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Abstract  
 
The amount of omics data in the public domain is increasing every year [1, 2]. Public 

availability of datasets is growing in all disciplines, because it is considered to be a good 

scientific practice (e.g. to enable reproducibility), and/or it is mandated by funding agencies, 

scientific journals, etc. Science is now a data intensive discipline and therefore, new and 

innovative ways for data management, data sharing, and for discovering novel datasets are 

increasingly required [3, 4]. However, as data volumes grow, quantifying its impact becomes 

more and more important. In this context, the FAIR (Findable, Accessible, Interoperable, 

Reusable) principles have been developed to promote good scientific practises for scientific 

data and data resources [5]. In fact, recently, several resources [1, 2, 6] have been created 

to facilitate the Findability (F) and Accessibility (A) of biomedical datasets. These principles 

put a specific emphasis on enhancing the ability of both individuals and software to discover 

and re-use digital objects in an automated fashion throughout their entire life cycle [5]. While 

data resources typically assign an equal relevance to all datasets (e.g. as results of a query), 

the usage patterns of the data can vary enormously, similarly to other “research products” 

such as publications. How do we know which datasets are getting more attention? More 

generally, how can we quantify the scientific impact of datasets?  

 

Recently, several authors [7-9] and resources [10]  pointed out the importance of evaluating 

the impact of each research product, including datasets. Reporting scientific impact is 
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indeed increasingly relevant for individuals, but also reporting aggregated information has 

become essential in the case of research groups, scientific consortia, institutions or for 

public data resources among others, in order to assess the level of importance, excellence 

and relevance of their work. This is a key piece of information for funding agencies, which is 

used routinely to prioritize the projects and resources they fund. However, most of the efforts 

nowadays focus on the evaluation and quantification of the impact of publications as the 

main artefact. For instance, in 2013, the “altmetrics” team proposed a set of ‘alternative’ 

metrics to trace research products with special focus on publications [10]. Specific tools and 

services have been built since to aggregate “altmetrics”, including for instance counts of 

mentions of a given publication in blog posts, tweets and articles in mainstream media. The 

“altmetrics” score is widely used by the research community nowadays (e.g. by multiple 

scientific journals), as a measure of scientific impact. In addition to the traditional journals, a 

relatively recent trend has been the introduction of pre-print servers in the 

biological/biomedical field (e.g. bioRxiv), supporting the pre-publication of manuscripts which 

are usually under review in traditional journals. Pre-prints are increasingly tracked and 

recognised as research products (e.g. by funding agencies such as The Wellcome Trust). 

However, adequate tracking and recognition of datasets has been limited so far for multiple 

reasons: i) the relatively low number of publications citing datasets instead of their 

corresponding publications; ii) the lack of services that store and index datasets from 

heterogeneous origins; and iii) the absence of widely-used metrics that enable the 

quantification of their impact. Some attempts have been made to improve the situation, by 

introducing DOIs (Data Object Identifiers) directly associated to datasets [11]. 

 

In 2016, we released the first version of the Omics Discovery Index (OmicsDI – 

www.omicsdi.org) as a light-weight system to aggregate datasets across multiple public 

omics data resources. OmicsDI integrates genomics, transcriptomics, proteomics, 

metabolomics, and multi-omics datasets, as well as computational models of biological 

processes [1]. The OmicsDI web interface and Application Programming Interface (API) 

provide different views and search capabilities on the indexed datasets. Datasets can be 

searched and filtered based on different types of technical and biological annotations (e.g., 

species, tissues, diseases, etc.), year of publication, and the original data repository where 

they are stored, among others. At the time of writing (March 2018), OmicsDI stores just over 

100,000 datasets from 16 different public data resources (www.omicsdi.org/database). The 

split per omics technology is as follows: transcriptomics (68,648 datasets), genomics 

(12,274), proteomics (9,352), metabolomics (1,679), multi-omics (4,057) and biological 

models (8,418). Here, we propose a set of novel metrics to quantify the impact of biomedical 

datasets. A complete framework (now integrated in OmicsDI) has been implemented in 
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order to provide and evaluate those metrics. Finally, we propose a set of recommendations 

for authors, journals, and data resources to promote an optimal quantification of the impact 

of datasets.  

 

 

Online Methods   

 

In contrast to publications, where the impact is mainly measured by the number of citations, 

we believe the impact of datasets should be quantified using more than one metric. With this 

in mind, we have devised three metrics that can be used to provide the impact for datasets:  

1. Number of reanalyses/re-use (Reanalyses): A reanalysis can be generally defined 

as the complete or partial re-use of an original dataset (A) using a different analysis 

protocol, and stored either in the same or in another public data resource (B). For 

example, PeptideAtlas [12] systematically reanalyses public proteomics datasets, 

mainly from PRIDE [13] and MassIVE (massive.ucsd.edu). The new peptide and 

protein evidences from these reanalyses have become an invaluable resource, e.g. 

for the Human Proteome Project [14]. The appropriate and accurate reference to the 

original datasets in other resources facilitates the reproducibility and traceability of 

the results and the recognition for the authors that generated the original dataset 

[15].  

2. Direct citations of dataset identifiers in publications (Citations): Citations 

represent the number of publications that directly refer to dataset identifiers [16]. 

Currently, scientists typically cite publications rather than datasets. However, the 

citation of the dataset by using the corresponding publication does not imply in our 

view that the authors have re-used the actual data. Actually, it is more common that 

citations of papers reference results, claims and biological conclusions rather than 

the actual dataset. In 2013, Piwowar et al. proposed the use of direct citations of 

datasets in the literature as a metric [16], based on the counts generated using the 

EuropePMC API [17]. EuropePMC stores scientific publications (and also pre-prints, 

if they have been manually added by the authors) that are open access, so the whole 

text of the manuscript can be used for performing text mining, enabling this 

functionality. It is important to highlight that authors can submit their own reanalyses 

of existing datasets to the same (where the original (reanalysed) datasets was made 

available) or other public data resources. This information can be used to create a 

“network” of dataset re-usage. 
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3. Number of biological claims based on the dataset (Connections):  Here, we 

quantify the number of biological entities which are supported by a given dataset, in 

various popular biomedical “knowledge-base” databases such as UniProt [18] 

(protein sequences), IntAct [19] (molecular interaction data) or Reactome [20] 

(biological pathways) (Supplementary Note 2). Most of the biomedical datasets 

support biological claims (e.g. pathways, interactions, expression profiles, etc.) that 

are either manually curated, or automatically annotated in relevant knowledge-bases. 

We believe that calculating impact in this manner is needed, since for instance, if a 

number of gene expression profiles were supported by one particular dataset, that 

information would be lost (or at least untraceable) if the dataset were no longer 

publicly available. All these knowledge-base databases are indexed and queried by 

OmicsDI using the EBI Search indexing system 

(www.ebi.ac.uk/ebisearch/)[21](Supplementary Note 2).  

 

Proposed platform to quantify dataset impact 

 

In order to compute the proposed metrics (Reanalyses, Citations, Connections), a novel 

platform has been developed within OmicsDI. Figure 1 shows a schematic representation of 

the platform. OmicsDI imports the metadata for each dataset from the original providers, 

using the OmicsDI XML file format (Fig. 1a) [1]. In order to ensure that the metrics are 

accurate, the infrastructure implements a system to remove dataset redundancy (when two 

different resources store the same original dataset). An automatic pipeline and a manual 

annotation system enable OmicsDI to remove duplicated datasets with potentially different 

identifiers (e.g. transcriptomics datasets available in ArrayExpress and Gene Expression 

Omnibus (GEO)) (Fig. 1b). The pipeline (Fig. 1b) designates one of the datasets as the 

canonical representation and annotates the rest of identifiers as additional secondary ones 

(Supplementary Note 1).  

 

By March 2018, 35 knowledge-bases were used to identify and count the number of 

biological connections (Supplementary Note 2). Each tracked biological entity available in 

the knowledge-bases includes a cross-reference to original datasets (Fig. 1c). Then, a 

software component in OmicsDI navigates this information and computes the connections 

for each of them. The implementation of the reanalysis metric is possible because the 

OmicsDI XML schema (https://github.com/OmicsDI/specifications) provides a mechanism to 

define when a dataset is based on another one. Finally, the citations metric is computed by 

parallel calls to the EuropePMC API (europepmc.org/RestfulWebService) [17] and the 

annotation of the final counts for each dataset. All these pipelines and software components 
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can scale to handle thousands of datasets and systematically compute and update the 

metrics on a weekly basis (github.com/OmicsDI/index-pipeline).   

 

 

Dataset Claiming Component  

 

Analogously to services such as Google Scholar and ResearchGate for publications, we 

have implemented a mechanism that enables researchers to create their own profile in 

OmicsDI, by claiming their own datasets. Researchers need to log into OmicsDI using their 

corresponding ORCID account details (Supplementary Note 3), and search for relevant 

datasets using different criteria such as: (i) dataset identifiers, (ii) specific keywords in the 

title or description of the dataset, or analogous information from the corresponding 

manuscript where the generation of the dataset is reported, and/or (iii) the author’s name, 

among others. Then, datasets can be added to an OmicsDI personal profile where it is 

possible to visualise the impact metrics (reanalyses, citations and connections), providing 

researchers this rich information. The URLs of personal profiles can be shared with anyone 

in the community. Additionally, as a key point, OmicsDI claimed datasets can be 

synchronized to the researcher’s own ORCID profile, highlighting datasets there as a 

research product as well [22] (Supplementary Note 3). Although this mechanism is initially 

aimed at individual researchers (e.g. www.omicsdi.org/profile/Da9hYZOs), research groups, 

scientific consortia (e.g. www.omicsdi.org/profile/ZEd3mwfF), and research institutions can 

also create their own OmicsDI profile, facilitating the aggregation, visualisation, tracking and 

impact assessment for their generated datasets, and the addition to their own OmicsDI 

profiles. In addition, OmicsDI has implemented a simple visualization component 

(Supplementary Note 5) that allows users to cite the corresponding dataset using the 

FORCE11 Data Citation Synthesis Group recommendations 

(http://www.dcc.ac.uk/resources/how-guides/cite-datasets)[23]. 

   

Results 

 

The reanalyses metric quantifies how many times one dataset has been re-used (re-

analysed) and the result deposited in the same or in another resource. By March 2018, the 

number of datasets that have been reanalysed at least once is 8,000. The number of 

reanalyses varies depending on each field and on the existing integration among databases. 

For example, on average BioModels models are reused 0.8 times, whereas PRIDE 

(proteomics), MassIVE (proteomics) and ArrayExpress (transcriptomics) datasets are reused 

0.12, 0.01 and 0.18 times, respectively.  
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BioModels MODEL1402200003 (“Genome-scale metabolic modelling of hepatocytes reveals 

serine deficiency in patients with non-alcoholic fatty liver disease”) [24] is the most re-used 

“dataset” (the concept of dataset in OmicsDI is extended to biological models), with 6,691 re-

uses made available in the same BioModels resource. However, it should be noted that all 

re-uses are associated with a single publication [25], in which patient data was used to 

parameterise MODEL1402200003 to 6,691 instances. Frequently, dataset re-use is a 

hierarchical process, where one dataset is reanalysed subsequently multiple times. Figure 

2a presents a “reanalysis network” for the model BIOMD0000000055, starting from 2006 

(release year) to 2015. A different pattern is illustrated in Figure 2b, where 

BIOMD0000000286 is derived from multiple source models. BioModels curates and 

annotates for each deposited model, the corresponding model from which it is derived (if 

applicable). Figure 2c shows the reanalysis network for three other resources: PRIDE 

(proteomics), MassIVE (proteomics) and ArrayExpress (transcriptomics). The most 

reanalysed datasets are PXD000561 (75 times) and PXD000865 (61) corresponding to the 

two “drafts of the human proteome”. These datasets have supported the annotation of 

millions of peptides and proteins evidences, enabling the large-scale annotation of the 

human proteome [14] and have been reanalysed by multiple databases including the 

proteomics resources PeptideAtlas and GPMDB [26]. In contrast to biological models, the 

proteomics and transcriptomics fields are still working to define a proper mechanism to 

report the multiple reanalysis of datasets in a hierarchical manner [11]. Interestingly, the 

distribution of the elapsed time between the year of publication of the original datasets and 

publication of the reanalyses shows that most of the datasets are reanalysed within one year 

after publication (Fig. 3a). In fact, three years after the release date, typically the number of 

reanalyses decrease significantly, making this a metric better suited to measure immediate 

impact.  

 

The second metric is the number of direct citations in publications for each dataset as 

previously suggested [16]. We obtained this information from the EuropePMC API. The 

number of datasets with at least one citation in EuropePMC is 8,954, including: 6,870 from 

GEO [27], 982 from ArrayExpress, 343 from EGA (European Genotype Archive, 

genomics/transcriptomics restricted-access patient data) [28], 316 from PRIDE [13], 118 

from BioModels, 60 from MassIVE, 34 from MetaboLights (metabolomics) [29], 3 from 

PeptideAtlas [12], and 2 from GNPS (metabolomics) [30]. Figure 3b shows the distribution 

of citations per dataset, across seven resources. GEO datasets are the most cited ones, 

followed by those from ArrayExpress and EGA. The average (and standard deviation of the) 

number of citations per dataset for each of the five major databases: GEO (transcriptomics), 
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ArrayExpress (transcriptomics), EGA (genomics/transcriptomics), PRIDE (proteomics) and 

BioModels (models) is 3.4 (9.8), 2.5 (7.2), 4.2 (0.8) and 1.2 (0.66), respectively. Interestingly, 

the standard deviation indicates that in transcriptomics - GEO (9.8) and ArrayExpress (7.2) - 

some datasets get significantly more attention from the community than others, whereas for 

proteomics datasets – PRIDE (0.8) – the citation rate is much more homogenous. 

     

The current workflow searches EuropePMC using all the identifiers associated with a given 

dataset (e.g. a given dataset can be cited in a publication using the ArrayExpress, GEO or 

BioProject identifiers). For example, the dataset E-GEOD-2034 

(www.omicsdi.org/dataset/arrayexpress-repository/E-GEOD-2034) is cited 312 and 28 times 

using the ArrayExpress (E-GEOD-2034) and GEO (GSE2034) identifiers, respectively. We 

have correlated the number of dataset citations and reanalyses in four of the major 

databases (GEO, ArrayExpress, PRIDE and BioModels, Fig. 3c). It can be observed that the 

counts of citations in publications and reanalyses are not correlated for most resources 

(GEO, ArrayExpress and BioModels). However, in proteomics (PRIDE) most of the datasets 

that are re-used by the same or other resources (reanalyses), are also cited by independent 

researchers in publications (R2 = 0.46, p-value = 8.72e-31). This shows that both features 

are orthogonal, complementary and can be used in combination to get a broader 

representation of the impact of omics datasets.     

 

Finally, we analysed the number of connections that are supported by each dataset. The 

average (and standard deviation) number of connections per dataset for ArrayExpress, 

ExpressionAtlas, GEO, MetaboLights, PeptideAtlas and PRIDE are 1,253 (31,212), 4,646 

(37,842), 466 (6,336), 145 (372), 3,997 (3,477), and 1,556 (13,708); respectively (Fig. 3d). 

The distribution of connections per resource shows that many of the datasets in OmicsDI 

(24%) are connected to at least one biological entity, and most of the distributions follow a 

similar pattern. For example, dataset E-MTAB-599 (“RNA-seq of mouse DBA/2J x C57BL/6J 

heart, hippocampus, liver, lung, spleen and thymus”), associated with this publication [31], 

has 1,710,979 connections, including 1,689,177 genome variants, 21,572 gene values, and 

230 other connections, going from sample annotations to nucleotide sequences.    

 

Discussion   

 

One of the obstacles to achieving a systematic deposition of datasets in public repositories 

is the lack of a broad scientific reward system, considering other research products in 

addition to scientific publications [7]. Different studies have demonstrated the need for 

metrics and frameworks to quantify the impact of deposited datasets in the public domain [7, 
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16, 23].  Such a system would not only encourage authors to make their data public, but also 

help funding agencies, biological resources and the scientific community as a whole to focus 

on the most impactful datasets. In OmicsDI we have implemented a novel platform to 

quantify the impact of public datasets systematically, by using data from biological data 

resources (reanalyses), literature (citations), and knowledge-bases (connections).  Every 

metric is updated on a weekly basis and made available through the OmicsDI web interface 

and API (http://www.omicsdi.org/ws/).  

One of the primary findings is that in systems biology (the BioModels database is the 

representative resource), the deposition of data has enabled systematically generation of 

new knowledge (biological models), based on previous datasets. For example, the model 

“Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with 

non-alcoholic fatty liver disease” (MODEL1402200003) [24] has been used to build more 

than 6,000 models available in BioModels. Moreover, the results showed that the reanalyses 

metric is crucial to highlight relevant datasets early after the dataset release (Fig. 2c). 8,000 

datasets (>5% of OmicsDI) have been reanalysed by resources such as PeptideAtlas, 

GPMDB, or the EBI Expression Atlas, among others. However, it should be noted that the 

reanalyses metric measures only the impact of datasets in the same or other data resources 

contributing their metadata to OmicsDI, which constitutes a fraction of the total re-use by the 

scientific community. 

To complement the reanalysis metric, we counted direct citations of datasets in scientific 

publications. Different studies have estimated that the proportion of the total citation count 

contributed by data depositions is around 6–20% [10, 16]. Most of the reanalyses tracked in 

OmicsDI have been performed using GEO datasets, which might have biased the results to 

a specific resource. However, our findings show the same patterns in the literature: almost 

9,000 datasets have been cited in publications at least once. It is important to highlight that 

counting direct database citations in the whole text of manuscripts is only possible for open 

access publications. In the case where the corresponding publications are not open access, 

dataset identifiers would need to be included in the PubMed abstract to be included in this 

metric. The coverage of direct citations in publications is therefore limited by this systemic 

issue. We have found that the transcriptomics community (individual researchers) tend to 

cite the same datasets more often, with an average of 4 citations per dataset. The most cited 

dataset is “Transcription profiling of human breast cancer samples - relapse free survival” 

(E-GEOD-2034), totalling 312 citations. Both metrics, reanalyses and citations, should be 

used in combination for a better understanding of the dataset impact. Our results show that 

both metrics are uncorrelated and should not be aggregated. For example, dataset E-MTAB-
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513 is among the 10 most cited datasets in the literature, which has been cited 155 times, 

and reanalysed 4 times. We have decided to only compute and provide these “raw” metrics 

to the community, rather than combining them into more complex models [32, 33]. However, 

we have shown that these metrics can be used independently to generate models for 

classification (Supplementary Note 4) [34].  

 

In 2011, Mons et al. introduced the idea of nano-publications, from where the authors could 

get credit not only through the actual publication but also through all the knowledge 

associated with it [7]. In our view, the value of the dataset should not be only associated with 

the “raw data” or the claims in the publication, but also should be assessed considering all 

the biological entities supported in knowledge-bases. We have developed the connections 

metric (Fig. 3d), which can be used to estimate the impact of a dataset for knowledge-

bases, by counting how many biological entities are supported by it.  

In addition to the three-metrics used to measure impact, it should be highlighted that 

OmicsDI routinely uses the number of views/accesses available for each dataset in the 

resource to rank the results of a search query, using information available from the 

interaction of other researchers with the indexed datasets. In this context, OmicsDI is 

monitoring not only the web interface views but also the interaction through the OmicsDI 

API. In average, every dataset in OmicsDI has been accessed at least 30 times since 2016 

(Supplementary Note 5). In our view, the number of views/accesses in OmicsDI can be 

used as a proxy for other relevant metrics such as volume of downloads and number of 

views in the original data resources. These metrics coming from the original data resources 

are normally not made publicly available and at present infeasible to retrieve. In fact, at 

present the first coordinated efforts to gather them in a standard manner are taking place in 

the context of the ELIXIR framework for European biological data resources [35].  

The newly implemented OmicsDI dataset claiming system enables authors, research 

groups, scientific consortia and research institutions to organize datasets under a unique 

OmicsDI profile, and for datasets to be added to their own ORCID profiles as well. At the 

time of writing (March 2018), more than 200 datasets have been claimed into ORCID 

profiles through OmicsDI. In our view, following the same system for monitoring the impact 

of individual datasets, these metrics could also be used to measure at least some aspects of 

the impact of public omics data resources [36, 37]. By March 2018, GEO, PRIDE and 

MetaboLights datasets are the most cited, re-used, and connected in their transcriptomics, 

proteomics and metabolomics, respectively (Figure 3). A common problem of impact 

evaluation is to compare different fields or topics with the same metrics [38]. Therefore, we 
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recommend the use of these metrics to evaluate datasets within the same omics field, as 

classified by OmicsDI [1].  

 

 

Challenges collecting dataset metrics: recommendations for authors, journals and 

data resources 

Several studies have discussed the challenges of collecting citations for manuscripts and 

datasets [16, 39]. With the developments of new services such as the EuropePMC API, the 

compilation of direct citations for datasets has become more feasible [7]. However, in our 

view, some conventions should be implemented to normalize the way datasets are cited:  

i) When the dataset is the main focus of work, dataset identifiers should be used, instead of 

citing the corresponding publications.  

ii) The scientific community needs to develop standard citation strategies for datasets. For 

example, approximately 60% of the data re-used in one of the drafts of the human proteome 

papers [39] was collected from public repositories. However, no proper references to the 

original authors and data are present in the main text of their manuscripts. In order to be 

able to properly cite the re-use of datasets, new mechanisms should be developed to enable 

a adequate reporting. OmicsDI has implemented a visualization component 

(Supplementary Note 6) that allows users to cite the corresponding dataset using the 

FORCE11 Data Citation Synthesis Group (http://www.dcc.ac.uk/resources/how-guides/cite-

datasets) [23]. 

iii) Repositories should make openly available (in an easy to retrieve manner) the links 

between their reanalysed and the original datasets. Good examples of these links can be 

found already in Expression Atlas and PeptideAtlas, where every reanalysed dataset 

references the original ones (Supplementary Note 7). Indeed, many databases reference 

only the associated publications, rather than the actual dataset identifiers. In fact, the correct 

tracking of datasets in a database by other data resources can help to assess its impact, 

since it demonstrates that the data they store is actively re-used by (and thus relevant to) the 

community. Naturally, the same effort should also be made by knowledge bases (e.g. 

resources including pathways, interactions, gene/protein profiles, etc), to reference the 

original datasets rather than the publications, in order to recognize that a large part of the 

biological knowledge is derived from the actual datasets.  
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We envision that as more and more data is made publicly available, more standardization 

will be implemented to cross-link resources, manuscripts, datasets and the final biological 

molecules, making the proposed framework more robust. We expect that any mature omics 

field should welcome novel insights that can be derived from existing datasets and promote 

their traceability. We all “stand on the shoulders of giants”. We expect that an improved 

quantitation of the impact of datasets will help scientists, funders, and research 

organisations to better value a broader range of “giants” (research products). 
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Figure Legends 
 
 
Figure 1: The OmicsDI dataset impact quantification framework allows to compute three 

metrics (reanalyses, citations and connections). a) OmicsDI datasets are imported from the 

original public data resources, which are represented in the OmicsDI XML schema. Datasets 

are imported into a MongoDB database; b) the identifier resolution framework allows the 

detection of datasets that are duplicated across OmicsDI. The final dataset entry contains all 

the dataset identifiers available in different resources; c) Reanalyses are counted using the 

cross-reference system implemented in the OmicsDI XML schema, where a reanalysed 

dataset can reference the original one. Citations are compiled using the EuropePMC API. 

Connections are computed using the biological entities stored in knowledge-bases.   

 

Figure 2: Examples of the reanalysis network for different OmicsDI datasets: a) BioModels 

model BIOMD0000000055; b) 12 different BioModels models; c) Datasets corresponding to 

the two drafts of the human proteome (PXD000561 and PXD000865).  

 

Figure 3: a) Elapsed time between the original publication of a dataset and the publication 

of all its reanalyses; b) Distribution of the number of citations per dataset, per OmicsDI data 

resource; c) Correlation between the number of citations per dataset and the number of 

reanalyses for ArrayExpress, BioModels, GEO and PRIDE datasets; d) Distribution of the 

number of biological connections per dataset.        
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