = σ̂2

ε

]
(31)
= Σµ̂β|y .
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Therefore, the expectation of Ẑ(y) (conditionally on the variance
components) equals 0.
The same holds true for

Ẑ(y) =
1

n− 1
tr
(

B
[
µ̂g|yµ̂>g|y − Σ̂µ̂g|y

])
in the equivalent model, because the quantities µ̂g|y and Σ̂µ̂g|y

are linear combinations of µ̂β|y and Σ̂µ̂g|y , see (32) and (35).

Altogether, we can define the unbiased (conditionally on the
estimated variance components) empirical best predictor

eBP
(

s2
g,B

)
:=Ê

[
s2

g,B

]
+ Ẑ(y)

=
1

n− 1
σ̂2

βtr
(

X>PBPX
)

+
1

n− 1
tr
(

X>PBPX
[
µ̂β|yµ̂>β|y − Σ̂µ̂β|y

])
=

1
n− 1

σ̂2
g tr
(

BG
)
+

1
n− 1

tr
(

B
[
µ̂g|yµ̂>g|y − Σ̂µ̂g|y

])
for the additive genomic variance s2

g,B.
The specification of B as in Section Best Prediction of the Addi-
tive Genomic Variance leads to the explicit form

Ŵ := eBP
(

s2
g

)
= V̂ + tr

(
Σ̂X

[
µ̂β|yµ̂>β|y − Σ̂µ̂β|y

])
= V̂ +

1
n− 1

tr
([

µ̂g|yµ̂>g|y − Σ̂µ̂g|y

])
of the eBP for the additive genomic variance in the current pop-
ulation, and to the eBP

Ŵ∗ : = eBP
(

s2
g∗
)

= V̂∗ + tr
(

Σ̂X∗
[
µ̂β|yµ̂>β|y − Σ̂µ̂β|y

])
= V̂∗ +

1
n− 1

tr
(

PR−0.5
[
µ̂g|yµ̂>g|y − Σ̂µ̂g|y

]
R−0.5

)
for the additive genomic variance in the base population.

Using the GRM G for a transformation to the base population
is not well-defined because G is singular. However, because
V̂∗s , see (40), is commonly used, we want to find an analogous
formula for the empirical best predictor in this set-up.
Instead of calculating

G−0.5µ̂g|y = G−0.5σ̂2
g G
(

Gσ̂2
g + σ̂2

ε 1n×n

)−1
(y− µ̂1n)

and

G−0.5Σ̂µ̂g|y = G−0.5

[
σ̂2

g G ˆ̃ΣGσ̂2
g −

σ̂2
g G ˆ̃Σ1n1

>
n

ˆ̃ΣGσ̂2
g

1
>
n

ˆ̃Σ1n

]
G−0.5,

we use

µ̂∗g|y := σ̂2
g G0.5

(
Gσ̂2

g + σ̂2
ε 1n×n

)−1
(y− µ̂1n)

and

Σ̂∗µ̂g|y
:= σ̂2

g G0.5 ˆ̃ΣG0.5σ̂2
g −

σ̂2
g G0.5 ˆ̃Σ1n1

>
n

ˆ̃ΣG0.5σ̂2
g

1
>
n

ˆ̃Σ1n

as substitutes. Then, we define

Ŵ∗s =V̂∗s +
1

n− 1
tr
(

P
[
µ̂∗g|y(µ̂

∗
g|y)
> − Σ̂∗µ̂g|y

])
as an approximation of the empirical best predictor of the ad-
ditive genomic variance in the base population when using the
GRM for the transformation.
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Table 3 Overview of Prediction Approaches for the Random Additive Genomic Variance in the Random-Effects Model with the
gBLUP-method (s2

g,B = 1
n−1 β>X>PBPXβ). X is the matrix of marker genotypes, P the matrix for column-wise mean-centering,

B a positive semi-definite matrix, σ2
β the variance component of the marker effects β, µβ|y the BLUP of β, Σβ|y the conditional co-

variance matrix of β given the phenotypic data y, R a relationship matrix, Σ̂X the sample variance-covariance matrix of the marker
genotypes in the current population, Σ̂X∗ the sample variance-covariance matrix of the marker genotypes in the base population.

Unconditional Expectation Best Prediction

General Formula E[s2
g,B] =

1
n−1 σ2

βtr
(
X>PBPX

)
BP(s2

g,B) =
1

n−1 tr
(
X>PBPX

[
µβ|yµ>

β|y + Σβ|y
])

Current population V = σ2
βtr
(
Σ̂X
)

W = tr
(
Σ̂X
[
µβ|yµ>

β|y + Σβ|y
])

Base Population V∗ = σ2
βtr
(
Σ̂X∗

)
W∗ = tr

(
Σ̂X∗

[
µβ|yµ>

β|y + Σβ|y
])

Features

• Best approximation of the additive genomic
variance in the absence of information

• No inclusion of LD

• Best approximation of the additive genomic
variance using additional information given by
phenotypic values (adaptation to the data)

• Explicit inclusion of LD
• Orthogonal decomposition of the phenotypic

variance in the current population (unique defi-
nition of the heritability)

• Genomic equivalent of the additive genetic vari-
ance

Table 4 Overview of Prediction Approaches for the Random Additive Genomic Variance in the Random-Effects Model with the
gBLUP-method in the equivalent version of the linear model (s2

g,B = 1
n−1 g>Bg). G is the genomic relationship matrix, P the ma-

trix for column-wise mean-centering,B a positive semi-definite matrix, σ2
g the variance component of the genomic values g, µg|y the

BLUP of g, Σg|y the conditional covariance matrix of g given the phenotypic data y, R a relationship matrix.

Unconditional Expectation Best Prediction

General Formula E[s2
g,B] =

1
n−1 σ2

g tr
(
BG
)

BP(s2
g,B) =

1
n−1 tr

(
B
[
µg|yµ>g|y + Σg|y

])
Current population V = 1

n−1 σ2
g tr
(
G
)

W = 1
n−1 tr

([
µg|yµ>g|y + Σg|y

])
Base Population V∗ = 1

n−1 σ2
g tr
(
PR−0.5GR−0.5) W∗ = 1

n−1 tr
(

PR−0.5[µg|yµ>g|y + Σg|y
]
R−0.5

)
Features

• Best approximation of the additive genomic
variance in the absence of information

• No inclusion of LD
• Transformation with GRM: σ2

g replaces V∗

• Best approximation of the additive genomic
variance using additional information given by
phenotypic values (adaptation to the data)

• Explicit inclusion of marker LD
• Orthogonal decomposition of the phenotypic

variance in the current population (unique defi-
nition of the heritability)

• Genomic equivalent of the additive genetic vari-
ance
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