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1 Abstract

2 The advent of high throughput sequencing and genotyping tech-
3 nologies enables the comparison of patterns of polymorphisms at a
4 very large number of markers. While the characterization of genetic
5 structure from individual sequencing data remains expensive for many
6 non-model species, it has been shown that sequencing pools of indi-
7 vidual DNAs (Pool-seq) represents an attractive and cost-effective al-
8 ternative. However, analyzing sequence read counts from a DNA pool
9 instead of individual genotypes raises statistical challenges in deriving
10 correct estimates of genetic differentiation. In this article, we pro-
11 vide a method-of-moments estimator of Fgp for Pool-seq data, based
12 on an analysis-of-variance framework. We show, by means of simula-
13 tions, that this new estimator is unbiased, and outperforms previously
14 proposed estimators. We evaluate the robustness of our estimator to
15 model misspecification, such as sequencing errors and uneven contri-
16 butions of individual DNAs to the pools. Finally, by reanalyzing pub-
17 lished Pool-seq data of different ecotypes of the prickly sculpin Cottus
18 asper, we show how the use of an unbiased Fgt estimator may ques-
19 tion the interpretation of population structure inferred from previous
20 analyses.
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21 INTRODUCTION

» It has long been recognized that the subdivision of species into subpopu-

2 lations, social groups and families fosters genetic differentiation (Wahlund

2 |1928; |Wright||[1931]). Characterizing genetic differentiation as a means to infer

»»  unknown population structure is therefore fundamental to population genet-
2 ics, and finds applications in multiple domains, including conservation biol-
27 0gy, invasion biology, association mapping and forensics, among many others.

22 In the late 1940s and early 1950s, Malécot| (1948)) and (1951)) intro-

2 duced F-statistics to partition genetic variation within and between groups

0 of individuals (Holsinger and Weir|2009; Bhatia et al[2013)). Since then, the

21 estimation of F-statistics has become standard practice (see, e.g., 1996

2 |Weir and Hill|2002; Weir|2012)), and the most commonly used estimators of
1 Fsr have been developed in an analysis-of-variance framework (Cockerham
3¢ 1969, [1973; Weir and Cockerham|[1984)), which can be recast in terms of prob-

35 abilities of identity of pairs of homologous genes (Cockerham and Weir| 1987

5 Rousset|2007; [Weir and Goudet|2017)).

7 Assuming that molecular markers are neutral, estimates of Fgr are typ-

s ically used to quantify genetic structure in natural populations, which is

1 then interpreted as the result of demographic history (Holsinger and Weir|

w0 [2009): large Fgsr values are expected for small populations among which

a1 dispersal is limited (Wright|1951), or between populations that have long

» diverged in isolation from each other (Reynolds et al.|[1983); when dispersal

.3 is spatially restricted, a positive relationship between Fgr and the geograph-

s ical distance for pairs of populations generally holds (Slatkin |1993; Rousset|

s 11997). It has also been proposed to characterize the heterogeneity of Fgr
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s estimates across markers for identifying loci that are targeted by selection

w  (Cavalli-Sforza| |1966; Lewontin and Krakauer 1973 [Beaumont and Nichols|

s (1996} [Vitalis et al.|2001} [Akey et al|2002; [Beaumont|[2005; [Weir et al.|2005}
» |Lotterhos and Whitlock 2014} 2015; Whitlock and Lotterhos|2015]).

50 Next-generation sequencing (NGS) technologies provide unprecedented
i amounts of polymorphism data in both model and non-model species (Elle-
52 2014). Although the sequencing strategy initially involved individually

53 tagged samples in humans (The International HapMap Consortium|2005),

s« whole-genome sequencing of pools of individuals (Pool-seq) is being increas-

ss ingly popular for population genomic studies (Schlotterer et al. 2014). Be-

56 cause it consists in sequencing libraries of pooled DNA samples and does
s not require individual tagging of sequences, Pool-seq provides genome-wide

ss  polymorphism data at considerably lower cost than sequencing of individuals

o (Schlotterer et al[2014). However, non-equimolar amounts of DNA from all

s individuals in a pool and stochastic variation in the amplification efficiency
1 of individual DNAs have raised concerns with respect to the accuracy of the

&2 so-obtained allele frequency estimates, particularly at low sequencing depth

s and with small pool sizes (Cutler and Jensen|2010; Ellegren|2014; |Anderson|
64 2014])). Nonetheless, it has been shown that, at equal sequencing effort,

s Pool-seq provides similar, if not more accurate, allele frequency estimates

e than individual-based analyses (Futschik and Schlotterer2010; Gautier et al.|

e7 |2013). The problem is different for diversity and differentiation parameters,
¢ which depend on second moments of allele frequencies or, equivalently, on
so pairwise measures of genetic identity. With Pool-seq data, however, it is

70 impossible to distinguish pairs of reads that are identical because they were
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7 sequenced from a single gene, from pairs of reads that are identical because
72 they were sequenced from two distinct genes that are identical in state (IIS)
73 (Ferretti et al.|[2013)).

74 Appropriate estimators of diversity and differentiation parameters must
7 therefore be sought, to account for both the sampling of individual genes
76 from the pool and the sampling of reads from these genes. There has been
77 several attempts to define estimators for the parameter Fgr for Pool-seq data
7 (Kofler et al|2011; Ferretti et al.2013)), from ratios of heterozygosities (or
79 from probabilities of genetic identity between pairs of reads) within and be-
so tween pools. In the following, we will argue that these estimators are biased
s (i.e., they do not converge towards the expected value of the parameter),
22 and that some of them have undesired statistical properties (i.e., the bias
g3 depends upon sample size and coverage). Here, following |Cockerham| (1969),
s« (Cockerham| (1973), Weir and Cockerham| (1984)), [Weir| (1996]), [Weir and Hill
ss (2002) and Rousset| (2007)), we define a method-of-moments estimator of the
s parameter Fgp using an analysis-of-variance framework. We then evaluate
&7 the accuracy and the precision of this estimator, based on the analysis of sim-
ss Ulated datasets, and compare it to estimates defined in the software package
so PoPoolation2 (Kofler et al[2011]), and in Ferretti et al. (2013). Furthermore,
o we test the robustness of our estimators to model misspecifications (including
o unequal contributions of individuals in pools, and sequencing errors). Finally,
2 we reanalyze the prickly sculpin (Cottus asper) Pool-seq data (published by
o3 [Dennenmoser et al.|2017), and show how the use of biased Fsr estimators in
w previous analyses may challenge the interpretation of population structure.

% Note that throughout this article, we use the term “gene” to designate a
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% segregating genetic unit (in the sense of the “Mendelian gene” from |Orgogozo
o let al.2016). We further use the term “read” in a narrow sense, as a sequenced
s copy of a gene. For the sake of simplicity, we will use the term “Ind-seq” to
o refer to analyses based on individual data in which we further assume that

wo individual genotypes are called without error.
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101 MODEL

w2 F-statistics may be described as intra-class correlations for the probability of
103 identity in state (IIS) of pairs of genes (Cockerham and Weir |1987; Rousset
e 11996, 2007), and Fgr is best defined as:

Fyr = M (1)

1—-Q

s where () is the IIS probability for genes sampled within subpopulations, and
ws (o is the IIS probability for genes sampled between subpopulations. In the
w7 following, we develop an estimator of Fgr for Pool-seq data, by decomposing
s the total variance of gene frequencies in an analysis-of-variance framework.
w0 A complete derivation of the model is provided in the Supplemental File S1.
110 For the sake of clarity, the notation used throughout this article is given in
u Table 1. We first derive our model for a single locus, and eventually provide
2  a multilocus estimator of Fgp. Consider a sample of nq subpopulations, each
us  of which is made of n; genes (i = 1,...,nq) sequenced in pools (hence n; is
us  the haploid sample size of the ith pool). We define ¢;; as the number of reads
us  sequenced from gene j (j = 1,...,n;) in subpopulation i at the locus consid-
us ered. Note that ¢;; is a latent variable, that cannot be directly observed from
u7 the data. Let Xjj,, be an indicator variable for read r (r =1,...,¢;) from
us gene j in subpopulation 7, such that X;;.., = 1 if the rth read from the jth
1o gene in the ¢th deme is of type k, and Xjj,., = 0 otherwise. In the following,
120 we use standard dot notations for sample averages, i.e.: Xjj., = ZT Xijri/ Cijs
o X = Zj > Xijr:k/zj cjand X..p =D, Z]‘ o Xijrk/ Do Zj c¢ij. The

122 analysis of variance is based on the computation of sums of squares, as fol-
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13 lows:
DD ICHEL MDD B HLEE T,
+ Zii ok — Xia)’
+Ziizr X..)”
= SSR:;C+SSL,€+SSP:,€ (2)

124 Asis shown in the Supplemental File S1, the expected sums of squares depend
125 on the expectation of the allele frequency 7 over all replicate populations
126 sharing the same evolutionary history, as well as on the IIS probability Q;.x
12z that two genes in the same pool are both of type k, and the IIS probability
18 (J9. that two genes from different pools are both of type k. Taking expecta-

120 tions (see the detailed computations in the Supplemental File S1), one has:
E(SSRx) = 0 (3)

1o for reads within individual genes, since we assume that there is no sequencing
131 error, i.e. all the reads sequenced from a single gene are identical and X, =

12 Xj;. for all 7. For reads between genes within pools, we get:

E(S5Lk) = (C1— Ds)(mp — Q) (4)

1 where Cy = )7, > 5 cij = ), cij is the total number of reads in the full sample
14 (total coverage), CY; is the coverage of the ith pooland Dy = >, (Cy; +n; — 1) /n;.
135 Dy arises from the assumption that the distribution of the read counts c;;

136 is multinomial (i.e., that all genes contribute equally to the pool of reads;

9
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137 see Equation A15 in Supplemental File S1). For reads between genes from

s different pools, we have:
Co N
E(SSPy) = (Ci— . (Qur — Qo) + (D2 — D) (1 — Qr)  (5)
1

2
1 where Cy = ), (Z] cij> and D} = [> . Cy, (Cui+n;—1) /0] /Cy (see
1o Equation A16 in Supplemental File S1). Rearranging Equations and
11 summing over alleles, we get:

(Cy — Dy)E(SSP) — (Dy — D3)E(SSI)

Grm@= (Cr = Dy) (C: = GoJCy) (©)

12 and:

(Cy — DY) E(SSP) + (ne — 1) (Dy — Dg) E(SST) ;
(C1 = Do) (C1 — Co/Ch) ")

1-Qy=
s where n. = (Cy — Cy/Cy) / (Dy — D%). Let MSI = SSI/(Cy — D,) and
w MSP = SSP/ (DQ — D;) Then:

Q1 — Q2 E(MSP) —E(MSI)
1-Q, E(MSP)+ (n.—1)E(MSI)

s which yields the method-of-moments estimator:

foool _ __ MSP— MSI ©
ST MSP+ (n.— 1) MSI
us where
1 2
MSI = ——— Cuifin (1 — 7, 10
Cl—DQ;; ik (1= i) (10)

10
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147 and:
1 -
MSP=—— Chi (Fig — ) 11
Dy 0 20 2. e .

s (see Equations A25 and A26 in Supplemental File S1). In Equations
1 and ik = X;..k 18 the average frequency of reads of type k£ within the 7th
150 pool, and 7, = X...; is the average frequency of reads of type k in the full sam-
151 ple. Note that from the definition of X....p, 7, = >, Zj Yo Xijrk/ D Zj Cij =
2y, Ot/ >, Cri is the weighted average of the sample frequencies with

153 weights equal to the pool coverage. This is equivalent to the weighted

15« analysis-of-variance in|/Cockerham| (1973)) (see also|Weir and Cockerham)|1984;

155 | Weir [1996; Weir and Hill| 2002; Rousset|2007; |Weir and Goudet| 2017). Fi-

156 nally, the full expression of ﬁg)TOOl in terms of sample frequencies reads:

ool _ D [(C — Do) S04 Ci (7, — 713)° — (Do — D5) S0 Cuitig (1 — )]
S (G = Do) 0 Cui (g — 71)” + (e — 1) (Dy — D3) S g (1 — i) |
(12)

157 If we take the limit case where each gene is sequenced exactly once, we
158 recover the Ind-seq model: assuming ¢;; = 1 for all (z,7), then C; = " n,,
10 Co =Y ""n? Dy = ngand D = 1. Therefore, n. = (C; — C2/C4) / (ng — 1),
1w and Equation [9reduces exactly to the estimator of Fgr for haploids: see[Weir

s (1996)), p. 182, and [Rousset| (2007), p. 977.
162 As in Reynolds et al,| (1983), |Weir and Cockerham| (1984)), Weir| (1996))

163 and Rousset| (2007), a multilocus estimate is derived as the sum of locus

16 specific numerators over the sum of locus-specific denominators:

S, MSP, — MSI,

Fam =
TN MSP + (ne — 1) MSI,

(13)

11
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s where MSI and MSP are subscripted with [ to denote the [th locus. For
16s Ind-seq data, Bhatia et al. (2013) refer to this multilocus estimate as a “ratio
17 of averages” by opposition to an “average of ratios”, which would consist in av-
168 eraging single-locus Fgr over loci. This approach is justified in the Appendix
o of Weir and Cockerham| (1984) and in Bhatia et al. (2013)), who analyzed
o both estimates by means of coalescent simulations. Note that Equation
i assumes that the pool size is equal across loci. Also note that the construc-
122 tion of the estimator in Equation [I3]is different from Weir and Cockerham/s
s (1984). These authors defined their multilocus estimator as a ratio of sums
wra - of components of variance (a, b and ¢ in their notation) over loci, which give
s the same weight to all loci, whatever the number of sampled genes at each
s locus. Equation |13|follows GENEPOP’s rationale (Rousset|2008), which gives

177 instead more weight to loci that are more intensively covered.

12
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178 MATERIALS AND METHODS

7o Simulation study

1o Generating individual genotypes: we first generated individual genotypes us-
g1 ing ms (Hudson 2002), assuming an island model of population structure
2 (Wright |1931)). For each simulated scenario, we considered 8 demes, each
183 made of N = 5,000 haploid individuals. The migration rate (m) was fixed
15 to achieve the desired value of Fsr (0.05 or 0.2), using Equation 6 in Rousset
s (1996)) leading, e.g., to M = 2Nm = 16.569 for Fs = 0.05 and M = 3.489 for
s Fgr = 0.20. The mutation rate was set at u = 1079, giving § = 2Ny = 0.01.
1,7 We considered either fixed, or variable sample sizes across demes. In the lat-
188 ter case, the haploid sample size n was drawn independently for each deme
19 from a Gaussian distribution with mean 100 and standard deviation 30; this
1o number was rounded up to the nearest integer, with min. 20 and max. 300
101 haploids per deme. We generated a very large number of sequences for each
102 scenario, and sampled independent single nucleotide polymorphisms (SNPs)
13 from sequences with a single segregating site. Each scenario was replicated

s 50 times (500 times for Figures 3 and S2).

105 Pool sequencing: for each ms simulated dataset, we generated Pool-seq data
s by drawing reads from a binomial distribution (Gautier et al.2013]). More
17 precisely, we assume that for each SNP, the number ;. of reads of allelic
w8 type k in pool i follows:

i, ~ Bin (M, 5i> (14)

%

13
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10 where y;.; is the number of genes of type k in the ith pool, n; is the total
200 number of genes in pool ¢ (haploid pool size), and ¢; is the simulated total
20 coverage for pool 7. In the following, we either consider a fixed coverage,
202 with §; = A for all pools and loci, or a varying coverage across pools and

203 loci, with d; ~ Pois(A).

204 Sequencing error: we simulated sequencing errors occurring at rate p, =
205 0.001, which is typical of [llumina sequencers (Glenn|2011; Ross et al.[|2013).
206 We assumed that each sequencing error modifies the allelic type of a read to
207 one of three other possible states with equal probability (there are therefore
208 four allelic types in total, corresponding to four nucleotides). Note that
200 only biallelic markers are retained in the final datasets. Also note that,
210 since we initiated this procedure with polymorphic markers only, we neglect
an sequencing errors that would create spurious SNPs from monomorphic sites.
212 However, such SNPs should be rare in real datasets, since markers with a

213 low minimum read count (MRC) are generally filtered out.

au Fxperimental error: non-equimolar amounts of DNA from all individuals in
215 a pool and stochastic variation in the amplification efficiency of individual
26 DNAs are sources of experimental errors in pool sequencing. To simulate
27 experimental errors, we used the model derived by (Gautier et al|(2013]). In
2z this model, it is assumed that the contribution 7;; = ¢;;/Cy; of each gene j
210 to the total coverage of the ith pool (Cy;) follows a Dirichlet distribution:

{5}1<52 ~ Din (£) (15)

1

14
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20 where the parameter p controls the dispersion of gene contributions around
21 the value ;; = 1/n;, expected if all genes contributed equally to the pool of
22 reads. For convenience, we define the experimental error € as the coefficient

23 of variation of 15, i.e.: € = /V(n;;)/E(n;;) = /(n; — 1)/(p + 1) (see|Gautier

24 |et al.[2013). When € tends toward 0 (or equivalently when p tends to infinity),

»s  all individuals contribute equally to the pool, and there is no experimental
26 error. We tested the robustness of our estimates to values of € comprised
27 between 0.05 and 0.5. The case € = 0.5 could correspond, for example, to a
»s situation where (for n; = 10) 5 individuals contribute 2.8 x more reads than

29 the other 5 individuals.

20 Other estimators

2 For the sake of clarity, a summary of the notation of the Fgr estimators used

22 throughout this article is given in Table 2.

23 PP2y : this estimator of Fgr is implemented by default in the software
24 package POPOOLATION2 (Kofler et al.2011). It is based on a definition of
235 the parameter Fgr as the overall reduction in average heterozygosity relative
26 to the total combined population (see, e.g., Nei and Chesser||1983)):
Hy — Hg

PP2, = (16)

T

2 where Hyg is the average heterozygosity within subpopulations, and Hr is the
23 average heterozygosity in the total population (obtained by pooling together

20 all subpopulation to form a single virtual unit). In POPOOLATION2, Hy is

15
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20 the unweighted average of within-subpopulation heterozygosities:

i () () (“;ﬁf"“> o

21 (using the notation from Table 1). Note that in POPooLATION2, PP2, is
22 restricted to the case of two subpopulations only (nq = 2). The two ratios in
23 the right-hand side of Equation 17| are presumably borrowed from Nei (1978])
24 to provide an unbiased estimate, although we found no formal justification
25 for the expression in Equation [17] for Pool-seq data. The total heterozygosity

26 1s computed as (using the notation from Table 1):

in= () (i) (-3%) o

k

27 PP2, : this is the alternative estimator of Fgr provided in the software
2s package POPOOLATION2. It is based on an interpretation by Kofler et al.
20 (2011)) of Karlsson et al.[s (2007)) estimator of Fgr, as:

ppg, = D= (19)

1—@5

50 where @ﬁ and Qg are the frequencies of identical pairs of reads within and
251 between pools, respectively, computed by simple counting of 1IS pairs. These
22 are estimates of ()], the IIS probability for two reads in the same pool
253 (whether they are sequenced from the same gene or not) and @)%, the IIS
24 probability for two reads in different pools. Note that the IIS probabiliy ()}
s is different from @; in Equation [I, which, from our definition, represents
6 the IIS probability between distinct genes in the same pool. This approach

»s7  therefore confounds pairs of reads within pools that are identical because

16
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s they were sequenced from a single gene, from pairs of reads that are identical

0 because they were sequenced from distinct, yet IIS genes.

20 FRPp3 @ this estimator of Fgr was developed by |Ferretti et al.| (2013) (see
261 their Equations 3 and 10-13). Ferretti et al.| (2013)) use the same definition of
%2 Fgr as in Equation [16] above, although they estimate heterozygosities within
3 and between pools as “average pairwise nucleotide diversities”, which, from
»4  their definitions, are formally equivalent to IIS probabilities. In particular,

s they estimate the average heterozygosity within pools as (using the notation

26 from Table 1):

nd

e L5 (22 (- )

7 and the total heterozygosity among the nq populations as:

i [0(2) (-a)e (e e

i

xs Analyses of Ind-seq data:

20 For the comparison of Ind-seq and Pool-seq datasets, we computed Fgr on
20 subsamples of 5,000 loci. These subsamples were defined so that only those
o loci that were polymorphic in all coverage conditions were retained, and the
o2 same loci were used for the analysis of the corresponding Ind-seq data. For
23 the latter, we used either the Nei and Chessers (1983) estimator based on a
e ratio of heterozygosity (see Equationabove), hereafter denoted by NCgs, or
s the analysis-of-variance estimator developed by |Weir and Cockerham| (1984)),
s hereafter denoted by WCgy.

217 All the estimators were computed using custom functions in the R soft-
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s ware environment for statistical computing, version 3.3.1 (R Core Team
29 2017)). All these functions were carefully checked against available software

80 packages, to ensure that they provided strictly identical results.

1 Application example: Cottus asper

22 \Dennenmoser et al| (2017)) investigated the genomic basis of adaption to
23 osmotic conditions in the prickly sculpin (Cottus asper), an abundant eury-
2« haline fish in northwestern North America. To do so, they sequenced the
25 whole-genome of pools of individuals from two estuarine populations (CR,
25 Capilano River Estuary; FE, Fraser River Estuary) and two freshwater pop-
27 ulations (PI, Pitt Lake and HZ, Hatzic Lake) in southern British Columbia
23 (Canada). We downloaded the four corresponding BAM files from the Dryad
20 Digital Repository (doi: 10.5061/dryad.2qg01) and combined them into a sin-
20 gle mpileup file using SAMtools version 0.1.19 (Li et al.2009) with default
201 options, except the maximum depth per BAM that was set to 5,000 reads.
22 The resulting file was further processed using a custom awk script, to call
203 SNPs and compute read counts, after discarding bases with a Base Align-
200 ment Quality (BAQ) score lower than 25. A position was then considered
205 as a SNP if: (7) only two different nucleotides with a read count > 1 were
206 observed (nucleotides with < 1 read being considered as a sequencing error);
207 (41) the coverage was comprised between 10 and 300 in each of the four align-
203 ment files; (4i7) the minor allele frequency, as computed from read counts,
209 was > 0.01 in the four populations. The final data set consisted of 608,879
300 SNPs.

301 Our aim here was to compare the population structure inferred from pair-

32 wise estimates of Fgr, using the estimator Fsp%ml on the one hand, and PP24

18
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33 on the other hand. Then, to conclude on which of the two estimators per-
54 forms better, we compared the population structure inferred from Fé’%ml and
35 PP24 to that inferred from the Bayesian hierarchical model implemented in
ws the software package BAYPASS (Gautier|2015). BAYPASsS allows indeed the
307 robust estimation of the scaled covariance matrix of allele frequencies across
s populations for Pool-seq data, which is known to be informative about pop-
0 ulation history (Pickrell and Pritchard/2012). The elements of the estimated
;0 matrix can be interpreted as pairwise and population-specific estimates of
su  differentiation (Coop et al.[[2010), and therefore provide a comprehensive

sz description of population structure that makes full use of the available data.

sz Data availability

s The authors state that all data necessary for confirming the conclusions
a5 presented in this article are fully represented within the article, figures,
a6 and tables. Supplemental Tables S1-S3 and Figures S1-S4 are available at
a7 FigShare, along with a complete derivation of the model in the Supplemental

s File S1 at FigShare.
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319 RESULTS

» Comparing Ind-seq and Pool-seq estimates of Fgr

s1 Single-locus estimates FSI’%OI are highly correlated with the classical estimates
12 WCgy (Weir and Cockerham||1984)) computed on the individual data that were
23 used to generate the pools in our simulations (see Figure 1). The variance of
324 F§§°1 across independent replicates decreases as the coverage increases. The
»2s correlation between Fé)TOOI and WCgy is stronger for multilocus estimates (see

326 Figure S 1A) .

27 Comparing Pool-seq estimators of Fgr

2 We found that our estimator F5o” has extremely low bias (< 0.5% over
2o all scenarios tested: see Tables 3 and S1-S3). In other words, the average
;0 estimates across multiple loci and replicates closely equals the expected value
s of the Fgr parameter, as given by Equation 6 in Rousset| (1996)), which is
sz based on the computation of 1IS probabilities in an island model of population
;33 structure. In all the situations examined, the bias did neither depend on the
s sample size (i.e., the size of each pool) nor on the coverage (see Figure 2).
335 Only the variance of the estimator across independent replicates decreases as
13 the sample size increases and/or as the coverage increases. At high coverage,
s the mean and root mean squared error (RMSE) of F£2° over independent
138 replicates are virtually indistinguishable from that of the WCg, estimator
1 (see Table S1).

340 Figure 3 shows the RMSE of Fgr estimates for a wide range of pool sizes
s and coverage. The RMSE decreases as the pool size and/or the coverage

sz increases. The Fgr estimates are more precise and accurate when differen-

20
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s  tiation is low. Figure 3 provides some clues to evaluate the pool size and
ss  the coverage that is necessary to achieve the same RMSE than for Ind-seq
us data. Consider, for example, the case of samples of n = 20 haploids. For
15 Fgr < 0.05 (in the conditions of our simulations), the RMSE of Fgr estimates
w7 based on Pool-seq data tends to the RMSE of Fgr estimates based on Ind-seq
us data either by sequencing pools of ca. 200 haploids at 20X, or by sequencing
s9  pools of 20 haploids at ca. 200X. However, the same precision and accuracy
0 are achieved by sequencing ca. 50 haploids at ca. 50X.

351 Conversely, we found that PP24 (the default estimator of Fgr imple-
3> mented in the software package POPOOLATION2) is biased when compared
13 to the expected value of the parameter. We observed that the bias depends
3¢ on both the sample size, and the coverage (see Figure 2). We note that, as the
35 coverage and the sample size increase, PP24 converges to the estimator NCgs
16 (Nei and Chesser|[1983) computed from individual data (see Figure S1B).
37 This argument was used by |[Kofler et al. (2011) to validate the approach,
s even though the estimates PP2y depart from the true value of the parameter
30 (Figure S1B-C).

360 The second of the two estimators of Fgr implemented in POPOOLATION2,
;0 that we refer to as PP2,, is also biased (see Figure 2). We note that the bias
2 decreases as the sample size increases. However, the bias does not depend
33 on the coverage (only the variance over independent replicates does). The
3 estimator developed by Ferretti et al| (2013)), that we refer to as FRP3, is
s also biased (see Figure 2). However, the bias does neither depend on the pool
16 size, nor on the coverage (only the variance over independent replicates does).

37 FRPy3 converges to the estimator NCgs, computed from individual data (see

21
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ws  Figure 2). At high coverage, the mean and RMSE over independent replicates
0 are virtually indistinguishable from that of the NCg3 estimator.

370 Last, we stress out that our estimator F§§Ol provides estimates for multiple
sn populations, and is therefore not restricted to pairwise analyses, contrary to
sz POPOOLATION2’s estimators. We show that, even at low sample size and low
sz coverage, Pool-seq estimates of differentiation are virtually indistinguishable

s from classical estimates for Ind-seq data (see Table 3).

s Robustness to unbalanced pool sizes and variable sequencing cov-

376 erage

57 We evaluated the accuracy and the precision of the estimator F2o* when sam-
ws  ple sizes differ across pools, and when the coverage varies across pools and loci
wo  (see Figure 4). We found that, at low coverage, unequal sampling or variable
;0 coverage causes a negligible departure from the median of WCg, estimates
;1 computed on individual data, which vanishes as the coverage increases. At
sz 100X coverage, the distribution of Fg}”’l estimates is almost indistinguishable

s from that of WCgy (see Figure 4 and Tables S2-S3).

s« Robustness to sequencing and experimental errors

s Figure 5 shows that sequencing errors cause a negligible negative bias for
w F2 estimates. Filtering (using a minimum read count of 4) improves es-
37 timation slightly, but only at high coverage (Figure 6B). It must be noted,
;s though, that filtering increases the bias in the absence of sequencing error,
1 especially at low coverage (Figure 6A). With experimental error, i.e., when
30 individuals do not contribute evenly to the final set of reads, we observed a

1 positive bias for FE2% estimates (Figure 5). We note that the bias decreases
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32 as the size of the pools increases. Figure S2 shows the RMSE of Fgr esti-
33 mates for a wider range of pool sizes, coverage and experimental error rate.
sa  For e > 0.25, increasing the coverage cannot improve the quality of the in-
305 ference, if the pool size is too small. When Pool-seq experiments are prone
w6 to large experimental error rates, increasing the size of pools is the only way
37 to improve the estimation of Fgr. Filtering (using a minimum read count of

s 4) does not improve estimation (Figure 6C).

;9  Application example

w0 The reanalysis of the prickly sculpin data revealed larger pairwise estimates of

w multilocus Fyp using PP24 estimator, as compared to FE2 (see Figure 7A).

w2 Furthermore, we found that FgTOOI estimates are smaller for within-ecotype
w03 pairwise comparisons as compared to between-ecotype comparisons. There-
ws fore, the inferred relationships between samples based on pairwise FS%)O] esti-
ws  Mates show a clear-cut structure, separating the two estuarine samples from
ws the freshwater ones (see Figure 7C). We did not recover the same structure
wr using PP24 estimates (see Figure 7B). Supportingly, the scaled covariance

w8 matrix of allele frequencies across samples is consistent with the structure

ws inferred from FE2% estimates (see Figure 7D).
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410 DISCUSSION

a1 Whole-genome sequencing of pools of individuals is being increasingly pop-
a2 ular for population genomic research on both model and non-model species
a3 (Schlotterer et al.[2014)). The development of dedicated software packages (re-
na  viewed in |Schlotterer et al.2014)) has undoubtedly something to do with the
a5 breadth of research questions that have been tackled using pool-sequencing.
a6 Yet, the analysis of population structure from Pool-seq data is complicated
a7 by the double sampling process of genes from the pool and sequence reads
ne  from those genes (Ferretti et al.|[2013)).

419 The naive approach that consists in computing Fgr from read counts, as
w0 if they were allele counts (e.g., as in |Chen et al.|2016)), ignores the extra
w21 variance brought by the random sampling of reads from the gene pool dur-
22 ing Pool-seq experiments. Furthermore, such computation fails to consider
23 the actual number of lineages in the pool (haploid pool size). Altogether,
22 these limits may result in severely biased estimates of differentiation when
25 the pool size is low (see Figure S3). A possible alternative is to compute Fgr
w6 from allele counts imputed from read counts using a maximum-likelihood
w7 approach conditional on the haploid size of the pools (e.g., as in Smadja
w8 |et al.|2012; Leblois et al.|2018)), or from allele frequencies estimated using a
29 model-based method that accounts for the sampling effects and the sequenc-
a0 ing error probabilities inherent to pooled NGS experiments (see |Fariello et al.
a [2017). However, these latter approaches may only be accurate in situations
132 where the coverage is much larger than pool size, allowing to reduce sampling
s variance of reads (see Figure S3).

434 Here, we therefore developed a new estimator of the parameter Fgr for
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a5 Pool-seq data, in an analysis-of-variance framework (Cockerham|[1969} 1973).

ss The accuracy of this estimator is barely distinguishable from that of the

s |Weir and Cockerham(s (1984)) estimator for individual data. Furthermore,

a8 does neither depend on the pool size nor on the coverage, and is robust
130 to unequal pool sizes and varying coverage across demes and loci. In our
wmo analysis the frequency of reads within pools is a weighted average of the

w1 sample frequencies with weights equal to the pool coverage. Therefore, our

a2 approach follows |Cockerham’s (1973 one, which he referred to as a weighted

w3 analysis-of-variance (see alsoWeir and Cockerham||[1984; [Weir||1996; Weir and)

s [Hill 2002 Weir and Goudet|2017).

a5 With unequal pool sizes, weighted and unweighted analyses differ. As dis-

s cussed recently in [Weir and Goudet| (2017)), the unweighted approach seems

a7 appropriate when the between component exceed the within component, i.e.

us when Fgr is large (Tukey|1957). It turns out that optimal weighting depends

19 upon the parameter to be estimated (Cockerham|/1973)) and is only efficient

0 at lower levels of differentiation (Robertson|[1962)). In a likelihood analysis

i1 of the island model, Rousset, (2007) derived asymptotically efficient weights

s that are proportional to n? for the sum of squares of different samples (i.e.,

w53 as in Robertson|[1962)). To the best of our knowledge, such optimal weighting

ss4 has never been considered in the literature. Nevertheless, if these arguments

s5  are true for estimators of variance components, they do not necessarily apply

w6 to estimates of intra-class correlations (Cockerham|[1973).

7 Analysis of variance and probabilities of identity

s In the analysis-of-variance framework, Fgr is defined in Equation (1| as an

wo  intraclass correlation for the probability of identity in state (Cockerham and|

I 25 |



https://doi.org/10.1101/282400
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/282400; this version posted July 12, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

w0 |Weir| 1987, [Rousset| [1996). Extensive statistical literature is available on

w1 estimators of intraclass correlations. Beside analysis-of-variance estimators,

w2 introduced in population genetics by Cockerham (1969, |1973)), estimators

w3 based on the computation of probabilities of identical response within and

s between groups have been proposed (see, e.g., Fleiss||[1971; Fleiss and Cuzick|

s |1979; Mak 1988 Ridout et al.[[1999; [Wu et al.|[2012), which were originally

ws referred to as kappa-type statistics (Fleiss|1971; Landis and Koch||1977).

w7 These estimators have later been endorsed in population genetics, where the

s “probability of identical response” was then interpreted as the frequency with

w0 which the genes are alike (Cockerham|[1973; Cockerham and Weir||[1987; |Weir|

a0 [1996; Rousset [2007; Weir and Goudet|2017)).

an This suggests that, with Pool-seq data, another strategy could consist in
w2 computing Fsr from IIS probabilities between (unobserved) pairs of genes,
a3 which requires that unbiased estimates of such quantities are derived from
s read count data. We have done so in the second section of the Supplemental
w5 File S1, and we provide alternative estimators of Fsr for Pool-seq data (see
s Equations A44 and A48 in Supplemental File S1). These estimators (denoted
ar by FEOPP and FROOPIP) have exactly the same form as the analysis-of-
ws variance estimator if the pools have all the same size and if the number of

w9 reads per pool is constant (Equation [A33)). This echoes the derivations by

a0 [Rousset| (2007) for Ind-seq data, who showed that the analysis-of-variance ap-

w1 proach (Weir and Cockerham|1984)) and the simple strategy of estimating IIS

s probabilities by counting identical pairs of genes provide identical estimates

w3 when sample sizes are equal (see Equation A28 and also (Cockerham and|

s |Weir| |1987; [Weir| 1996; Karlsson et al.2007). With unbalanced samples, we

4

o
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s found that analysis-of-variance estimates have better precision and accuracy
s6 than IIS-based estimates, particularly for low levels of differentiation (see
s Figure S4). Interestingly, we found that [IS-based estimates of Fsr for Pool-
s seq data have generally lower bias and variance if the overall estimates of I1S
s0  probabilities within and between pools are computed as unweighted averages
w0 of population-specific or pairwise estimates (see Equations A39 and A43), as
w1 compared to weighted averages. Equation A28 further shows that our esti-
w2 mator may be rewritten as a function close to (Ql — Q2> / (1 — QQ), except
w3 that it also depends on the sums ), <Qh — Q1> in both the numerator and
s the denominator. This suggests that if the ();’s differ among subpopulations,
w5 then our estimator provides an estimate of an average of population-specific
w5 Fgp (Weir and Hill [2002; Weir and Goudet|[2017)).

407 It follows from the derivations in the Supplemental File S1 that the es-
ws timator PP2, (Equation is biased, because the IIS probability between
a9 pairs of reads within a pool (Qﬁ) is a biased estimator of the IIS probability
s0 between pairs of distinct genes in that pool (see Equation A34 in Supplemen-
so0 tal File S1). This is so, because the former confounds pairs of reads that are
sz identical because they were sequenced from a single gene copy, from pairs of
s03 reads that are identical because they were sequenced from distinct, yet 1IS
s04  gEnes.

505 A more justified estimator of Fst has been proposed by [Ferretti et al.
s (2013), based on previous developments by |[Futschik and Schlotterer| (2010).
so7v  Note that, although they defined Fgr as a ratio of functions of heterozygosi-
sos ties, they actually worked with IIS probabilities (see Equations [20] and .

so0  However, although their Equation [20]is strictly identical to our Equation A34
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si0  in Supplemental File S1, we note that they computed the total heterozygosity
su by integrating over pairs of genes sampled both within and between popula-

sz tions (see Equation [21]), which may explain the observed bias (see Figure 2).

53 Comparison with alternative estimators

siu An alternative framework to Weir and Cockerham's (1984) analysis-of-variance
si5 has been developed by Masatoshi Nei and coworkers to estimate Fgr from
si6 gene diversities (Nei|1973] [1977; Nei and Chesser||1983; [Nei [1986). The es-
sz timator PP24 (see Equations implemented in the software package
sis  POPOOLATION2 (Kofler et al.[2011) follows this logic. However, it has long
s19  been recognized that both frameworks are fundamentally different in that the
s20 analysis-of-variance approach considers both statistical and genetic (or evo-
s lutionary) sampling, whereas Nei and coworkers’ approach do not (Weir and
s22  |Cockerham| 1984; |Excoftier 2007; Holsinger and Weir 2009). Furthermore,
s23 the expectation of Nei and coworkers’ estimators depend upon the number
s24  of sampled populations, with a larger bias for lower numbers of sampled pop-
s ulations (Goudet||1993; Excoffier 2007; Weir and Goudet|2017). This is so,
526 because the computation of the total diversity in Equations[I§land 2I]includes
s27 the comparison of pairs of genes from the same subpopulation, whereas the
s computation of IIS probabilities between subpopulations do not (see, e.g.,
s20 |Excoffier|2007)). Therefore, we do not recommend using the estimator PP24

s implemented in the software package POPOOLATION2 (Kofler et al.|2011]).

s Applications in evolutionary ecology studies

522 Pool-seq is being increasingly used in many application domains (Schlotterer

s13 et al|[2014)), such as conservation genetics (see, e.g., Fuentes-Pardo 2017)),
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su invasion biology (see, e.g., Dexter et al.||2018]) and evolutionary biology in a
s33 broader sense (see, e.g., Collet et al.|[2016). These studies use a large range of
s3 methods, which aim at characterizing fine-scaled population structure (see,
s e.g., Fischer et al.2017), reconstructing past demography (see, e.g., Chen
s (et al.[2016; |Leblois et al.[2018), or identifying footprints of natural or artificial
s selection (see, e.g., Chen et al. 2016} Fariello et al.|2017; |Leblois et al.|2018)).
540 Here, we reanalyzed the Pool-seq data produced by Dennenmoser et al.
sar (2017)), who investigated the adaptive genomic divergence between freshwa-
s22 ter and brackish-water ecotypes of the prickly sculpin C. asper, an abundant
se3 euryhaline fish in northwestern North America. Measuring pairwise genetic
s«e  differentiation between samples using FSPTOOI, we found a clear-cut structure
sss  separating the freshwater from the brackish-water ecotypes. Such genetic
sa6  strucure supports the hypothesis that populations are locally adaptated to
sa7 - osmotic conditions in these two contrasted habitats, as discussed in Den-
ses menmoser et al. (2017). This structure, which is at odds with that inferred
sa9  from PP24 estimates, is not only supported by the scaled covariance ma-
sso  trix of allele frequencies, but also by previous microsatellite-based studies,
ss1. who showed that populations were genetically more differentiated between

s2 ecotypes than within ecotypes (Dennenmoser et al. 2014, [2015)).

553 Limits of the model and perspectives

sss=. We have shown that the stronger source of bias for the FSP}’OI estimate is un-
55 equal contributions of individuals in pools. This is so, because we assume in
s our model that the read counts are multinomially distributed, which supposes
ss7 that all genes contribute equally to the pool of reads (Gautier et al.2013),

sss 1.e. that there is no variation in DNA yield across individuals and that all

29


https://doi.org/10.1101/282400
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/282400; this version posted July 12, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

50 genes have equal sequencing coverage (Rode et al.|2018)). Because the effect
ss0 of unequal contribution is expected to be stronger with small pool sizes, it
ss1  has been recommended to use pool-seq with at least 50 diploid individuals
sz per pool (Lynch et al.|2014} |Schlotterer et al.|2014). However, this limit may
ss3  be overly conservative for allele frequency estimates (Rode et al.2018), and
ss« ' we have shown here that we can achieve very good precision and accuracy
ses  Of Fgr estimates with smaller pool sizes. Furthermore, because genotypic in-
sss formation is lost during Pool-seq experiments, we assume in our derivations
se7 that pools are haploid (and therefore that Fig is nil). Analyzing non-random
ses mating populations (e.g., in selfing species) is therefore problematic.

569 Finally, our model, as in |Weir and Cockerham| (1984), formally assumes
s7  that all populations provide independent replicates of some evolutionary pro-
sn cess (Excoffier| 2007, Holsinger and Weir|[2009). This may be unrealistic in
s»  many natural populations, which motivated Weir and Hill (2002) to derive a
s3  population-specific estimator of Fgr for Ind-seq data (see also |Vitalis et al.
sz 2001)). Even though the use of Weir and Hillls (2002) estimator is still scarce
5 in the literature (but see Weir et al.| 2005} |Vitalis|[2012)), |Weir and Goudet
s.5 (2017)) recently proposed a re-interpretation of population-specific estimates
s77 - of Fgp in terms of allelic matching proportions, which are strictly equivalent
s.s to IIS probabilities between pairs of genes. It would therefore be straight-
so forward to extend [Weir and Goudet's (2017) estimator of population-specific
ss0  Fgr for the analysis of Pool-seq data, using the unbiased estimates of 1IS

ss1  probabilies provided in the Supplemental File S1.
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DATA ACCESSIBILITY

A R package, called poolfstat, which impletements Fsr estimates for Pool-
seq data, is available at the Comprehensive R Archive Network (CRAN):

https://cran.r-project.org/web/packages/poolfstat/index.html.
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Table 1 Summary of main notations

Notation

Parameter definition

Xijr:k

Tik = D D p Xigrik

Cij

Cu =3¢
Cir=3,Cu
C =32, CF
n;

Yi:k

Tk = E(Xijrk)
Tijk = Xijok
ik = Xk
e = X

@1 (resp. Q2)
Q1 (resp. @3)

Q}fool (resp ) ngol)

Indicator variable: Xjj,., = 1 if the rth read from
the jth individual in the ith pool is of type k, and
Xijrk = 0 otherwise

Number of reads of type k in the 7th pool

Number of reads sequenced from individual j in sub-
population i (unobserved individual coverage)

Total number of reads in the ith pool (pool coverage)

Total number of reads in the full sample (total cov-
erage)

Squared number of reads in the full sample

Total number of genes the ith pool (haploid pool
size)

(Unobserved) number of genes of type k in the ith
pool

Expected frequency of reads of type k in the full
sample

(Unobserved) average frequency of reads of type k
for individual j in the ¢th pool

Average frequency of reads of type k in the 7th pool

Average frequency of reads of type k in the full sam-
ple

IIS probability for two genes sampled within (resp.
between) pools

IIS probability for two reads sampled within (resp.
between) pools

Unbiased estimator of the IIS probability for genes
sampled within (resp. between) populations
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Table 2 Definition of the Fyr estimators used in the text

Notation Definition

ool Equation |§|

FRP3 Ferretti et al. (2013|) and Equations
NCgs Nei and Chesser| (1983

PP2, Kofler et al|(2011) and Equations
PP2, Kofler et al.| (2011)) and Equation

WCsgy Weir and Cockerham) (1984
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Table 3 Overall Fst estimates from multiple pools

Pool-seq Ind-seq
Fyr n Cov. F§T°°1 WCgy
0.05 10 20 0.050 (0.002)
0.05 10 50x 0.051 (0.002) 0.050 (0.002)
0.05 10 100x 0.050 (0.002)
0.05 100 20x 0.050 (0.001)
0.05 100 50 0.050 (0.001) 0.051 (0.001)
0.05 100 100x 0.050 (0.001)
0.20 10 20x 0.200 (0.002)
0.20 10 50 0.201 (0.002) 0.201 (0.002)
0.20 10 100 0.201 (0.002)
0.20 100 20 0.201 (0.003)
0.20 100 50 0.202 (0.003) 0.203 (0.003)
0.20 100 100x 0.203 (0.003)

Overall Fsp was estimated for various conditions of expected Fgr, pool size
(n) and coverage (Cov.). For Pool-seq data, we computed our estimator Fo
(Equation [13). The mean (RMSE) over 50 independent replicates of the ms
simulations are provided, for all populations (nq = 8). For comparison, we
computed WCg, from allele count data inferred from individual genotypes
(Ind-seq).
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Figure 1 Single-locus estimates of Fgr. We compared single-locus esti-
mates of Fgr based on allele count data inferred from individual genotypes
(Ind-seq), using the WCg4 estimator, to Ag’TOOI estimates from Pool-seq data.
We simulated 5,000 SNPs using ms in an island model with nq = 8 demes.
We used two migration rates corresponding to Fgr = 0.05 (A) and Fsr = 0.20
(B). The size of each pool was fixed to 100. We show the results for differ-
ent coverages (20X, 50X and 100X). In each graph, the cross indicates the

simulated value of Fgr.
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Figure 2 Precision and accuracy of pairwise estimators of Fgp. We con-
sidered two estimators based on allele count data inferred from individual
genotypes (Ind-seq): WCgy and NCgz. For pooled data, we computed the
two estimators implemented in the software package POPOOLATIONZ2, that
we refer to as PP24 and PP2,, as well as the FRP3 estimator and our es-
timator Asp}“ﬂ (Equation . Each boxplot represents the distribution of
multilocus Fsr estimates across all pairwise comparisons in an island model
with ng = 8 demes, and across 50 independent replicates of the ms simu-
lations. We used two migration rates, corresponding to Fsr = 0.05 (A-B)
or Fgr = 0.20 (C-D). The size of each pool was either fixed to 10 (A and
C) or to 100 (B and D). For Pool-seq data, we show the results for different
coverages (20X, 50X and 100X). In each graph, the dashed line indicates
the simulated value of Fyp and the dotted line indicates the median of the
distribution of NCgsz estimates.
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Figure 3 Root mean squared error (RMSE) of Fgr estimates for a wide
range of pool sizes and coverage, with Fgp varying from 0.005 to 0.2 (A—
F). Each density plot gives the RMSE of our estimator Fé’%‘)l, using simple
linear interpolation from a set of 44 x 44 pairs of pool size and coverage
values. For each pool size and coverage, 500 replicates of 5,000 markers were
simulated. Plain white isolines represent the RMSE of the WCg, estimator
computed from Ind-seq data, for various sample sizes (n = 5, 10, 20, and 50).
Each isoline was fitted using a thin plate spline regression with smoothing
parameter A = 0.005, implemented in the fields package for R

et atj2017).
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Figure 4 Precision and accuracy of Fgr estimates with varying pool size
or varying coverage. Our estimator ASPTOOI (Equation was calculated from
Pool-seq data over all loci and demes and compared to the estimator WCsy,
computed from allele count data inferred from individual genotypes (Ind-seq).
Each boxplot represents the distribution of multilocus Fsr estimates across
50 independent replicates of the ms simulations. We used two migration
rates, corresponding to Fgr = 0.05 (A and C) or Fgr = 0.20 (B and D).
In A-B the pool size was variable across demes, with haploid sample size n
drawn independently for each deme from a Gaussian distribution with mean
100 and standard deviation 30; n was rounded up to the nearest integer,
with min. 20 and max. 300 haploids per deme. In C-D, the pool size was
fixed (n = 100), and the coverage (;) was varying across demes and loci,
with ¢; ~ Pois(A) where A € {20,50,100}. For Pool-seq data, we show
the results for different coverages (20X, 50X and 100X). In each graph, the
dashed line indicates the simulated value of Fgr and the dotted line indicates
the median of the distribution of WCsg, estimates.
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Figure 5 Precision and accuracy of Fgr estimates with sequencing and
experimental errors. Our estimator ASPTOOI (Equation was computed from
Pool-seq data over all loci and demes without error, with sequencing error
(occurring at rate p, = 0.001), and with experimental error (e = 0.5). Each
boxplot represents the distribution of multilocus Fgr estimates across 50
independent replicates of the ms simulations. We used two migration rates,
corresponding to Fgr = 0.05 (A-B) or Fsr = 0.20 (C-D). The size of each
pool was either fixed to 10 (A and C) or to 100 (B and D). For Pool-seq
data, we show the results for different coverages (20X, 50X and 100X). In
each graph, the dashed line indicates the simulated value of Fgr.
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Figure 6 Precision and accuracy of Fsr estimates with and without filter-
ing. Our estimator Aé’}wl (Equation was computed from Pool-seq data
over all loci and demes without error (A), with sequencing error (B) and with
experimental error (C) (see the legend of Figure 5 for further details). For
each case, we computed Fgsr without filtering (no MRC) and with filtering
(using a minimum read count MRC = 4). Each boxplot represents the dis-
tribution of multilocus Fst estimates across 50 independent replicates of the
ms simulations. We used a migration rate corresponding to Fgr = 0.20, and
pool size n = 10. We show the results for different coverages (20X, 50X and
100X). In each graph, the dashed line indicates the simulated value of Fgr.
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Figure 7 Analysis of the prickly sculpin (Cottus asper) Pool-seq data. In
(A) we compare the pairwise Fyp estimates PP24, and F22*' (Equation
for all pairs of populations from the estuarine (CR and FE) and freshwa-
ter samples (PI and HZ). Within-ecotype comparisons are depicted as blue
dots, and between-ecotype comparisons as red triangles. In (B-C) we show
a UPGMA hierarchical cluster analyses based on PP24 (B) and F22* (C)
pairwise estimates. In (D), we show a heatmap representation of the scaled
covariance matrix among the four C. asper populations, inferred from the
Bayesian hierarchical model implemented in the software package BAYPASS.
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si  SUPPLEMENTAL FILE S1: DETAILED MATHEMATICAL DERIVATIONS

sz Analysis of variance for Pool-seq data

sz In the following, we first derive our model for a single locus. Consider a
s sample of nq subpopulations, each of which is made of n; genes (i = 1,...,nq)
a5 sequenced in pools (hence n; is the haploid sample size of the ith pool). We
sis  define ¢;; as the number of reads sequenced from gene j (j = 1,...,n;) in
sir subpopulation ¢ at the locus considered. Note that c;; is a latent variable,
sis that cannot be directly observed from the data. Let Xjj;,., be an indicator
g0 variable for read r (r =1,...,¢;) from gene j in subpopulation 4, such that
220 X;jr = 1 if the rth read from the jth gene in the ith deme is of type £,
g1 and X;j, = 0 otherwise. In the following, we use standard dot notations
s2 for sample averages, i.e.. Xijup = Y Xijr/Cijy Xivk = Zj Yo Xijrk/ Zj Cij
g3 and X, =), Zj o Xir 2 Zj c¢ij. The analysis of variance is based

g2« on the computation of sums of squares, as follows:

ZZZ igrik T Ik)Q = ZZZ igr:k T z]:k)2
+ ZZZZ ’Lj kT z k>2
+Ziizr Xy
= SSR;k+SS]:k+SSRk (A1)
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g5 We express the sum of squares for reads within individuals as:

Uz Cij

SSRk = ZZZ ijr:k zg k)2

— 0 (A2)

26 Since we assume that there is no sequencing error, i.e. all the reads sequenced
sz from a single gene are identical (therefore X;j,.,x = Xjj;.x, for all r). The sum

28 Of squares for genes within pools reads:

SS]k = Zi:z zgk i--:k)2
_ Ziz Xijok — 1)’ ZEZ Xip = )

= Z ZZ Cij (Xz]k - 7Tk)2 - Z Ch' (sz — 7Tk)2 (Ag)

g0 where 7 is the expectation of the frequency of allele k over independent
s20 replicates of the evolutionary process, and C; = Zj c;j is the total number
s of observed reads in the ¢th pool. Likewise, the sum of squares for genes

822 between pools reads:

SSPy = Ziz Xk = Xoon)?
nd
= Z Cli (sz — 7Tk)2 — Ol (Xk — 7Tk)2 (A4)

8!

@

s where Cp =), Zj ¢;j is the total number of observed reads in the full sample.
ssa  These sums can be expressed as functions of the average frequency of reads

s of type k for individual j: 75, = Xjj.k, of the average frequency of reads of

@

33
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g6 type k within the ith pool: 7, = X;..x, and of the average frequency of reads
sz7  of type k in the full sample: 7, = X..x. Note that from the definition of
838 iy TR = ) Z o Xijrk/ D Z cij = > Cuimtin/ Y, Chi is the weighted
39 average of the sample frequencies with weights equal to the pool coverage.
sa0  Our approach is therefore equivalent to the weighted analysis-of-variance in
s (Cockerham (1973) (see also |Weir and Cockerham| 1984} \Weir||1996} |Weir and
s> |Hill2002; |[Rousset|2007; Weir and Goudet|2017). Then, developing the square
g3 in the first term in the right-hand side of Equation [A3] we get:

(Koo — ) = (Zi” (Xijrk — Wk))2

Cz’j

1 (& i
= 2 ( E Xijrik — Cijﬂ'k>
s

1 Cij Cij
- 6_2 (ZXJT‘ g T Z Xzyr sz]r’ k 20 X” LTk + Cz]ﬂ-k>
r#r!

= 2 (Cz]Xij-:k + Cij(cij o 1)XUk
- QC?sz’j-;ka + C?ﬂ/ﬁ)

= ﬁij:k — 27Tk7i'ij;k + 77% (A5)

saa The sums of squares also depend on the unobserved frequency of pairs of
g5 genes sampled in the ¢th pool that are both of type k, i.e. the probability

sss Of identity in state (IIS) for allele k, for two distinct genes in the ith pool:
847 le‘:k = (Zj#, Zm, Xijr:k’Xij’r’:k:> / (012Z — Zj c?j>. Then, developing the

o4
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s square in the second term in the right-hand side of Equation [A3] we get:

(sz — 7rk)2 — (Z Z Z v ( 1z]rk k))

C:

= Ch (i: Z Xz]r k — Clz”k)
= (Z Z ijrik + Z Z Xz]r k‘X’LjT/ :k

Jor#r

+ Z ZXUT chzy rlik — QCMXZ kTE + Clzﬂ-k>

J#j

1 ng [
T 02 (Z e Xigek + Y cigley — D)X
K3 ] ]
+ <C12z - Z C?j) le’:k — 20} Xihmi + Ci»ﬂ'i)

J
= Cl <Z Cz] U k — sz) + (Ci - ZZ: C?j) <Q1i:k — sz)
i - -

+ C%Zsz QChXZ LT T+ Clﬂﬁc)

g 2

= Fuk — 2MpRik + 7p + E C (Tijik — k)

+ (1 - Z Ci) (Qli:k - ﬁzk> (A6)

sao  Last, the sums of squares depend on the unobserved frequency of pairs
sso of genes sampled in the same pool that are both of type k, i.e. the IIS
ss1  probability for allele k& for two distinct genes in the same pool: lek =
852 (ZZ D it Dt Xijr:kXij/r/:k>/ (Cg — 22 c%), and of the unobserved
3 frequency of pairs of genes sampled in different pools that are both of type

okt Qo = (Z#i’ 2 2ot Xz’jr:sz"j'r':k> / (C} = Cy), where Cy = 37, CF,.

8!

o
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sss Developing the second term in the right-hand side of Equation [Ad] we get:

(Xes—m)* = <z T X w)

C

= Ci (ZZZ:ZXQTIC Clﬂ-k>
1 n; Cij n; Cij
= C_ (ZZZ zgrk_'_ZZZX’JTkX”T/k

=N

2
1 i j r#Er!
N4 Cij Ny Cij
+ E g E Xz]r sz/] ik T E E E X@]r kX'L 'i'r!k
i gFEg ! £ g9 !

— QC%Xkﬂ'k + Cfﬂ'i)
1 ng ng ng n;
= 0—12 (Z Z Cz‘inj~:k + Z Z Cz'j<C7;j - l)XZJk
7 7 7 i
ng n;
+ (CQ - Z ZC?J) Qui + (C7 = C3) Qo — 2CT Xy + Cfm%)
2

(S o5 e

-+ (012 — 02) (Qg;k - Xk> + C%Xk - 2012Xk7Tk + C%ﬂ'g)

nq ng 2

= ﬂ-k_Qﬂkﬂk—‘_ﬂ_k—{—ZZCQ ’n—mk’ k’)

N

sss  Hence, developing the first term in the right-hand side of Equation using
&7 Equation we have:

ng  ng
Z Z Cij (ka — 7Tk)2 = Cl (ﬁ'k — 27T]<;7AT]<; + WZ) (A8)
(A

56
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sss  Likewise, developing the second term in the right-hand side of Equation [A3]
ss0  using Equation [AG], we get:

ng ny 2

ng
ZCM (Xik _7Tk)2 = (ﬁk —QWkﬁk+W;%) +ZZ%(7ATM — k)
i i ¢

na mo2

i J
o Last, developing the second term in the right-hand side of Equation [A4] using

7

g1 Equation [A7] we get:
ma m 2
Cl (Xk — 7Tk)2 = Cl (ﬁ'k — 27Tk7ATk -+ W,%) -+ ZZ % (ﬁij:k — ﬁ'k)
i g 1
Cy e szj A .
+ (a —Z;a (Qm —Wk)
v (=& (Q —fr) (A10)
1T 2k k

s Then, from Equations [A3] [A§ and [A9}
na 2
SSLi = 3> G- (R = Figa)
W we A
+ ZZ: (Cu - ZJ: CZ) (ﬁzk - Qli:k) (A11)

g3 and from Equations [A4] [A9 and [AT0}

nq 2
Cij

na o2 n i
SSPr = > ) % (Fijor — Fin) — ) (Cu -3 Cl~> <7Tzk - le‘:k)
i ] K3 j K3

i

nq Uz C/LQ R R C ng ng C? X )
+ B3 F e nn+ (G530 E (n-aw)

+ ((11 - %) (ﬂk - Qz;k) (A12)

o7
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ss Taking expectation over all possible samples from all replicate populations

ss sharing the same evolutionary history, we get from Equation [ATI}

2

E(SSI;) = ZX:E (i — szk>E<éh>
+ ;E (ﬁ'zk - Qli:k) (C“ Z Cu)
= (mp — Q1x) (Cl (Z Z Cy; >> (A19)

sss  where (1., is the expected IIS probability that two genes in the same pool
ser are both of type k. Likewise, from Equation

ng N 2
E(SSPy) = ZZE ik — Wl]k)E<él)‘FZZE(ﬁk—ﬁijzk)E(%]l)
g2
— ZE(Wzk_lek> (Clz z]:gf)
. R C: Cij
+ E(?Tk—QLk)E(é_Z:Zé)

+ (01 — %) E (ﬁk — QM)

— (M — Qux) <C1 —E <iz gf))

+ (01 - %) (T — Qo) (A14)

g8 where (Do, is the expected IIS probability that two genes from different pools
o are both of type k. Note that the expected sums E <z >.ic w) /Ch; and

g0 I <ZZ > c%) /C7 in Equations |A13| and [A14] depend on the latent variable

a8
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s C;j, that cannot be directly observed from the data. Therefore, we must make
sz an assumption on the distribution of the ¢;;’s to proceed. In the following,
s we assume that for each pool 4, ¢;; follows a multinomial distribution with
e parameter Cp; (the number of trials, i.e. the total number of reads in the

ers ith pool) and probabilities (1/n;, ..., 1/n;) for the n; individuals in the pool.

se ' 1Then:
ng N C?j ng 1 n; )
Pll2a ) - L 2B
ng n;
_ ZC}IZ (E(CH)HV(%))
i j
d 1 & Clz 2 Cli nz—l
- ZZ:CMZJ:<<M) +ni< n; >>
_ i O{Z+<”inf1>)502 (A15)
g7 and:
ng N C?j 1 ng N )
E Z;a = a;;ﬂ“:(%)

1 Cl’i n; — 1
- — Cy | — = D3 Al6
Clz 1{”4-( n; )} ’ (A1)
s Hence, from Equations [AT3] and we have:

E(SSLy) = (Ci— D) (mp — Quk) (A17)
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o and from Equations [AT4] and [AT6}

E(SSP;) = (% - D§> (7 — Quk) — (C1 — D2) (7 — Qu.1)
+ (Cl—%> (e — Q2u)
- (CI_%> (Qur — Q2x)
+ (D2 = D3) (mk — Quur) (A18)

sso summing over alleles, we get the following expressions for the expected sums

ss1  of squares for genes between individuals within pools:
E(SSI) = Y E(SSIy) = (Ci— Do) (1- Q1) (A19)
k
22 and for genes between individuals from different pools:

E(SSP) = > E(SSPy)

_ <01 _ %) @ - Q)+ (Dy-D)(1-Q)  (A20)

ss  Rearranging Equations [ATIHA20] we get:

(C1 — Dy)E(SSP) — (Dy — D3)E(SSI)

Q— Q2= (Cy — Dy) (Cy — Cy/CY)

(A21)

884 and:

(Cy = Dy) B(SSP) + (ne — 1) (D, — D3) E(SST)
(C1 — Dy) (Cy — Cy/CY)

1—Qy = (A22)
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sss where n, = (C; — Cy/Cy) / (Dy — D3). Let MSI = SSI/(Cy — D3) and
sss MSP = SSP/(Dy— Dj). Then, rearranging Equations A22, we get:

7 Q1 —0Qr E(MSP) —E(MSI) (A23)
ST="7"0, ~ E(MSP) + (n. — 1) E(MSI)
ss7 which yields the method-of-moments estimator:
MSP — MSI
R0t = S S (A24)

MSP + (n,— 1) MSI

e Since SST (Equation[A3) and SSP (Equation may be rewritten in terms

sso  Of sample frequencies as:

n; Cij

SSI = ZSSIk_ZZZZ ok — Xivaw)”
=y Z Chifrin (1 — 7ip) (A25)

soo  and:

n; Cij

SSP = Zsspk = ZZZZ i — Xor)”
=y Z Cy (ftig, — 7x)° (A26)
ki
g1 our estimator then takes the form:

Fpool _ S [(Cr = Do) 320 Chy (Frie — 71)” — (D2 — D3) 320 Crityw (1 — Frir) |
St S [(Cr = Do) 3504 Oy (Frag, — 71)° + (e — 1) (Do — D) 304 Cuittig (1 — Fri)]
(A27)

802 The estimator in Equation can also be expressed as a function of the
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g3 frequencies of identical pairs of genes Ql =>, Qm and Qz => Qg:k, as:

(@@ o+ (cr-5, )8
(1—Q2>Oé+(02/01 ZZJ&)

Foedt = (A28)

g4 Where:

<01 ZZ Ch> (01 - %) (A29)

gos and:

g = Z (Cu - Z (C;Qi) <Q11 - Ql) (A30)

oo If we take the limit case where the number of sequenced reads per gene is
so7 constant, i.e. if Cy; = C, for all i € (1,...,nq), then it can be shown that
s Bquation reduces exactly to Equations 28A29-28 A30 in Rousset| (2007)),
g0 p. 977. Furthermore, if the pools have all the same size, i.e. if n;, = n for all
w € (1,...,nq), then be’TOOl = (Ql — Q2> / <1 — @2>

901 If the pools have all the same size and if the number of reads per pool is

92 constant, then one can also show that Equations reduce to:

SSI = ng(C — 1) (1 - Qg) (A31)
903 and:

SSP = C(ng — 1) (1 - Qg) ~ (g —1)(C —1) (1 - Q;) (A32)

sa  where Q‘i and Q§ are the frequencies of identical pairs of reads within and be-

ws tween pools, respectively, computed by simple counting of IIS pairs. These
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ws are (unweighted) averages of the population-specific estimates QA‘{i (Equa-

907 tion } and the pairwise estimates Qgii, (Equation , respectively.
s Then, from Equation we get:

el (126 ( - ) (A33)
1O
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w0 IIS probabilities for Pool-seq data

a0 In this Appendix, we provide unbiased estimates of IIS probabilies between
o pairs of genes, computed from read count data. Let r;p = i > Xijrk be
a2 the number of reads of type k in the ith pool. A straightforward estimate of
a3 the IIS probability between pairs of reads in the ith pool is given by:

Ay Z Tk (ri:k - 1)
Qu = (];11‘ (Cru—1) (A34)

aa where Cy; = ), ri:x. As above (see Equations and , we assume that
as in each pool, the conditional distribution of the read counts r;, given the
a6 (unobserved) allele counts y;.x, is binomial, i.e.: 7% | yir ~ Bin (yi.x/ni, C1i).
a7z The conditional expectation of the number of reads is therefore given by:
as E(rix | yir) = Cui (yir/ni), and the conditional expectation of the squared
a0 number of reads by: E(r2, | vix) = Cu(Cy — 1) (yi:k/ni)Q + Ci (Wi /).
a0 Therefore, the conditional expectation of the IIS probability between pairs

o1 of reads in the ith pool reads:

Ar N > LE (riy — rin) _ Yik ?
E (Qu | yk) =S Cn=D zk: ( o ) (A35)
w2 Since

n; (n; — 1)

o3 is an unbiased estimate of the IIS probability between pairs of distinct genes

o4 in the ith pool, Equation implies that Qﬁi (Equation ) is a biased
s estimate of that quantity (i.e., the IIS probability between pairs of reads

e within a pool is a biased estimate of the IIS probability between pairs of
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o7 distinct genes in that pool). This is so, because the former confounds pairs
ws of reads that are identical because they were sequenced from a single gene
20 copy, from pairs of reads (from distinct gene copies) that are identical because
o0 they share a common ancestor. However, inspection of Equation[A35]suggests

o that an unbiased estimate of Qq; may be given by:

Apool n; ( Ar )
QT =1-— 1—Q)j; A37
1z n; 1 12 ( )

o Taking expectation of Equation [A37] we get indeed:

Apoo n; AL 1
E (Qlfz 1 | yi:k) = E (Qu) -

2
1 Yik 1
>k Yik _ >k Yick

= -1 - Qui (A38)

o33 Following Weir and Goudet| (2017, we define the overall IIS probability be-
s tween pairs of genes within pools as the unweighted average of population-

s specific estimates, leading to:

Apool
Qlfool = % (A39)
nq

936 A straightforward estimate of the IIS probability between pairs of reads

o7 taken in different pools ¢ and i is given by:

A Zk Ti:kTik
by = Y ———— A40
QQZZ Clioli’ ( )

i38  Since we assume that pools are conditionally independent, taking expectation
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939 giVQSI

N g ]E(ri:k)]E<Ti’:k)
E ( rii’ i:ky Yi': ) = k
Qs | Yicks Yirek CCo

_ Z (%‘:k%‘;:k) _ Q2z’i’ (A41)
n;n;

k

wo Therefore, the IIS probability between pairs of reads sampled in different
w1 pools is an unbiased estimate of the IIS probability between pairs of genes in
a2 these pools, and an unbiased estimate of the IIS probabilitiy of genes sampled

w3 from different pools is given by:

~

Q5 = Qs (A42)

ws  As above, we define the overall IIS probability between pairs of genes sampled

ws from different pools as the unweighted average of pairwise estimates, i.e.:

Apool
Apool — ZZ#Z/ QQ”’

= _veu A43
QQ nd(nd o 1) ( )
946 We can then derive an IIS-based estimator of Fgr, as:
R onol - onol 1 — onol
Fpool—PID — 1 2 —1— 1
ST — 1 ngol 1 — ngol

[ (1= @) nif (i = 1)]
Ziyéi’ (1 - ngﬂ) / (na —1)

- 1-

(A44)

sz which, to the extent that we may take the expectation of a ratio to be the

s Tratio of expectations, is unbiased. If the pools have all the same size (i.e., if
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a0 m; = n for all 7), then Equation reduces to:

FEpetP =1 - (1 —~ 3) (n “ 1) (A45)
— 0 -

s where QY = 3, Q},/nq and Q} = > it Q% / [na(nq — 1)]. Note that Equa-
951 tion is strictly identical to Equation[A33] Therefore, if the pools have all

2 the same size and if the number of reads per pool is constant, the analysis-
o5 of-variance estimator F5e® is strictly equivalent to the estimator Fooo™ P
s« based on the computation of IIS probabilities between pairs of reads, with
055 appropriate bias correction (see Equation . This echoes the derivations
o5 by Rousset| (2007) for Ind-seq data, who showed that the analysis-of-variance
o7 approach (Weir and Cockerham|/1984) and the simple strategy of estimat-
s ing IIS probabilities by counting identical pairs of genes provides identical
050 estimates when sample sizes are equal (see also |[Cockerham and Weir| 1987
o0 [Karlsson et al.|2007).

961 Alternatively, the overall IIS probability between pairs of genes within
o2 pools may be defined as the weighted average of population-specific estimates,
w3 with weights equal to the number of pairs of genes in each pool (see |[Rousset
e 2007), i.e.:

S ni(ng — 1Y
> ini(ni — 1)

Q' = (A46)

ws Likewise, the overall IIS probability between pairs of genes sampled from
ws different pools may be defined as the weighted average of pairwise estimates,

s7  with weights equal to the number of pairs of genes sampled between pools,
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968 1.€.:

Apool
Zz‘yﬁi’ i1 Qi
Zi;ﬁi/ nn;

Qo' = (A47)

ss  We can then derive an IIS-based estimator of Fgr, using weighted IIS prob-
o0 abilities, as:

~pool ~pool
Fpool—PID — Ql B QQ

1— onol
ST = =1- .

- Q5 1-qp
S (1- Aai)] /S milns = 1)
Zi;ﬁz" n;n; ( 24 ) / Zzﬁ n;n

(A48)

on  If the pools have all the same size (i.e., if n; = n for all 7), then Equation
s reduces to Equation [A45, and FRoo' PP = FPoo=PID \yrith unbalanced sam-
o3 ples, simulation analyses show that F&p Pool=PID 1) g larger bias and variance

s than FE2 PP in particular for low levels of differentiation (see Figure S4).

68


https://doi.org/10.1101/282400
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/282400; this version posted July 12, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Table S1 Comparison of pairwise Fsr estimates

Pool-seq Ind-seq
Fyr n Cov. FgTOOl WCsa
0.05 10 20 0.051 (0.004)
0.05 10 50 0.051 (0.004) 0.051 (0.003)
0.05 10 100x 0.051 (0.003)
0.05 100 20 0.051 (0.003)
0.05 100 50 0.051 (0.003) 0.051 (0.002)
0.05 100 100 0.051 (0.002)
0.20 10 20 0.203 (0.007)
0.20 10 50 0.202 (0.006) 0.202 (0.007)
0.20 10 100 0.201 (0.006)
0.20 100 20 0.201 (0.006)
0.20 100 50 0.201 (0.006) 0.201 (0.005)
0.20 100 100 0.202 (0.005)

Fst was estimated for various conditions of expected Fyr, pool size (n) and
coverage (Cov.). For Pool-seq data, we computed our estimator Fsp}ml (Equa-
tion [13). The mean (RMSE) over 50 independent replicates of the ms sim-
ulations are provided for a single pair of populations. For comparison, we
computed WCg, from allele count data inferred from individual genotypes
(Ind-seq).
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Table S2 Effect of unequal sampling on pairwise Fgr estimates

Pool-seq Ind-seq
Fyr n Cov. F§TO°1 WCsgy
0.05  N(100,30) 20% 0.051 (0.003)
0.05  AN(100,30) 50 0.052 (0.003) 0.051 (0.002)
0.05 N (100, 30) 100x 0.051 (0.002)
0.20 N (100, 30) 20 0.202 (0.007)
0.20 N (100, 30) 50x 0.202 (0.006) 0.202 (0.006)
0.20 N (100, 30) 100x 0.202 (0.006)

Pairwise Fgr was estimated for various conditions of expected Fgr and cover-
age (Cov.). The pool size (n) was variable across demes, with haploid sample
size n drawn independently for each deme from a Gaussian distribution with
mean 100 and standard deviation 30; n was rounded up to the nearest in-
teger, with min. 20 and max. 300 haploids per deme. For Pool-seq data,
we computed our estimator Foo* (Equation . The mean (RMSE) over 50
independent replicates of the ms simulations are provided, for a single pair
of populations. For comparison, we computed WCgy (Weir and Cockerham
1984)) from allele count data inferred from individual genotypes (Ind-seq).
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Table S3 Effect of variable coverage on pairwise Fsr estimates

Pool-seq Ind-seq
Fsr n A Eoo! WCsy
0.05 10 20 0.050 (0.006)
0.05 10 50 0.050 (0.004) 0.050 (0.004)
0.05 10 100 0.050 (0.004)
0.05 100 20 0.051 (0.003)
0.05 100 50 0.051 (0.002) 0.051 (0.002)
0.05 100 100 0.051 (0.002)
0.20 10 20 0.200 (0.007)
0.20 10 50 0.200 (0.007) 0.200 (0.007)
0.20 10 100 0.200 (0.007)
0.20 100 20 0.202 (0.006)
0.20 100 50 0.203 (0.006) 0.203 (0.005)
0.20 100 100 0.203 (0.005)

Pairwise Fg1 was estimated for various conditions of expected Fst and pool
size (n). The coverage (9;) was varying across demes and loci, with §; ~
Pois(A). For Pool-seq data, we computed our estimator FS%OI (Equation .
The mean (RMSE) over 50 independent replicates of the ms simulations are
provided, for a single pair of populations. For comparison, we computed
WCs, from allele count data inferred from individual genotypes (Ind-seq).
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Figure S1 Pairwise estimators of Fyp. A. Multilocus estimates F52® (com-

puted using Equation as a function of WCg, estimates computed from
allele count data inferred from individual genotypes. B. Multilocus estimates
PP24, as a function of NCg3 estimates computed from allele count data in-
ferred from individual genotypes. C. Multilocus estimates F5o as a function
of PP2, estimates. In each graph, the dots represent multilocus estimates of
Fst across all pairs of subpopulations from an 8-island model, and across 50
replicate ms simulations. We specified the migration rate corresponding to
Fst = 0.20. The size of each pool was fixed to 100. The results are shown for
different coverages (20X, 50X and 100X). The cross indicates the simulated

value of the parameter Fgr.
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Figure S2 Root mean squared error (RMSE) of Fgr estimates for a wide
range of pool sizes and coverage, with experimental error rate € varying from
0 to 0.5 (A-E). Each density plot gives the RMSE of our estimator Fe®,
using simple linear interpolation from a set of 44 x 44 pairs of pool size and
coverage values. For each pool size and coverage, 500 replicates of 5,000
markers were simulated. Plain white isolines represent the RMSE of the
WCgy estimator computed from Ind-seq data, for various sample sizes (n =
5, 10, 20, and 50). Each isoline was fitted using a thin plate spline regression
with smoothing parameter A\ = 0.005, implemented in the fields package
for R (Nychka et al|2017).
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Figure S3 Global estimators of Fgp. We considered one estimator based
on allele count data inferred from individual genotypes (Ind-seq): WCgy. For
pooled data, we computed Fgr using the WCgy estimator: (i) directly from
read counts, as if they were allele counts (“reads”); (ii) from allele counts
imputed by maximum-likelihood (“imput”), as in [Leblois et al. (2018). Each
boxplot represents the distribution of multilocus Fsr estimates across all
demes comparisons in an 8-island model, and across 50 independent replicates
of the ms simulations. We used two migration rates, corresponding to Fgt =
0.05 (A) or Fst = 0.20 (B). The size of each pool was fixed to 10. For Pool-
seq data, we show the results for different coverages (20X, 50X and 100X).
In each graph, the dashed line indicates the simulated value of Fgr.
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Figure S4 Precision and accuracy of alternative estimators of Fgr with
varying pool size, for various levels of differentiation (A-D). The haploid
pool size n drawn independently for each deme from a Gaussian distribution
with mean 100 and standard deviation 30; n was rounded up to the near-
est integer, with min. 20 and max. 300 haploids per deme. We considered
three estimators based on allele count data inferred from individual genotypes

(Ind-seq): WCgy, Fyr = (Ql — Q2> / (1 — QQ) (where Q; and Qs are the
weighted frequencies of identical pairs of genes within and between subpop-
ulations, respectively, with weights equal to the number of pairs of genes)

and Fyr = <Q1 — Q2> / <1 — Q2> (where Q1 and Q. are the unweighted
frequencies of identical pairs of genes within and between subpopulations,
respectively. For Pool-seq data, we considered the estimators FE2 (Equa-
tion , ERPID (Bquation and F£2O PP (Equation Each
boxplot represents the distribution of multilocus Fgr across 50 independent
replicates of the ms simulations. For Pool-seq data, we show the results for
different coverages (20X, 50X and 100X). In each graph, the dashed line in-
dicates the simulated value of Fgr and the dotted line indicates the median
of the distribution of WCg, estimates.
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