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Summary 12 

Thousands of protein post-translational modifications (PTMs) dynamically impact nearly all 13 

cellular functions. Mass spectrometry is well suited to PTM identification, but proteome-scale 14 

analyses are biased towards PTMs with existing enrichment methods. To measure the full 15 

landscape of PTM regulation, software must overcome two fundamental challenges: intractably 16 

large search spaces and difficulty distinguishing correct from incorrect identifications. Here, we 17 

describe TagGraph, software that overcomes both challenges with a string-based search 18 

method orders of magnitude faster than current approaches, and probabilistic validation model 19 

optimized for PTM assignments. When applied to a human proteome map, TagGraph tripled 20 

confident identifications while revealing thousands of modification types on nearly one million 21 

sites spanning the proteome. We expand known sites by orders of magnitude for highly 22 

abundant yet understudied PTMs such as proline hydroxylation, and derive tissue-specific 23 

insight into these PTMs’ roles. TagGraph expands our ability to survey the full landscape of 24 

PTM function and regulation. 25 

Introduction 26 

Post translational modifications (PTMs) dynamically modulate the activity, conformation states, 27 

localization, interactions, abundance, and degradation of almost all proteins encoded by the 28 

human genome1–4, yet most remain poorly understood.  PTM dysregulation has been linked to 29 

heart5, neurodegenerative6, and autoimmune7 diseases, cancer8, and countless other major 30 

health challenges9.  Thus, characterizing PTMs’ identities, abundances, and regulation is an 31 

essential dimension for understanding overall protein function and disease etiology.  However, 32 

mapping the full breadth of PTM identities and locations across the entire human proteome has 33 

remained intractable10. 34 

Mass spectrometry is arguably the most robust technology capable of direct, unambiguous, and 35 

large-scale PTM measurement.  It has provided transformative insight into the roles 36 

phosphorylation11, acetylation12, ubiquitylation13 – both singly and in combination14 -- have on 37 

cell biology. However, most global PTM studies have focused on modifications with optimized 38 

enrichment workflows15.  Consequently, our current view of PTMs’ collective impact on the 39 

human proteome is heavily skewed towards a small fraction of the possible PTM landscape16. 40 

Even without experimental enrichment, PTM-containing peptides are readily detected by routine 41 

tandem mass spectrometry (MS/MS) experiments17,18, and are believed to comprise much of the 42 

“dark matter” in proteome datasets that consistently evades confident identification19. 43 
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Conventional sequence database search tools cannot identify modified peptides unless they are 44 

first anticipated by the researcher20–22. Search parameters including the number, kind, and 45 

frequency of PTMs are usually chosen to strike a difficult compromise: considering larger 46 

numbers of PTMs and other sequence variants is necessary for their identification, but doing so 47 

exponentially increases the time needed to interpret MS/MS datasets, and  decreases the ability 48 

to distinguish correct from incorrect assignments23. To partially address this compromise, 49 

strategies have been proposed to constrain the number of proteins being searched, protease 50 

specificity rules, or the allowable types and numbers of PTMs17,18,24–26. In practice, these 51 

approaches only marginally decrease search times without clearly distinguishing correct from 52 

incorrect PTM assignments27. Therefore, most have not been demonstrated on large, proteome-53 

scale datasets23 54 

Here, we describe TagGraph, a powerful computational tool that addresses two principle 55 

challenges of searching very large sequence spaces.  First, TagGraph leverages accurate de 56 

novo mass spectrum interpretations28,29 to rapidly search millions of possible sequences for a 57 

match with an FM-index30 data structure. This highly efficient search method makes modern 58 

next-generation genome sequencing possible31, but has not been adapted to proteomics. By 59 

combining it with a graph-based string reconciliation algorithm, TagGraph rapidly searches 60 

MS/MS datasets without restrictions on number of proteins, PTMs, or protease specificity. This 61 

strategy achieves speeds orders of magnitude faster than prior algorithms because it considers 62 

exponentially more sequence possibilities without having to explicitly test each one against input 63 

spectra. Second, by replacing conventional “target-decoy” error estimation32 with a PTM-64 

optimized probabilistic model, TagGraph accurately discovers and discriminates high-65 

confidence peptide identifications even from such large search spaces. We demonstrate 40-fold 66 

more accurate false discovery rate estimation relative to target-decoy-dependent software.   67 

Combined, these advances make large-scale, untargeted PTM proteomics possible. We 68 

demonstrate this new search capability on a recently published human proteome draft33. Our 69 

analysis reveals 2,576 modification types and 936,886 total modification sites spanning 13,791 70 

proteins across 30 adult and fetal tissues (44,232 likely PTM sites across 5,576 proteins), and 71 

with accurately estimated false discovery rates commensurate with current proteomics 72 

standards.  Simultaneously assaying such a large number of modifications substantially 73 

expanded the number of known PTM sites by orders of magnitude, particularly for those lacking 74 

biochemical enrichment techniques. Our analysis reveals quantitative, functionally relevant, 75 

differences in PTM stoichiometry between human tissues. We focus particularly on 76 
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hydroxylation, demonstrating this un-enrichable PTM’s prevalence in the human proteome, its 77 

potential role in cancer, and its association with candidate enzymes. Through this analysis, we 78 

establish TagGraph as a paradigm shift for rapid proteome characterization, which promotes 79 

simultaneous, unbiased PTM identification. 80 

Results 81 

TagGraph: A new paradigm in fast, unrestricted proteome analysis  82 

We developed TagGraph to address the compromise between search accuracy, depth, and 83 

speed proteomics researchers commonly face when searching large tandem mass spectra 84 

(MS/MS) datasets. With it, we can now accurately assign peptides bearing multiple unspecified 85 

post-translational modifications (PTMs) or amino acid substitutions. Conventional database 86 

search algorithms perform exponentially more comparisons between MS/MS spectra and 87 

peptide candidates as they consider new modification types. In contrast, TagGraph rapidly 88 

selects a very small number of candidate peptides from a sequence database through an 89 

efficient string matching and reconciliation procedure (Fig. 1a, Supplementary Fig. 1). In so 90 

doing, TagGraph effectively surveys very large sequence spaces that would be impractical to 91 

query using traditional database search engines. 92 

TagGraph leverages the speed of indexed string matching algorithms34 by first transforming 93 

complex, numeric mass spectra into discrete, unambiguous query strings using de novo peptide 94 

sequencing. De novo sequencing algorithms produce long, reasonably accurate sequence 95 

predictions from high resolution MS/MS spectra29,35: we found these predictions were over 50% 96 

correct for nearly all interpretable MS/MS spectra (Fig. 1b, Supplementary Fig. 2)29. 97 

Consequently, we reasoned that many de novo peptides should contain a sub-string that 98 

perfectly matches the true protein source of the observed MS/MS spectrum. The FM-index data 99 

structure36 was  developed to facilitate this kind of search.  TagGraph uses it to rapidly 100 

assemble a small number of candidate peptide matches from an arbitrarily large, pre-indexed 101 

sequence database with no restrictions on protease specificity, post-translational modifications, 102 

or sequence variants. These candidates are then reconciled against the input de novo 103 

sequence using a graph-based alignment algorithm that can discover and localize multiple 104 

PTMs and other sequence alterations that co-occur on a single peptide sequence without 105 

anticipating them a priori (Supplementary Note 1). Modification masses localized to individual 106 

amino acid positions within a peptide are cross-referenced with the Unimod resource10 to 107 

suggest the modification’s most likely identity based on mass and amino acid specificity. In this 108 
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way, TagGraph effectively searches all possible sequence alterations on time scales 109 

commensurate with conventional database search tools.  110 

Our strategy contrasts with prior approaches that extract many (>100) short sequence 111 

fragments (“tags”) from each input MS/MS spectrum to restrict protein candidates37–39. Although 112 

they consider fewer peptides per mass spectrum than conventional database search algorithms, 113 

they are subject to similar speed limitations if they consider large numbers of amino acid 114 

modifications and variants.  Similarly, recent iterative approaches towards refining candidate 115 

proteins and modifications40, or non-specific database searches using very wide mass 116 

tolerances18,37 are subject to these limitations: their ability to identify modifications requires 117 

comparison between spectra and large numbers of modified peptide candidates. As a result, 118 

these approaches are prone to infeasibly long search times. We measured the advantage of 119 

shifting this computational burden to TagGraph’s string matching and reconciliation procedure 120 

by comparing TagGraph’s execution time to four algorithms designed to consider greatly 121 

expanded search spaces18,37,40–42. We found that none could execute on both the entire data set 122 

and the search space TagGraph considered in this comparison. Even by providing them with 123 

reduced number of spectra, search spaces, or both, TagGraph’s analysis speed was over an 124 

order of magnitude greater than the next fastest algorithm (Fig. 1c, Table 1).   125 

Effective error estimation for modified peptides: beyond target-decoy 126 

Indexed string searches, as implemented by TagGraph, solve the long-standing conflict 127 

between search speed and search depth, but present a second challenge: estimating reliable 128 

false discovery rates (FDRs). The standard target-decoy estimation method we previously 129 

developed32 is unsuitable to TagGraph search results, since it loses discrimination accuracy as 130 

more peptides and PTMs are considered (Supplementary Note 2)27,43,44. Consequently, we 131 

developed a probabilistic validation strategy using a hierarchical Bayes Model optimized by 132 

expectation maximization (EM)45. Our robust model is universal, deducing the likelihood that any 133 

individual peptide-spectrum match is correctly interpreted, conditioned on fourteen quantitative 134 

and categorical attributes (Supplementary Note 3, Supplementary Fig. 3, Supplementary 135 

Fig. 4). Of these, half relate specifically to PTM-containing peptides, enabling discrimination 136 

between correctly and incorrectly interpreted spectra, regardless of the deduced peptides’ 137 

modification states.  138 

We first evaluated TagGraph’s error model by comparing it to traditional target-decoy database 139 

search (SEQUEST), using the cell line dataset described in Fig. 1c. We found that EM-140 

generated FDR estimates tended to be more conservative than those inferred from target-decoy 141 
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searches (Fig. 1d), as expected for a model that discriminates between correct and incorrect 142 

PTM assignments. Furthermore, we found that the extent to which SEQUEST and TagGraph 143 

disagreed was consistent with the estimated 1% FDR threshold we applied to both 144 

(Supplementary Fig. 5a). For the majority of these disagreements however, TagGraph-145 

generated peptide-spectrum matches were far more consistent with correct identifications based 146 

on protease specificity, algorithm-assigned scores, and ion assignment (Supplementary Fig. 147 

5b, Supplementary Fig. 6). 148 

To further evaluate TagGraph’s error model, we sought to measure how often modifications are 149 

miss-assigned to specific amino acid sites in the proteome. To accomplish this, we replaced all 150 

tyrosine residues with phenylalanines (mass difference of one oxygen, 15.9995 Da) in an 151 

altered human proteome sequence database (Fig. 1e).  We reasoned that an accurate 152 

expanded search algorithm should return phenylalanine-containing peptides with an additional 153 

oxygen localized to converted phenylalanines; peptides containing converted phenylalanines 154 

without the oxygen addition are incorrect. This approach should therefore serve to benchmark 155 

modification assignments, which, similar to target-decoy’s use without modifications, delivers an 156 

expected known result, and could be generalized across multiple search engines.   157 

We benchmarked four search methods against TagGraph with this validation tool. Each 158 

algorithm’s results were filtered based on target-decoy-based criteria (either the algorithm’s own 159 

implementation or a linear discriminant analysis11) or, for TagGraph, the hierarchical Bayes 160 

model. The proportion of peptide-spectrum matches containing unmodified phenylalanines at 161 

tyrosine positions was used to estimate the modification-specific FDR relative to the 1% 162 

predicted FDR. Due to their reliance on target-decoy based statistics (Supplementary Note 2), 163 

no algorithm besides TagGraph reliably discriminated phenylalanine-containing peptides: 164 

TagGraph’s error model was nearly an order of magnitude closer to the expected 1% than the 165 

next-best flexible search method (Fig. 1e), increasing sensitivity by more than four-fold 166 

(Supplementary Table 1) at 100 times the speed (Fig. 1c). 167 

Even when searching the conventional human proteome sequence database, the four flexible 168 

search methods above produced ‘confident’ results with readily identifiable errors at severely 169 

underestimated FDR rates (Supplementary Table 1, Supplementary Fig. 7). In contrast, 170 

TagGraph doubled the number of unique peptide identifications relative to SEQUEST (Fig. 1f) 171 

by enabling accurate identification of peptides with any protease specificity and modification 172 

state. Once reconciled with the Unimod resource10, we found that unanticipated post-isolation 173 

modifications accounted for the majority of this increase (83%), followed by biologically-174 
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regulated modifications (12%) and those with no previous association (5%) (Supplementary 175 

Table 1). Our analysis of this cell line demonstrated TagGraph’s unique ability to sensitively 176 

characterize modified peptides with speeds and accuracies that are compatible with current, 177 

large-scale proteomic workflows.   178 

Unrestricted analysis of the human proteome reveals a broad modification 179 

landscape  180 

To further investigate TagGraph’s utility for deep PTM characterization, we next applied our 181 

approach to a recently described draft human proteome33, approximately 150 times larger than 182 

our initial test data set. Due to their long computation times and underpowered validation 183 

techniques, performing this analysis with preexisting database search methods would not have 184 

been feasible.  We interpreted 25 million tandem mass spectra derived from 30 adult and fetal 185 

tissues and over 2,000 raw data files33 with TagGraph. Once de novo sequencing (PEAKS ver. 186 

746) was complete, searching these data with TagGraph collectively took just six days on a 187 

single desktop computer.  These data yielded over 1.1 million unique peptides, tripling the 188 

number originally reported using traditional database searching (Fig. 2a, Supplementary Table 189 

2). This analysis identified proteins not found in the initial report, ranging from 100 (Adult CD8+ 190 

T Cells) to over 600 (Adult Gallbladder) additional proteins per tissue (Supplementary Fig. 8a, 191 

Supplementary Table 3). Several of these were supported by histological staining 192 

(Supplementary Fig. 8b). 193 

As with our cell line analysis (Fig. 1), TagGraph predominantly rescued peptides bearing at 194 

least one modification that was not considered in the original search (Fig. 2b). A small number 195 

of post-isolation modifications (methionine oxidation; N-terminal carbamylation, 196 

carbamidomethylation, and formylation) collectively accounted for 38% of modified spectra (Fig. 197 

2c, Table 2), consistent with previous findings17,18,37,47. TagGraph rescued other commonly 198 

disregarded peptide classes, including semi-specific and non-specific trypsin cleavage, and mis-199 

assigned monoisotopic precursor masses (Fig. 2b).  200 

In comparison to the handful of abundant yet biologically irrelevant post-isolation modifications, 201 

this extremely deep proteome analysis revealed a much wider array of lesser-abundant PTMs 202 

(Fig. 2c-d, Supplementary Table 4). For example, we found N-terminal myristoylation, lysine 203 

hydroxylation, and arginine dimethylation hundreds to thousands of times in the proteome 204 

without requiring the kind of targeted, sample-intensive enrichment procedures that have 205 

previously been essential to PTM analysis.  This study confirmed 4,278 modifications previously 206 

reported in the Uniprot proteomics resource, while extending it by an additional 39,954 (Fig. 2e, 207 
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Supplementary Table 5). Comparing MS/MS spectra from this human proteome dataset to 208 

spectra derived from synthetic peptides (Supplementary Fig. 9) served to validate several 209 

unexpected, yet confidently identified peptides.  210 

Many PTMs act as reversible switches on protein function. Their enzymatic addition and 211 

removal regulates signaling networks, protein binding, and other cellular processes1,3. Although 212 

more than 90% of TagGraph-identified PTMs were previously unreported, we found several 213 

PTM-flanking sequence motifs14,48,49 enriched in this dataset (e.g. proline-directed 214 

phosphorylation11,50 and glycine-directed arginine methylation51), supporting their validity (Fig. 215 

3a, Supplementary Fig. 10). Furthermore, we identified over 200 gene ontologies52 that were 216 

significantly enriched among proteins bearing 22 noteworthy PTMs, giving additional support to 217 

their validity and functional significance (Fig. 3b, Supplementary Fig. 11, Supplementary 218 

Table 6). This unbiased analysis confirmed biological processes known to be regulated by 219 

multiple PTMs (e.g., acetyl Lys, methyl Lys, phosphorylated Ser regulating chromatin 220 

function53).  Other processes, such as the cell cycle, were associated with a much more 221 

restricted set of PTMs (phosphorylated Ser)54. 222 

We found that most PTMs were enriched in multiple biological process or cellular compartment 223 

were also implicated in multiple others.  For example, reversible arginine methylation 224 

dynamically regulates proteins involved in RNA splicing and stabilization50, as confirmed by our 225 

ontology analysis (Fig. 3b). We observed a relative increase in the mono- and di-methylation 226 

site abundances on RNA splicing proteins such as HNRNPA3 and SFPQ in reproductive tissues 227 

and lymphocytes (Fig. 3c, Supplementary Table 7), suggesting that these modifications have 228 

specific roles in these contexts. Chemically similar modifications like arginine mono- and 229 

dimethylation showed stark contrasts: heat shock proteins were highly and consistently 230 

methylated in this dataset, but were not readily identified in dimethylated states (Fig. 3c, 231 

Supplementary Table 7). 232 

Quantifying PTM abundance and stoichiometry without requiring biochemical 233 

enrichment 234 

We found that many PTMs’ abundances across the 30 tissues examined here mirrored those of 235 

the protein on which they were found, as exemplified by MBP R167 and HSPA8 R446 236 

methylation (Fig. 3c). This degree of congruity suggests consistent stoichiometry across 237 

tissues. Conversely, other PTMs, including SFPQ R681 and R695 mono- and dimethylation, 238 

were largely restricted to specific tissues, despite the proteins’ uniform expression across the 239 

entire dataset (Fig. 3c). Since PTMs and their host proteins can be simultaneously quantified by 240 
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mass spectrometry (e.g., Fig. 3c), we accordingly estimated each PTM’s stoichiometry 241 

(Supplementary Methods, Supplementary Table 8). This notion contrasts with previous PTM 242 

stoichiometry assays which required metabolic labeling55,56, or enzymatic removal of a single 243 

target PTM class56. While such experimental interventions may estimate stoichiometries for a 244 

single PTM class (e.g., phosphorylation), it is difficult to use them to compare multiple, 245 

overlapping PTMs. Considering that a PTM’s stoichiometry can have important implications for 246 

its substrate protein’s activity and function57, deeply sequenced proteome datasets like this 247 

stand to illuminate a wide range of protein regulation. 248 

In support of our flexible stoichiometry estimation approach, we found that protein N-terminal 249 

acetylation demonstrated the most consistently high stoichiometry (95.5%; stdev = 16.7%, Fig. 250 

3d). This is expected, considering the broad and irreversible acetyl group addition, co-251 

translationally catalyzed by N-terminal acetyltransferases58.  Conversely, we found that lysine 252 

acetylation demonstrated consistently low and variable stoichiometry (15.2%; stdev = 22.7%, 253 

Fig. 3d), consistent with its heterogeneous representation on histone proteins59, and its possible 254 

non-enzymatic origins on abundant cytosolic and mitochondrial proteins60,61. Over the entire 255 

dataset, we found that neither PTM abundance nor stoichiometry correlated with substrate 256 

protein abundance (Supplementary Fig. 12), supporting the complementary use of both 257 

measurements in proteome characterization. 258 

TagGraph simultaneously characterizes multiple PTM types on highly modified 259 

proteins 260 

TagGraph identified multiple PTMs that intersect on individual proteins, and on individual 261 

residues (e.g., SFPQ R681, R695) (Fig 3c, Supplementary Table 7). Extreme examples 262 

include Albumin (921 PTMs) and actin (514 PTMs) (Fig. 3e).  Histones are also well understood 263 

to undergo extensive and combinatorial modifications to encode epigenetic information1.  264 

However, deciphering these modifications has required individual histone isoform62 or specific 265 

modification63 enrichment.  Using TagGraph, we identified 277 PTMs across the major histone 266 

proteins, 132 of which were not previously reported (Supplementary Table 9). While we found 267 

modifications such as K28 dimethylation and K80 methylation on Histone H3 were both 268 

abundant and ubiquitous across the tissues examined here (Fig. 3f), we note several tissue-269 

specific PTM combinations such as a 25-fold higher abundance of Histone H4 R56 270 

dimethylation in fetal than adult tissues. Twenty-six PTMs, comprised of eleven PTM types, 271 

showed similarly higher abundance in fetal tissues, suggesting specific roles in developmental 272 

contexts (Supplementary Table 9).  Our unbiased evaluation of these modifications, performed 273 
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in conjunction with the rest of the proteome and without targeted enrichment techniques, opens 274 

new avenues to exploring tissue-specific epigenetic control. 275 

Enrichment-free PTM discovery identifies new roles for protein hydroxylation  276 

We found that hydroxylation of prolines, tyrosines and lysines comprised a large (16%) 277 

proportion of newly identified histone PTMs (Supplementary Table 9), yet only hydroxylated 278 

tyrosine was previously described64. This coincides with our broader observation that several 279 

modification classes remain uncharted across the human proteome, despite being highly 280 

prevalent.  Proline hydroxylation, for example, is the most abundant modification in the human 281 

body65, yet just 171 sites have been recorded66.  Unlike more widely studied modifications, no 282 

enrichment tools exist to facilitate targeted hydroxylation analysis. Furthermore, of 11 amino 283 

acids capable of becoming hydroxylated10, four (Met, Trp, Phe, His) are often hydroxylated by 284 

standard proteomics sample preparation protocols. Thus, true post-translational proline 285 

hydroxylation must be distinguished from mis-localized artifacts67.  Armed with TagGraph’s 286 

modification-focused error model, we confidently identified and localized 18-fold more hydroxyl 287 

proline residues than were previously known in humans (Table 2). 288 

Proline hydroxylation is best understood in the context of collagen proteins, as it is essential to 289 

their role in maintaining extracellular matrix stability65.  Despite hydroxyl proline comprising over 290 

13% of mammalian collagen by weight68, only 128 sites across all collagens were previously 291 

assigned in humans (75% of all charted hydroxyl prolines in the human proteome).  TagGraph 292 

identified 166 proline hydroxylation sites on COL1A2 alone, just three of which were previously 293 

described, identified by Edman degradation69(Fig 4a). While most proline hydroxylation sites 294 

were highly represented across most solid tissues examined here (e.g., P330, P642), several 295 

displayed tissue-specific abundance (e.g., P408, restricted to colon, bladder, liver, gallbladder, 296 

and pancreas) (Fig. 4b).  TagGraph identified 25 other types of PTMs from this single protein, 297 

suggesting multiple routes by which PTMs cooperatively regulate collagen structure and 298 

function.   299 

Although hydroxyl proline’s role in maintaining collagen structure is well understood65, its 300 

prevalence and roles on other proteins has remained sparse70–72. Just 26 proteins were 301 

previously reported to bear hydroxyl proline modifications besides collagens and collagen 302 

domain-containing proteins66, and thus, it has widely been considered a relatively specialized 303 

PTM.  Our analysis extends known proline hydroxylation by nearly 3,000 sites spanning nearly 304 

1,000 substrate proteins (Supplementary Table 5). These proteins were significantly enriched 305 
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for 113 biological processes (Supplementary Table 6). Thus, proline hydroxylation likely 306 

shapes a diverse range of cellular processes beyond matrix homeostasis (Fig. 3b). 307 

Noting that tumors also exploit multiple cellular processes during oncogenesis, we hypothesized 308 

that proline hydroxylation could play a role in cancer.  Significant associations were previously 309 

shown between specific phosphorylation sites and cancer-associated mutations8. Taking a 310 

similar approach, we examined whether proline hydroxylation significantly intersected with 311 

missense somatic cancer mutations catalogued in the COSMIC database73. We found that 312 

hydroxylated prolines were 25% more likely to be associated with cancer mutations than 313 

expected (p<6e-11, Fisher’s exact test, Fig. 4c). Enrichment persisted even after excluding 314 

collagen domain-containing proteins (22%, p<4e-6, Fig. 4c). Methionine oxidation, a common 315 

post-isolation modification, was not enriched (p=0.49), nor were other post-isolation proline 316 

modifications (Fig. 4c). Similar to phosphorylation, further study of hydroxylation could 317 

substantially increase insight into cancer pathogenesis and reveal new therapeutic targets. The 318 

identification of mutated hydroxylation sites on proteins which are hubs of post-translational 319 

signaling (i.e., 20 such sites on histones) further supports this hypothesis (Supplementary 320 

Table 10). 321 

Identifying candidate PTM interactors and regulators  322 

As with proline hydroxylation, TagGraph significantly expanded the number of known sites for 323 

lysine hydroxylation and asparagine hydroxylation by 18-fold and 14-fold, respectively. To 324 

further elucidate protein-PTM interactions beyond ontological groupings, we reasoned that 325 

PTMs should co-occur with the specific proteins with which they interact. We tested this notion 326 

by screening all PTM and protein quantifications for significant correlations across the 30 327 

tissues examined here. We found several protein-PTM correlations that confirmed known 328 

functional associations (Fig. 4d, Supplementary Fig. 13). Generally, we found that proteins 329 

that were highly correlated with specific modifications did not bear those modifications 330 

themselves (Supplementary Fig. 13a). However, they tended to be enriched for the same 331 

functional ontologies as the PTMs’ substrates (Supplementary Fig. 13 c). Such highly 332 

correlated proteins are functionally associated with these PTMs and may be candidate PTM-333 

altering enzymes or indirect regulators.  334 

We found over 70 proteins with abundances that correlated highly with lysine hydroxylation 335 

abundance across all tissues (Fig. 4d). Many of these proteins, such as PXDN and CYGB have 336 

known roles in oxygen transport or oxidoreductase activity (Supplementary Fig. 13c), 337 
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supporting their role in regulating hydroxylation PTMs.  Of note, one enzyme known to catalyze 338 

this PTM, PLOD174, was the second most highly correlated (Fig. 4d).  339 

Surprisingly, many proteins that correlated with lysine hydroxylation also correlated with 340 

asparagine hydroxylation (Fig. 4d), despite no previous evidence linking these PTMs to the 341 

same biological context. The primary substrates for lysine hydroxylation are collagens, which 342 

are a major component of the extracellular matrix (ECM)75. Though asparagine hydroxylation 343 

was not previously characterized in the ECM, TagGraph revealed 45 novel sites on Fibrillin-1 344 

and Fibrillin-2 (Supplementary Table 5), both of which are ECM constituents. As opposed to 345 

specific correlates (such as PLOD1 for lysine hydroxylation), proteins that correlate highly with 346 

both PTMs may function as general positive regulators of ECM homeostasis through 347 

hydroxylation (Fig. 4d). It is plausible that asparagine hydroxylation might stabilize fibrillins, 348 

analogous to the function of lysine and proline hydroxylation in stabilizing collagen fibrils65 and 349 

asparagine hydroxylation in stabilizing ankyrins76.  350 

Discussion  351 

Characterizing the identity, abundance, and function of post-translational modifications (PTMs) 352 

is arguably the single-most important contribution mass spectrometry-based proteomics can 353 

make to cell biology16.  However, computational and experimental limitations have reinforced a 354 

myopic view of a diverse and dynamic PTM landscape. TagGraph overcomes these obstacles 355 

with two major innovations, making it possible to identify essentially any modified peptide 356 

sequence from high-quality tandem mass spectra. 357 

First, we circumvent the slow task of performing thousands or tens of thousands of peptide-358 

spectrum comparisons for each observed tandem mass spectrum. Instead, we devised an 359 

extremely rapid string matching approach that produces only a handful of candidate sequence 360 

matches that are then scored against the observed spectrum. A graph-based reconciliation 361 

algorithm lets TagGraph consider any combination of modifications to a peptide.  Importantly, it 362 

performs this task at speeds commensurate with conventional database search algorithms. Just 363 

as similar string matching algorithms revolutionized next-generation DNA sequencing31, we 364 

expect this capability will become increasingly important as the latest generation of high-365 

resolution and high-volume mass spectrometers77,78 become more widely available.  366 

Second, we optimized a probabilistic model that simultaneously evaluates the likelihood that a 367 

peptide’s sequence and any modifications it bears are correct.  This component of our approach 368 
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was essential, since the standard “target-decoy” error estimation method we previously 369 

developed is inherently blind to amino acid modifications67,79.  We demonstrate the accuracy of 370 

our error estimations using synthetic peptide validation, direct comparison to target-decoy, and 371 

re-identification of known sites, motifs, protein-PTM relationships, and functional roles for 372 

various PTMs. We expect the ease with which the model can be modified will offer superior 373 

FDR estimation to target-decoy in several other specific applications80,81. 374 

Our analysis of an unprecedentedly rich PTM landscape could only be accomplished through 375 

these two advances. This kind of high-throughput, unbiased PTM discovery is compatible with 376 

any proteomics experiment using high-resolution tandem-mass spectrometry. We demonstrate 377 

this ability in several ways, including a focused analysis on proline hydroxylation, a pervasive 378 

PTM previously only known to occur on a small number of proteins. We expand the number of 379 

known sites by 18-fold, linking proline hydroxylation to a much wider array of biological contexts 380 

than originally thought, and demonstrate its significant association with somatic cancer 381 

mutations. Furthermore, simultaneous identification of unmodified and modified peptides from 382 

the same dataset enables high throughput quantification of PTM stoichiometries. This metric 383 

holds great potential for illuminating functional relationships between PTMs, their substrates and 384 

candidate regulatory proteins.  385 

In addition to enabling routine, enrichment-free PTM discovery and characterization, we 386 

envision many other applications for TagGraph. By searching MS/MS spectra in an enzyme-387 

independent manner, for example, TagGraph could automatically detect endogenous peptides 388 

82 and alternate start site utilization83. Furthermore, TagGraph’s speed holds tremendous 389 

advantages for refining gene predictions when applied in a proteogenomic context: by rapidly 390 

evaluating multiple gene assemblies in all six frames while permitting amino acid substitutions, 391 

insertions, and deletions it can validate translation products that would confound conventional 392 

database search methods. This capacity could have direct application to systems that have 393 

previously been intractable to large-scale proteome analysis such as the gut microbiome and 394 

other complex microbial communities. Finally, by learning essential experimental details (e.g., 395 

PTMs, enzymatic digestion, and mass accuracy) directly from input data, TagGraph can help 396 

standardize proteomic analyses.  This capability stands to enable direct comparisons between 397 

data sets collected by multiple laboratories, thereby fostering the kind of large-scale 398 

collaborations that have transformed the genomics field. 399 
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FIGURES 417 

Figure 1.  418 

 419 

Figure 1.  Through flexible string matching, TagGraph efficiently enables in-depth 420 
proteome characterization while controlling identification error.  a) TagGraph workflow. 421 
Traditional database search engines compare an observed MS/MS spectrum to hundreds or 422 
thousands of peptide candidates. In contrast, TagGraph first extracts a candidate peptide 423 
sequence from high resolution MS/MS spectra by de novo sequencing to facilitate rapid indexed 424 
protein database searching, and sequence reconciliation. This process lets TagGraph consider 425 
an unlimited number of PTMs and amino acid substitutions.  A small number of top-scoring 426 
sequence candidates are ultimately scored against the input spectrum using an EM-optimized 427 
probabilistic Bayesian network.  b) The majority of de novo-interpreted high-resolution MS/MS 428 
spectra are mostly correct.  The proportion of analyzed spectra interpreted with over 50% 429 
sequencing accuracy by PEAKS 46, pNovo 84, and PepNovo 85 on a data set of 168,391 MS/MS 430 
spectra derived from the A375 melanoma cell line. Error bars correspond to the standard 431 
deviation in accuracy over different fractions from this data set. ROC curves corresponding with 432 
these graphs are described in Supplementary Fig. 2b. c) TagGraph search times on the A375 433 
data set were at least an order of magnitude faster than previously described unconstrained 434 
modification and iterative search strategies, even when the latter were given comparatively 435 
reduced search spaces (Table 1). Letters indicate which search space expansions were 436 
compatible with the search algorithm: E, no enzyme specificity; M, any possible modification; N, 437 
any number of modifications per peptide; P, all proteins in sequence database.  F indicates that 438 
the algorithm estimates a false discovery rate from its identifications. d) Expectation 439 
Maximization-based false discovery rate estimation is generally consistent with, but more 440 
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conservative than traditional target-decoy-based estimates when both are applied to TagGraph 441 
results. This is expected considering target-decoy’s inability to distinguish correct and incorrect 442 
modification annotations e) The human proteome sequence database was modified, substituting 443 
every tyrosine residue with a phenylalanine. The accuracy of PTM-specific false discovery rates 444 
was estimated based on substituted phenylalanine-containing peptides reported by each 445 
algorithm (Methods). Only TagGraph reported results with an empirically calculated FDR close 446 
to 1%. Open search18 was not included in this error rate comparison because it does not directly 447 
localize modifications to specific residue positions. f) By allowing unrestricted modifications to 448 
candidate peptides, TagGraph identified nearly twice as many unique peptide forms as 449 
SEQUEST, configured with common search parameters. Analogous to the proteoform 450 
concept86, we define unique peptides by the combination of the peptide’s amino acid sequence 451 
and any modifications made to them. 452 

Figure 2.  453 

 454 

Figure 2.  TagGraph extends deep proteome characterization to post-translational 455 
modifications.  a) TagGraph confirmed the majority of identifications made by Kim et al.33 456 
(Supplementary Table 2), but also expanded unique peptide identities from the human 457 
proteome dataset over three-fold relative to those originally reported.  b) Categorical breakdown 458 
of unique peptide forms (distinguishing PTMs) identified by TagGraph. As expected, the majority 459 
of peptides identified by both TagGraph and Kim et al. correspond to tryptic peptides. Peptides 460 
identified by TagGraph but not Kim et al. primarily originated from non-tryptic peptides and 461 
peptides with unanticipated modifications. Post-isolation modifications comprised the most 462 
prevalent identification category in this dataset. c) Mass shifts (modified amino acid mass – 463 
unmodified amino acid mass) corresponding to all modifications identified by TagGraph from the 464 
human proteome dataset reveal a complex modification landscape. Numbers of identifications 465 
(peptide-spectrum matches) span six orders of magnitude. Despite the presence of several 466 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 15, 2018. ; https://doi.org/10.1101/282624doi: bioRxiv preprint 

https://doi.org/10.1101/282624
http://creativecommons.org/licenses/by-nc/4.0/


17 
 

highly abundant post-isolation modifications (e.g., formylation), the depth of the proteomic 467 
profiling achieved in this dataset made it possible to characterize lower abundance post-468 
translational modifications. Inset: modification frequencies without log transformation. d) Ranked 469 
relative abundances of 2,576 PTM-amino acid combinations, as estimated by the number of 470 
spectra bearing each from the human proteome dataset.  Ten of these are highlighted; all 471 
modifications are represented in Supplementary Table 4. e) TagGraph analysis of the human 472 
proteome dataset identified 39,954 modification sites not present in Uniprot, 44,232 modification 473 
sites total. The overlap in the sites reported by TagGraph and Uniprot is highly significant (p-474 
value < 1e-308, Fisher’s exact test). 475 
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Figure 3.  476 

 477 

Figure 3.  TagGraph reveals insights into PTM dynamics, function, and regulation.  a) 478 
Sequence logos corresponding with select TagGraph-identified PTMs, as generated by 479 
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WebLogo87. Amino acids flanking the indicated PTMs were evaluated with the Motif-X48 480 
algorithm, confirming previously characterized motifs while positing new ones (Supplementary 481 
Fig. 10). b) Significantly enriched gene ontologies associated with prevalent post-translational 482 
modifications (yellow, 1% FDR (Benjamini-Hochberg corrected)). Ontologies and significances 483 
were assigned with the DAVID web tool52. A full list of all enriched ontologies is available in 484 
Supplemental Table 6. Ontologies significantly enriched among post-isolation modifications 485 
were excluded to correct for abundance-based biases in PTM detection (Supplementary Fig. 486 
11). c) Arginine methylation and dimethylation distribution across proteins and tissues. The 64-487 
most abundant monomethylated or dimethylated Arg sites from the entire data set are displayed 488 
across the y-axis, along with corresponding protein expression levels (49 proteins).  Three 489 
modification sites on HNRNPA3 and SFPQ are highlighted for their distinct arginine 490 
monomethylation and dimethylation patterns across the tissues, despite demonstrating near 491 
uniform protein levels. Methyl modifications on MBP and HSPA8 are highlighted for their tissue 492 
specificity and ubiquity (respectively). Proteins were ordered by hierarchical clustering.  PTMs 493 
were arranged to match their substrate proteins. All methylation sites are reported in 494 
Supplementary Table 7. d) Stoichiometry distributions vary for different PTMs, giving insight 495 
into their regulation and function.  Box and whisker plots indicate the average (circle) and 496 
median (horizontal bar) values, 25th quartile and 75th quartile (box), and minimum and maximum 497 
(whiskers). e) Several proteins were found to be heavily modified in this data set. Histogram 498 
shows the number of proteins identified with the indicated number of distinct PTMs (site and 499 
modification). Of note, 921 distinct PTM sites were identified for human serum albumin. f) 500 
TagGraph identified both known and novel PTM sites on Histone H3 (Supplementary Table 9); 501 
a selection of the more abundant PTMs are shown. Site positions are numbered including the 502 
initiating methionine, as is the convention in the Uniprot protein database. PTMs circled in black 503 
are present in Uniprot. More detailed Histone PTM maps are presented in Supplementary 504 
Table 9. 505 
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Figure 4. 506 

 507 
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Figure 4. Characterization of hydroxylation, an un-enrichable PTM, enabled by 508 
TagGraph. a) TagGraph extensively expanded known hydroxylation sites across the human 509 
proteome; a selection of the most abundant PTMs on COL1A2 are shown as an example. 510 
TagGraph expanded proline hydroxylation from three previously known sites (P420, P441, 511 
P444)69 to 166 while identifying 25 other types of PTMs on this protein (Supplementary Table 512 
5). b) PTMs identified in (a) were found to vary in abundance across tissues. Many 513 
hydroxylations displayed uniform abundance across solid tissues (i.e., P330, P642), whereas 514 
others displayed tissue-specific abundance variations (P408). c) Comparison between 515 
modification and cancer mutation sites (COSMIC). The size of each bubble indicates the 516 
number TagGraph-identified modification sites that were also found to be mutated in sequenced 517 
tumors. The expected value and significance (Fisher’s exact test) of this overlap was 518 
determined from the background of all peptides confidently identified by TagGraph (Methods). 519 
Proline hydroxylation sites significantly overlapped with mutation sites both overall (p <6e-11) 520 
and when restricted to non-collagen domain containing proteins (p <4e-6), suggesting that 521 
mutating these sites’ PTM capacity plays a role in cancer pathogenesis. d) Correlations 522 
between protein abundance and total PTM profiles across tissues (Supplementary Fig. 13) 523 
suggest candidate regulatory enzymes and functional associations.  Proteins that highly 524 
correlated with lysine hydroxylation (x-axis), asparagine hydroxylation (y-axis) or both are 525 
highlighted (yellow, blue, or green, respectively). PLOD1 (in purple), the enzyme responsible for 526 
lysine hydroxylation in collagen emerged among the proteins most correlated with this 527 
modification. Protein expression levels were correlated with PTM stoichiometry across all 528 
tissues (Methods). 529 

  530 
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TABLES 531 

Table 1. Search spaces considered by conventional and expanded 532 

database search algorithms 533 

Algorithm Enzyme Mods Considered Mods/peptide 
Protein 

Restriction 

SEQUEST LysC methionine oxidation three No 

Open 
search 
(SEQUEST) 

LysC 
Any mass between -500 
and 500 Daltons 

one 
(unlocalized) 

No 

PEAKS  
PTM 

None 
435 previously known 
modifications (Unimod) 

three Yes 

Byonic LysC 
Any mass between -40 and 
100 Daltons 

one No 

ModA None 
Any mass between -200 
and 200 Daltons 

unlimited No 

TagGraph None Any mass unlimited No 

 534 
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Table 2. Top 10 Post-isolation, post-translational, and previously uncharacterized 535 

amino acid modifications identified from the Kim et al. dataset.  536 

 537 

Category
a

Modification
b

Specificity
c

Mass 

Shift
d

Unique 

Peptides
e

Peptide-

Spectrum 

Matches
f

Sites
g

Carbamylation Peptide N-term +43.01 63,302 254,382 70,207

Formylation Peptide N-term +27.99 47,329 293,863 57,371

Carbamidomethylation Peptide N-term +57.02 42,310 304,898 52,899

Oxidation Met +15.99 42,193 784,001 41,115

Deamidation Asn +0.98 21,064 252,713 22,609

Acetaldehyde Peptide N-term +26.02 15,016 132,086 20,402

Deamidation Gln +0.98 8,911 36,897 13,015

Gln->pyroglutamate Peptide N-term Gln -17.03 8,372 123,277 7,966

Carbamidomethylation Lys +57.02 7,575 40,422 12,355

Carbamylation Lys +43.01 6,932 30,245 11,409

Phosphorylation Ser +79.97 3,466 15,798 3,729

Met-loss + Acetyl Protein N-term Met -89.03 2,391 39,799 1,705

Hydroxylation Pro +15.99 1,901 26,348 3,079

Citrullination Arg +0.98 1,551 5,328 2,020

GlyGly Lys +114.04 871 2,403 1,613

Allysine Lys -1.03 861 2,801 1,670

Hydroxylation Lys +15.99 766 3,316 1,090

Cyano Cys -32.03 601 2,591 567

Carboxylation Glu +43.98 467 726 913

Acetylation Lys +42.01 455 1,323 1,196

Unknown Peptide N-term +12.00 3,834 14,743 3,692

Unknown Peptide N-term +51.01 2,569 8,834 2,698

Iron(III)
h

Asp, Glu +52.92 2,552 9,843 1,468

carbamidomethyl and formyl on same 

residue
h

Peptide N-term
+85.02 1,632 4,848 2,072

disulfide bondh Cys with nearby Cys -116.06 1,529 9,788 1,840

carbamidomethyl on C-terminus or Arg
h

Peptide C-term Arg
+57.02 1,372 3,914 3,150

Unknown Peptide N-term +83.04 1,280 4,632 1,948

carbamidomethyl and pyro-

glutamination on same residue
h

Peptide N-term Glu
+39.01 1,099 3,622 908

Unknown Peptide N-term +23.98 1,059 2,919 1,381

reaction of N-terminal carbamidomethyl 

with internal Met
h

Peptide N-term, co-occurs 

with dethiomethyl 

modification of internal Met

+105.02 957 4,907 991

P
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a) Top ten modifications of the three indicated categories are shown, ordered by the number of unique peptides identified in the Kim 

et al. human proteome dataset.  Categories assigned based on the likely modification identity, as determined by TagGraph.

b) Modification identities assigned by TagGraph, based on observed mass shifts, modification specificity, and evidence in the Unimod 

resource. 

c) Specificity determined from the sites within modified peptdies to which observed mass shifts were assigned.

d) Mass shift measured from the difference between an observed amino acid residue's monoisotopic mass and the expected value. 

Negative values indicate a net mass loss.

e) Number of unique peptide sequences bearing the annotated modification. Does not include peptide sequences identified with 

multiple modifications.

f) Total number of spectra in which indicated modification was confidently identified.

g) Total number of distinct amino acid residue sites bearing indicated modification.

h) Hypothetical identity of mass shift
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SUPPLEMENTARY METHODS 14 

1. Datasets 15 

a. A375 data set 16 

1.a.i. Sample processing 17 

A375 melanoma cells (ATCC) 1 were cultured in DMEM supplemented with 10% FCS and 18 

antibiotics. Cells were detached by trypsinization, pelleted, washed with PBS and flash frozen in 19 

liquid nitrogen. 5x107 flash-frozen A375 cells were thawed on ice and lysed by tip sonication in 20 

Urea lysis buffer (8 M Urea, 100 mM NaCl, 50 mM Tris, 1 mM PMSF, 10 µM E-64, 100 nM 21 

bestatin, pH 8.2). The cell lysate was reduced (5 mM DTT, 55 ºC, 30 min), alkylated (12.5 mM 22 

iodoacetamide, room temperature, 1 hr in the dark), and digested overnight with LysC at an 23 

enzyme:substrate ratio of 1:100 (37 ºC). The resulting peptide mixture was desalted using C-18 24 

Sep-Pak cartridges (Waters), dried using vacuum centrifugation, and resuspended in 10 mM 25 

ammonium formate, pH 10 prior to high pH reverse phase (HPRP) separation. HPRP was 26 

performed using an Agilent 1100 binary HPLC, delivering a gradient (0%-5% B over 10 min, 27 

5%-35% B over 60 min, 35%-70% B over 15 min, 70% B for 10 min) across an Agilent C-18 28 

Zorbax Extend column. Buffer A was 10 mM ammonium formate, pH 10 and buffer B was 10 29 

mM ammonium formate, 90% acetonitrile, pH 10. Sixty one-minute fractions were collected and 30 

concatenated into twelve fractions as described previously 2.  31 

1.a.ii. Mass Spectrometry 32 

All HPRP fractions were desalted using C-18 Sep-pak cartridges (Waters), vacuum centrifuged, 33 

and resuspended in 5% ACN, 5% formic acid at approximately 1 ug/ul. One microgram of each 34 

fraction was analyzed by microcapillary liquid chromatography electrospray ionization tandem 35 

mass spectrometry (LC-MS/MS) on an LTQ Orbitrap Velos mass spectrometer (Thermo Fisher 36 

Scientific, San Jose, CA) equipped with an in-house built nanospray source, an Agilent 1200 37 

Series binary HPLC pump, and a MicroAS autosampler (Thermo Fisher Scientific). Peptides 38 

were separated on a 125 um ID x 18 cm fused silica microcapillary column with an in-house 39 

pulled emitter tip with an internal diameter of approximately 5 um. The column was packed with 40 

ProntoSIL C18 AQ reversed phase resin (3 um particles, 200Å pore size; MAC-MOD, Chadds 41 

Ford, PA). Each sample was separated by applying a two-step gradient: 7% -25% buffer B over 42 

2h; 25-45% B over 30 min. Buffer A was 0.1% formic acid, 2.5% ACN and buffer B was 0.1% 43 

formic acid, 97.5% ACN. The mass spectrometer was operated in a data dependent mode in 44 

which a full MS scan was acquired in the Orbitrap (AGC: 5x105; resolution: 6x104; m/z range: 45 

360-1600; maximum ion injection time, 500 ms), followed by up to 10 HCD MS/MS spectra, 46 
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collected from the most abundant ions from the full MS scan. MS/MS spectra were collected in 47 

the Orbitrap (AGC: 2x105; resolution: 7.5x103; minimum m/z: 100; maximum ion injection time, 48 

1000 ms; isolation width: 2 Da; normalized collision energy: 30; default charge state: 2; 49 

activation time: 30 ms; dynamic exclusion time: 60 sec; exclude singly-charged ions and ions for 50 

which no charge-state could be determined).The mass calibration of the Orbitrap analyzer was 51 

maintained to deliver mass accuracies of ±5 ppm without an external calibrant. All raw mass 52 

spectrometry data were uploaded to the PRIDE repository3 and assigned the reference ID 53 

PXD######. 54 

1.b. Synthetic peptide confirmation data set 55 

In total, 86 synthetic peptides (SpikeTides from JPT Peptide Technologies GmbH) validating 56 

various modifications, semi- or non-specific peptide assignments were evaluated. A final pool of 57 

all peptides dissolved in 0.1% formic acid was generated and the concentration of each 58 

individual peptide was roughly 250 fmol/µL. Two LC-MS/MS runs were performed and the auto-59 

sampler injected 1 µl of the synthetic peptide pool. An ESI-Orbitrap Elite mass spectrometer 60 

(Thermo Electron, Bremen, Germany) interfaced with an Eksigent ekspert nanoLC 425 system 61 

(Eksigent technologies, Dublin, CA, USA) was used. Peptides were introduced into the mass 62 

spectrometer via a fused silica microcapillary column (100 µm inner diameter) ending in an in-63 

house pulled needle tip. The columns were packed in-house to a length of 18 cm with a C18 64 

reversed-phase resin (with Reprosil-Pur C18-AQ resin (3 µm Dr. Maisch, GmbH, Germany). For 65 

elution a two-step gradient of 4-25% buffer B (5 % DMSO, 0.2% formic acid and 94.8 % 66 

acetonitrile (v/v)) in buffer A (5 % DMSO, 0.2% formic acid in water (v/v)) over 60 min followed 67 

by a second phase of 25-45% buffer B over 20 min was used. The LTQ-Orbitrap was operated 68 

in data-dependent mode to automatically switch between Orbitrap-MS (from m/z 340 to 1600) 69 

and ten MS/MS acquisition. Each FT-MS scan was acquired at 60,000 FWHM nominal 70 

resolution settings while the MS/MS spectra were acquired using HCD and at a resolution of 71 

15,000. Precursor ion charge state screening was enabled (charge state 1 rejected) and the 72 

normalized collision energy was set to 35%. 73 

The resulting data were analyzed by TagGraph to match mass spectra with their best-matching 74 

synthetic peptide sequence. Synthetic-derived and experiment-derived mass spectra (e.g., from 75 

the draft human proteome data set) were only compared if spectra were assigned to the same 76 

peptide sequence in the same charge state. Of the 86 peptides synthesized, 75 were matched 77 

in this manner and used to validate TagGraph peptide-spectrum assignments (Supplementary 78 

Fig. 9). The mass tolerance used to match b- and y-ions was 0.1 Daltons. 79 
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1.c. Draft human proteome data set 80 

All RAW data and database search results from the draft human proteome data set 4 were 81 

downloaded from the PRIDE5 data repository using accession PXD000561.  82 

2. De novo search engine comparisons 83 

We compared the performance of three de novo sequencing algorithms, PEAKS 7 6, PepNovo+ 84 

(ver. 3.1) 7, and pNovo (ver 1.1) 8 and assayed their ability to generate mostly correct sequence 85 

interpretations of high mass accuracy MS/MS spectra9. Each algorithm was used to search the 86 

A375 dataset, and the resulting peptide identifications were compared against high confidence 87 

peptide spectrum matches obtained from a SEQUEST search of the same dataset as previously 88 

described9(3, below). Static and differential modifications were set as for the SEQUEST search. 89 

Mass tolerance parameters were optimized to achieve maximum sequencing accuracy for each 90 

algorithm individually9. PEAKS was run with a precursor mass tolerance of 10 ppm and a 91 

fragment mass tolerance of 0.01 Da. PepNovo+ was run a 0.01 Dalton precursor mass 92 

tolerance and 0.05 Da mass tolerance on fragment ions. pNovo was run with a 6 ppm precursor 93 

mass tolerance and a 25 ppm fragment ion tolerance. 94 

The accuracy of each de novo algorithm was assessed using the sequence accuracy metric 95 

(Supplementary Fig. 2a)9. For a given de novo peptide-spectrum match and its corresponding 96 

high confidence SEQUEST peptide-spectrum match, sequence accuracy represents the fraction 97 

of prefix residue masses10 present in the high confidence SEQUEST match which were also 98 

present in the de novo sequence9.  99 

3. Database search engine comparisons  100 

We assessed several expanded database search algorithms’ abilities to detect undefined 101 

modifications, without constraining protease specificity, using the A375 dataset. As a baseline, 102 

we searched all 168,391 MS/MS spectra in this dataset with SEQUEST 11 (ver. 28 rev 12) using 103 

an indexed sequence database comprised of the human proteome (Uniprot, downloaded 104 

12/9/2014) 12 plus common contaminants. The database was concatenated with a reversed 105 

database for target-decoy FDR estimation. The SEQUEST search was conducted with LysC 106 

protease specificity, 50 ppm precursor ion mass tolerance, and 0.5 Da fragment ion mass 107 

tolerance. Cysteine carbamidomethylation (+57.021464 Da) was set as a static modification and 108 

methionine oxidation (+15.994915 Da) was set as a differential modification. 109 

The A375 dataset was then searched using PEAKS PTM (ver. 7) 13, Byonic (ver. 2.5.6) 14, ModA 110 

(ver. 1.03) 15, and the Open search method using SEQUEST 16 – four strategies described as 111 
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being able to either consider relatively large numbers of discrete amino acid modifications, or 112 

searching spectra with no a priori constraints on possible modifications. It was not possible to 113 

search the entire A375 dataset with any of the above algorithms using completely unconstrained 114 

parameters with respect to both modifications and protease specificity: either the algorithms 115 

would not execute, or they did not complete within a reasonable amount of time (5 days per 116 

RAW data file). Thus, CPU times were calculated using the most feasible parameters 117 

approximating such a search for each algorithm, and extrapolated from a limited subset of 118 

search results in cases where searching the entire dataset would be too computationally 119 

intensive. As such, the search times reported in Fig. 1d represent a substantial underestimate 120 

of the true time needed for each of these algorithms to analyze a sample in a manner equivalent 121 

to TagGraph, as described below. 122 

For PEAKS PTM, the A375 dataset was first de novo sequenced using the following settings: 10 123 

ppm precursor ion tolerance and 0.01 Da fragment ion tolerance, cysteine 124 

carbamidomethylation as a static modification, and methionine oxidation as a differential 125 

modification. The dataset was then analyzed with PEAKS PTM using the same modification and 126 

mass tolerances as for the de novo sequencing, LysC enzyme specificity allowing for 127 

nonspecific cleavage at both ends of the peptide, and additionally searching with all 485 128 

modifications curated in PEAKS’s internal PTM database. For ModA, the A375 dataset was 129 

analyzed with the following settings: 0.05 Da precursor mass tolerance, 0.05 Da fragment ion 130 

tolerance, allowing one modification per peptide, no protease specificity, modification size 131 

between -200 Da and 200 Da. For Byonic, the dataset was analyzed using the following 132 

settings: 10 ppm precursor ion tolerance, 20 ppm fragment ion tolerance, LysC protease 133 

specificity, cysteine carbamidomethylation as a static modification, methionine oxidation as a 134 

differential modification, wildcard search enabled with a minimum mass of -200 Daltons and a 135 

maximum mass of 200 Daltons. For all three algorithms, the sequence database used was the 136 

same as for SEQUEST. PEAKS PTM and Byonic were allowed to use their own internal 137 

methods for creating decoy sequences, whereas ModA was given a concatenated 138 

forward/reversed database as input. The open search method was conducted using SEQUEST 139 

and the same indexed database as above, with a 500 Da tolerance on the precursor ion mass 140 

and a 0.1 Da mass tolerance on fragment ion masses.  141 

For the search time comparison between all algorithms (Fig. 1d), CPU times were calculated as 142 

the sum of the CPU time over all processes spawned by each database search algorithm to 143 

analyze the data. Due to computational constraints, it was not possible to run Byonic with a 144 
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semi specific or nonspecific enzyme specificity, or to search the entire A375 dataset with either 145 

Byonic or ModA. Thus, we conducted the Byonic search with full LysC specificity, and analyzed 146 

only a single fraction of the A375 dataset for both Byonic and ModA. The estimated CPU time 147 

over the entire dataset was extrapolated by multiplying the CPU time recorded from the analysis 148 

of a single HPRP fraction by the ratio of the total MS/MS spectra in the dataset (168,391) 149 

divided by the number of MS/MS spectra in the single fraction (16,613). 150 

4. TagGraph Parameters 151 

TagGraph was used to analyze both the A375 dataset and the draft human proteome data set. 152 

In both cases, all available MS/MS were first de novo sequenced using PEAKS. The resulting 153 

peptide sequences and raw mass spectra (mzXML-formatted 17) were given as input to 154 

TagGraph.  155 

For the A375 dataset, PEAKS was run as described above. For the draft Human Proteome data 156 

set, PEAKS was run with a 10 ppm precursor mass tolerance, 0.05 Dalton fragment ion 157 

tolerance, cysteine carbamidomethylation as a static modification, and methionine oxidation as 158 

a differential modification to maximize sequence accuracy.  159 

The de novo sequencing results were searched with TagGraph against the human proteome 160 

(Uniprot, downloaded 12/9/2014) plus common contaminants. The database was concatenated 161 

with reversed decoy sequences only for searches of the A375 dataset.  This enabled direct 162 

comparisons of FDR estimates derived from TagGraph with those derived from target-decoy 163 

searching, and fair comparison of the CPU time of TagGraph with the other database search 164 

algorithms. For the draft human proteome data set, only the forward database was searched as 165 

FDR estimates were derived using the hierarchical Bayes scoring model. For both datasets, 166 

mass tolerances were set to 10 ppm precursor ion tolerance and 0.1 Dalton fragment ion 167 

tolerance. Enzyme specificity was set to LysC for the A375 dataset and Trypsin for the human 168 

proteome data set. Although enzyme specificity was considered as a scoring attribute in the 169 

hierarchical Bayes model, TagGraph is able to return high-confidence semi specific and 170 

nonspecific peptide-spectrum matches regardless of the input enzyme specificity. 171 

High confidence results were retrieved at a 1% FDR for the A375 dataset by ranking all returned 172 

peptide-spectrum matches according to their probabilities P(D|+) from highest to lowest, then 173 

adding matches in order of decreasing rank to the set of high confidence results until the 174 

expected FDR equaled 1% (Supplementary Note 3, Equation 2). The human proteome data 175 
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set was evaluated in a similar manner, considering each experiment (e.g., gel fractionation of 176 

adult heart tissue) individually rather than for the entire dataset as a whole.  177 

5. PTM FDR estimation with amino acid-substituted proteome  178 

Target-decoy based error estimation accuracy declines when applied to peptide modifications 179 

and other large search spaces 18 (Supplementary Note 2). Despite this, all previously 180 

described unrestricted search algorithms rely on target-decoy to delineate sets of confidently 181 

identified spectra. To assess the degree to which predicted FDRs produced by these algorithms 182 

deviate from the actual FDR, we employed a modified human proteome sequence database in 183 

which every tyrosine residue was replaced by a phenylalanine. The mass difference between 184 

these residues (15.994915 Da) corresponds with an oxygen atom, and is a frequently observed 185 

modification on several residues (e.g., methionine), while distinguishing other unmodified 186 

residues (e.g., alanine and serine).  Thus, we reasoned that search engines capable of accurate 187 

PTM assignment and discrimination should search the tyrosine-substituted database and return 188 

phenylalanine-containing peptides modified by an oxygen only on those phenylalanines that 189 

were previously tyrosines.  They should be able to discriminate these identifications from 190 

erroneous ones in which oxidation modifications were assigned to unaltered residues.  We 191 

analyzed the A375 dataset against this modified sequence database using SEQUEST, PEAKS 192 

PTM, Byonic, and ModA. The results from each algorithm were then filtered to a 1% predicted 193 

FDR using target-decoy based statistics. Byonic and PEAKS PTM were allowed to use their 194 

own internal target-decoy based filtering algorithms. Search results provided by SEQUEST and 195 

ModA were filtered using a linear discriminant method 19. The FDR for each set of search results 196 

was calculated as the proportion of peptide-spectrum matches containing phenylalanines at 197 

tyrosine positions which were not annotated with a phenylalanine to tyrosine modification 198 

(+15.9995 Da) or a modification of equivalent mass. 199 

The SEQUEST search was conducted with phenylalanine to tyrosine, methionine hydroxylation, 200 

proline hydroxylation, lysine hydroxylation, and asparagine hydroxylation as differential 201 

modifications. Aside from this change, all searches were conducted with the same parameters 202 

and data as described in section 3 above. Open search was not considered in this comparison 203 

as it does not provide amino acid localizations for its predicted modification masses. 204 

The A375 dataset was also analyzed with TagGraph against the modified human sequence 205 

database. The parameters used were identical to those described in section 4 above. Results 206 

were filtered to a 1% predicted FDR using the hierarchical Bayes model and the actual FDR 207 

was calculated as described above.  208 
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6. Abundance calculations 209 

6b. Protein abundance calculation  210 

Protein abundances were calculated using the distributed normalized spectral abundance factor 211 

(NSAF) method 20. Briefly, the number of spectral counts originating from peptides that uniquely 212 

map to single proteins were summed over all proteins identified in an experiment. Spectral 213 

counts recorded from peptides that map to multiple proteins were distributed across all such 214 

proteins according to the proportion of spectral counts assigned to them from uniquely mapped 215 

peptides. Finally, summed spectral counts for each protein were normalized by protein length, 216 

and the sum of all protein abundances for each experimental dataset was normalized to one. 217 

Protein abundances per tissue were calculated as the average of the individual NSAF for that 218 

protein over all experiments performed on that tissue. 219 

6b. Site abundance and stoichiometry calculations  220 

To compare modification sites between tissues, we quantified the abundance of sites using two 221 

methods: normalized spectral counts (NSC) and estimated stoichiometry. For both methods, we 222 

first generated a catalog of all confident peptide identifications that span a given modified amino 223 

acid position of a protein, regardless of modification state. The total spectral counts 224 

corresponding to all peptides containing the amino acid position (S_T) and just those 225 

corresponding to peptides containing the exact modification on the site of interest (S_m) were 226 

calculated for each experimental dataset.  227 

The normalized spectral count of a modification site is calculated as S_m divided by the number 228 

of confidently identified peptide-spectrum matches in the experimental dataset. The 229 

stoichiometry of the modification is calculated as S_m divided by S_T. Modification site 230 

abundances (stoichiometry or NSC) per tissue were calculated as the average of the site 231 

abundances over all experiments performed on that tissue. Due to inherent difficulties in 232 

accurately reporting very low abundances with spectral counting 21, experiments in which no 233 

peptides overlapping the site of modification were detected were not included in the average. 234 

Thus, the sum of stoichiometries of all modifications at a particular site in a particular tissue may 235 

not be normalized. Finally, the abundance, stoichiometry or normalized spectral count of a 236 

modification site was set to zero for a particular tissue if the corresponding protein NSAF was 237 

zero in that tissue. 238 

7. Gene ontology analysis 239 
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Gene ontology analysis was conducted using the DAVID web portal 22. For each post-240 

translational modification of interest, proteins bearing that modification were compiled and input 241 

as a gene list. The background list used was the Uniprot human proteome. The resulting gene 242 

ontologies were downloaded and a global FDR threshold (Benjamini-Hochberg) of 1% was used 243 

as a threshold for determining significantly enriched ontologies. 244 

We observed that many ontologies were broadly enriched across all post-translational 245 

modifications and hypothesized that these were simply associated with highly abundant proteins 246 

and did not reflect true post-translational modification properties. As a control, we applied the 247 

above enrichment analysis to fifteen post-isolation modifications and observed many ontologies 248 

that were significantly enriched for all post-isolation modifications considered (Supplementary 249 

Fig. 11). These ontologies were excluded from the set of enriched ontologies in the post-250 

translational modification analysis (Fig. 3b, Supplementary Table 6). 251 

8. COSMIC dataset comparison 252 

A database of cancer mutations was downloaded via FTP from the COSMIC website23. The 253 

mutation list was then filtered to keep only missense mutations. To guard against slight 254 

variations in protein sequence between COSMIC and Uniprot, mutations for which the amino 255 

acid residue at the denoted position in the Uniprot protein sequence did not match the non-256 

mutated amino acid identity in the corresponding COSMIC entry were discarded. 257 

To guard against biases in background amino acid distributions, overlap statistics were only 258 

calculated for proteins on which both cancer mutations and the PTM of interest was detected 259 

and only against the background of peptides confidently identified by TagGraph in the human 260 

proteome dataset. Using proline hydroxylation as an example, the number of prolines, number 261 

of hydroxylation prolines, number of mutated prolines, and number of mutated and hydroxylated 262 

prolines were counted only on peptides confidently identified by TagGraph and on proteins 263 

containing both cancer mutations and proline hydroxylation. This overlap was then tested for 264 

significance via Fisher’s exact test. This analysis was carried out analogously for other types of 265 

hydroxylations (lysine, asparagine, methionine, etc.). 266 

9. Protein-PTM correlation analysis  267 

Reasoning that many modifications’ abundances and stoichiometries will depend on specific 268 

protein-modifying enzymes, we sought to discover functional relationships between post-269 

translational modifications and proteins.  We identified highly correlated subsets of modifications 270 

and proteins by comparing their abundances across the tissues examined here. Modification 271 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 15, 2018. ; https://doi.org/10.1101/282624doi: bioRxiv preprint 

https://doi.org/10.1101/282624
http://creativecommons.org/licenses/by-nc/4.0/


10 
 

site and protein lists were first filtered to include only those identified from at least three tissues. 272 

For a particular post-translational modification of interest (e.g., Lysine hydroxylation), the 273 

abundance of the modification was averaged across all measured sites from all proteins within 274 

each tissue, forming a vector representing the abundance of the modification across all tissues. 275 

Similarly, for all identified proteins, the calculated NSAF was used to form an abundance vector 276 

of that protein’s expression across all tissues.  We next determined the Pearson correlation 277 

coefficient between all modification and all protein vectors computed and filtered as described 278 

above. The proteins with the largest magnitude correlations (positive or negative) were then 279 

considered as candidates having a functional relationship with a modification of interest. 280 

Modification abundance vectors were calculated using both modification stoichiometries and 281 

modification-normalized spectral counts. Both types of quantification were used in the 282 

correlation analysis, often yielding different results (Supplementary Fig. 13a). However, in both 283 

cases, our analysis revealed previously described associations between proteins and post-284 

translational modifications (e.g., arginine methylation and RNA splicing proteins), supporting the 285 

validity of this analysis (Supplementary Fig. 13c).  286 

10. Code availability.  287 

The TagGraph algorithm is currently available via a web interface at 288 
http://kronos.stanford.edu/TAG_GRAPH/.  The source code is available through github at 289 
http://github.com/adevabhaktuni/XXXXXXXXX 290 
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SUPPLEMENTARY FIGURES 291 

Supplementary Fig. 1 292 

 293 
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Supplementary Fig. 1.  TagGraph algorithm workflow overview. TagGraph employs a five-294 

step procedure as depicted below, and detailed in Supplementary Note 1: (i) De novo 295 

sequences are used to query an indexed sequence database. All candidate database entries 296 

containing a maximum-length substring in common with the de novo sequence are retrieved. (ii) 297 

The de novo sequence is compared against each database-derived candidate match. 298 

Continuous amino acid substrings of length >2 that are identical between the query and 299 

database candidate are identified as putative tags. (iii) Candidate matches (defined as a 300 

peptide plus the set of its assigned modifications) are retrieved using a longest path algorithm 301 

on a directed acyclic graph. Sequence tags defined in (ii) above are represented as nodes in the 302 

graph and modifications as edges. Paths are drawn from start positions on the database peptide 303 

to end positions through nodes and edges. (iv) Candidate matches over all database peptides 304 

are collected and scored against the MS/MS spectrum using a probabilistic scoring model. (v) 305 

After all de novo sequences are analyzed, additional candidate modification annotations are 306 

created for select spectra if they are likely to be correct based on global dataset modification 307 

abundances.  308 
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Supplementary Fig. 2 309 

 310 

Supplementary Fig. 2. De novo sequencing algorithms yield mostly correct 311 

interpretations of most input spectra.  a) Example calculation of sequence accuracy – the 312 

proportion of peptide bonds shared between a high-confidence peptide identification and the 313 

corresponding de novo peptide interpretation9. b) Cumulative proportion of spectra exceeding a 314 

given sequencing accuracy threshold (x-axis) for three de novo sequencers, PEAKS, PepNovo, 315 

and pNovo, as benchmarked on the A375 proteomic dataset (Fig. 1). PEAKS demonstrated the 316 

best performance overall.  317 
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Supplementary Fig. 3 318 

 319 

Supplementary Fig. 3. Hierarchical Bayes model description. a) Bayes model used for 320 

fitting correct (+) and incorrect (-) peptide-spectrum match distributions. Grey arrows indicate 321 

dependencies between model attributes and the distribution being trained. Blue arrows indicate 322 

dependencies between model attributes. Attributes in green oval specifically pertain to 323 

sequence modifications. Further details are provided in Supplementary Note 3.  b)  Example 324 

distributions for several model attributes derived from the A375 dataset (Fig. 1). Likelihood 325 
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distributions were iteratively refined across multiple measurement dimensions using 326 

expectation-maximization (EM).  327 

Supplementary Fig. 4 328 

 329 

Supplementary Fig. 4.  Expectation Maximization-estimated false discovery rate 330 

estimations are robust.  a) Randomized starting model guesses for expectation-maximization-331 

based training of the hierarchical Bayes model rapidly converged, and yielded highly consistent 332 

probability estimates. b) Five-fold cross-validation (CV) demonstrated that training the EM-333 

optimized hierarchical Bayes model did not substantially affect the returned set of confidently 334 

identified spectra, when each model was tested on a dedicated test spectra set.  Further details 335 

can be found in Supplementary Note 3. 336 
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Supplementary Fig. 5 337 

 338 

Supplementary Fig. 5. Conflicting high-confidence peptide-spectrum matches strongly 339 

favor TagGraph interpretations over SEQUEST. a) 98.76% of 47,323 PSMs for which both 340 

TagGraph and SEQUEST return a high-confidence result (1% estimated FDR) agree, consistent 341 

with an estimated 1% FDR for both algorithms. PSMs were derived from the A375 dataset.  b) 342 

Of the remaining 1.24% of PSMs for which SEQUEST and TagGraph disagree, TagGraph score 343 

and peptide missed cleavage distributions were more consistent with high-confidence 344 

identifications.  345 
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Supplementary Fig. 6 346 

 347 
Supplementary Fig. 6. Examples of TagGraph-assigned peptide-spectrum matches that 348 

conflict with high-confidence SEQUEST assignments. Representative spectra 349 

demonstrating superior fragment ion assignments made by TagGraph for peptides more 350 

consistent with LysC digestion than the conflicting peptides SEQUEST assigned to the same 351 
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spectra.  Both results were assigned scores consistent with a 1% FDR on the A375 dataset with 352 

respect to each set of search results.  353 

Supplementary Fig. 7 354 

[See file TG_Figure_S07_Search_Algorithm_TypeI_II_Errors.pdf] 355 

 356 

Supplementary Fig. 7. Examples spectra depicting “Case 1” (modification 357 

mislocalization) and “Case 2” (incorrect peptide sequence) interpretation errors, as 358 

defined Supplementary Note 2.  359 
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Supplementary Fig. 8 360 

 361 

Supplementary Fig. 8. Increased proteome coverage by TagGraph relative to Kim et al. a) 362 

The number of proteins identified by TagGraph and not Kim et. al. are shown for each tissue 363 

examined in this dataset. Identified proteins were assigned one of three categories: (i) proteins 364 

with any unmodified tryptic peptides mapped to them, (ii) proteins with unmodified non-tryptic 365 

peptides mapped to them and no unmodified tryptic peptides mapped, and (iii) proteins with only 366 

modified peptides mapped to them. Proteins were designated as identified in the Kim et. al., 367 

analysis if at least one peptide was mapped to them, and proteins were designated as present 368 

in the TagGraph analysis if their normalized spectral abundance factor (NSAF) was greater than 369 
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zero. We attribute the pronounced spike protein identifications from the Adult Monocytes tissue 370 

to a procedural error made by the study’s original authors:  We found that the pepXML-371 

formatted search result file corresponding with ‘bRP_Elite’ analysis, which we downloaded from 372 

the PRIDE database (PXD000561) was identical to the ‘bRP_Velos’ pepXML file.  The raw data 373 

files corresponding with these two conditions were clearly distinct, and were used as input to 374 

TagGraph. This spike in identifications can only partially be attributed to TagGraph’s enhanced 375 

identification capabilities. b) Immunostaining images taken from ProteinAtlas24 for select 376 

proteins identified by TagGraph and not Kim et. al., validates TagGraph-specific protein 377 

predictions.  378 

Supplementary Fig. 9 379 

[See file TG_Figure_S09_SyntheticPeptides.pdf] 380 

 381 

Supplementary Fig. 9. Synthetic peptides confirm novel post-translational modifications 382 

and other unexpected sequence variants TagGraph measured from draft map of the 383 

human proteome. 384 

Supplementary Fig. 10 385 

 386 
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Supplementary Fig. 10. Motif-X analysis for known PTMs reveals known and novel 387 

substrate motifs.  Motifs identified by the Motif-X algorithm25 surrounding several abundant 388 

PTMs. This analysis recovers known motifs for phosphoserine, phosphothreonine, dimethyl 389 

arginine, and methyl arginine PTMs, and predicts new motifs for the less well-characterized 390 

proline hydroxylation and lysine glucosylgalactosylation PTMs.  Fraction indicates the number of 391 

times the indicated motif was identified out of the total number of modification sites entered into 392 

the Motif-X algorithm. 393 
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Supplementary Fig. 11 394 

 395 

Supplementary Fig. 11. Accounting for ontologies enriched among post-isolation 396 

modifications. Gene ontology enrichment analyses of PTM-bearing proteins may be biased by 397 

mass spectrometers’ tendency towards identifying modified peptides from highly abundant 398 

proteins. Consequently, some ontologies could reach statistical significance based on protein 399 

abundance alone, rather than PTM-specific biological phenomena. To account for this, we 400 
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identified significantly enriched ontologies (1% FDR, Benjamini-Hochberg corrected; yellow) 401 

among proteins bearing any of 15 abundant post-isolation modifications. Because these 402 

modifications should not have any inherent biological relevance, any ontology enriched among 403 

these post-isolation modifications were deemed false (red brackets), and removed from the 404 

analysis presented in Fig. 3b.  405 

Supplementary Fig. 12 406 

 407 

Supplementary Fig. 12. Modification abundances and stoichiometries are not correlated 408 

with protein abundances. Scatterplots of protein normalized spectral abundances factor 409 

(NSAF) with modification stoichiometry (left) or modification normalized spectral counts (NSC, 410 

right). In both cases, modification abundance did not correlate with protein abundance. 411 
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Supplementary Fig. 13.  412 

 413 

Supplementary Fig. 13. Proteins that correlate with PTM substrates share functional 414 

properties. a) Expression level (NSAF) profiles for 15,747 proteins spanning 30 tissues were 415 

correlated with averaged PTM profiles across the same tissues, using either stoichiometry or 416 

normalized spectral counts (NSC).  The representative scatter plot shown here for lysine 417 

hydroxylation indicates the extent to which each protein’s tissue profile (points) correlates with 418 

lysine hydroxylation across the 30 tissues as measured by estimated stoichiometry (x-axis) or 419 

total abundance (y-axis). These data show that the two PTM quantification methods are broadly 420 

similar. However, protein correlation ranks may differ greatly between the two quantification 421 

methods.  Thus, both can produce complementary but similar sets of highly correlated proteins. 422 

b) Protein-PTM correlations generally did not indicate specific modified substrates.  A protein’s 423 

abundance could correlate with a particular PTM because it regulates or directly catalyzes the 424 

PTM’s formation on its substrate.  Alternatively, proteins could be correlated with a modification 425 

because they are themselves heavily-modified substrates of the PTM.  Kinases, which both 426 

catalyze phosphorylation events and are themselves highly phosphorylated, would be expected 427 

to be examples of both conditions, for example.  By contrast, collagens would be examples of 428 

the latter condition, as abundant proteins in certain tissues that carry a highly degree of 429 

hydroxylated prolines. To evaluate these possibilities, we first identified the 20 proteins that 430 

most highly correlated with each of the 28 PTMs shown here, as computed using either 431 
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modification NSC or stoichiometry.  Of these, we plotted the number of proteins that were also 432 

modified by the indicated PTM.  For the most part, however, PTMs were not identified on the 433 

same proteins to which they were most highly correlated, suggesting that they may be 434 

candidate regulators of PTM transfer. c) Enriched gene ontologies for the top fifty most 435 

correlated proteins for several PTMs suggests either enzymatic activity (i.e., oxidoreductase 436 

activity is known to be required for lysine hydroxylation to occur) or common functional activity 437 

(i.e., arginine dimethylation is known to be enriched in RNA splicing proteins, Fig. 3b). As 438 

demonstrated in part b, these proteins are themselves not substrates of the PTM of interest. 439 

Thus, these ontologies further suggest functional relationships between PTMs and proteins 440 

which are highly correlated with them.  441 

SUPPLEMENTARY TABLES 442 

Supplementary Table 1 443 

Supplementary Table 1. TagGraph, PEAKS PTM, Byonic, ModA, and Open search 444 
results per mass spectrum from A375 cell line data set 445 

[NB: this is a 92 Mb data file] 446 

a. Fraction number from high-pH reversed phase concatenated fractionation (see Methods) 447 

b. Number of the MS2 fragmentation scan 448 

c. Charge state of the precursor ion that gave rise to the indicated MS2 scan 449 

d. Computed peptide’s mass, based on its amino acid sequence and any additional 450 
modifications 451 

e. Inferred singly-charged ion mass, based on observed precursor ion’s m/z ratio and 452 
charge 453 

f. Parts-per-million mass deviation between observed and theoretical peptide masses 454 

g. Probability of indicated peptide identification being correct, as computed by search 455 
algorithm. 456 

h. Log-transformed, inverse probability of indicated peptide identification being correct, as 457 
computed by the expectation maximization-optimized Bayesian network: -log10(1-p) 458 

i. Peptide sequence from the input FASTA sequence database, noting the amino acids 459 
flanking the peptide, appearing outside the periods. 460 

j. TagGraph-resolved peptide sequencing, noting deviations from the database sequence 461 
with a “-“ 462 

k. Modifications assigned to TagGraph-resolved peptide: Nested series are of the format: 463 
(('Mod1 name from Unimod if exists', Mod1 delta mass from Unimod if it exists, Mod1 delta 464 
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mass vs. Unimod if exists), (Mod1 target amino acid from Unimod if exists, Mod1 target amino 465 
acid location on peptide from Unimod if exists), indexed location of Mod1 on peptide sequence 466 
counting from zero),  (('Mod2 name from Unimod if exists’…, indexed location of Mod2 on 467 
peptide sequence counting from zero),(...)] 468 

l. List of proteins from FASTA sequence database containing indicated peptide 469 

m. Score assigned to identified peptide by search algorithm 470 

n. Peptide sequence, indicating position of modification within parentheses. 471 

o. Inferred name and specificity of modification indicated in (n) 472 

p. Example protein containing indicated peptide sequence 473 

q. modified amino acid and rounded mass of corresponding modification 474 

r. Peptide sequence, indicating position of modification with numerical modification 475 
representation immediately following modified residue 476 

s. Deviation (Da) between observed and theoretical (unmodified) peptide masses 477 

 478 

Supplementary Table 2 479 

Supplementary Table 2. High-confidence TagGraph results per mass spectrum from 480 
human proteome data set  481 

[NB: this is a 10.2 Gb data file] 482 

a. Tissue from which mass spectrum was derived 483 

b. Acquisition method for mass spectrum, using the format [separation method (SDS-PAGE 484 
(“Gel”) or high-pH reversed phase (“bRP”))]_[mass spectrometer (LTQ Orbitrap Velos (“Velos”) 485 
or Orbitrap Elite (“Elite”)] 486 

c. Fraction number from high-pH reversed phase concatenated fractionation (see Methods) 487 

d. Number of the MS2 fragmentation scan 488 

e Retention time (minutes) of the indicated MS2 scan 489 

f. Charge state of the precursor ion that gave rise to the indicated MS2 scan 490 

g. Inferred singly-charged ion mass, based on observed precursor ion’s m/z ratio and 491 
charge 492 

h. Computed peptide’s mass, based on its amino acid sequence and any additional 493 
modifications 494 

i. Parts-per-million mass deviation between observed and theoretical peptide masses 495 

j. Probability of indicated peptide identification being correct, as computed by the 496 
expectation maximization-optimized Bayesian network. 497 
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k. log-transformed, inverse probability of indicated peptide identification being correct, as 498 
computed by the expectation maximization-optimized Bayesian network: -log10(1-p) 499 

l. peptide sequence from the input FASTA sequence database, noting the amino acids 500 
flanking the peptide, appearing outside the periods. 501 

m. TagGraph-resolved peptide sequencing, noting deviations from the database sequence 502 
with a “-“ 503 

n. Modifications assigned to TagGraph-resolved peptide: Nested series are of the format: 504 
(('Mod1 name from Unimod if exists', Mod1 delta mass from Unimod if it exists, Mod1 delta 505 
mass vs. Unimod if exists), (Mod1 target amino acid from Unimod if exists, Mod1 target amino 506 
acid location on peptide from Unimod if exists), indexed location of Mod1 on peptide sequence 507 
counting from zero),  (('Mod2 name from Unimod if exists’…, indexed location of Mod2 on 508 
peptide sequence counting from zero),(...)] 509 

o. list of proteins from FASTA sequence database containing indicated peptide 510 

p. peptide sequence derived from de novo sequencing 511 

q. score assigned to de novo sequenced peptide by de novo algorithm 512 

 513 

Supplementary Table 3 514 

Normalized spectral abundance factor (NSAF) for all proteins TagGraph measured from Kim 515 
et al data set. 516 

Supplementary Table 4 517 

All modifications found by TagGraph and their corresponding number of peptide-spectrum 518 
matches and unique peptides.  Sites with at least 20 spectral counts were reported in 519 
modification counts reported in text. 520 

Supplementary Table 5 521 

Normalized spectral count (NSC) for all modified sites TagGraph measured from Kim et al 522 
data set. 523 

Supplementary Table 6 524 

Table S6: All enriched ontologies and corresponding p values for 22 noteworthy PTMs 525 
(biological process and cellular compartment) 526 

Supplementary Table 7 527 

All mono- and dimethylation sites with normalized spectral counts (NSC) and corresponding 528 
protein abundances (NSAF). 529 
 530 

Supplementary Table 8 531 

Estimated stoichiometry for all modified sites TagGraph measured from Kim et al data set. 532 

 533 
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Supplementary Table 9 534 

PTMs TagGraph assigned to five representative histone isoforms, aligned with prior histone 535 
PTM compilations. 536 

Supplementary Table 10 537 

Supplementary Table 10. Significant overlap between COSMIC cancer mutations and 538 
TagGraph proline hydroxylations 539 
 540 
 541 

SUPPLEMENTARY NOTES 542 

Supplementary Note 1: TagGraph 543 

A. FM-index procedure. The FM-Index26 implementation used in TagGraph is a fork of an 544 

existing open source implementation (https://github.com/mpetri/FM-Index). To create an FM-545 

index of the human proteome 12, we first concatenated all sequences in the FASTA-formatted 546 

protein database into a flat sequence file. A separate database of protein start offsets is 547 

maintained for retrieval of protein annotations. A Burrows-Wheeler Transform27 was then 548 

applied to the flat sequence file for fast substring search, the results of which were compressed 549 

using an RRR Wavelet Tree 28 for efficient in-memory storage. The number of occurrences of a 550 

candidate sequence pattern in an index can be computed in O(N) time, where N is the length of 551 

the input pattern. The locations of the input pattern in an index can be retrieved in O(M) time, 552 

where M is the number of occurrences of the input pattern in the index.  553 

B. TagGraph algorithm. The TagGraph algorithm takes as input a set of high-resolution 554 

MS/MS spectra, a corresponding set of de novo sequence interpretations, and an FM-Index 555 

constructed from a protein FASTA file (Supplementary Note 1a). The algorithm then generates 556 

and ranks a list of candidate peptide-spectrum matches for each input MS/MS spectrum with 557 

respect to the indexed protein sequences.  558 

TagGraph first computes the maximum matching substring between an input de novo sequence 559 

and the FM-index, then retrieves all candidate protein sequences from the index which contain 560 

this substring. For each candidate, TagGraph first computes all amino acid dimers which match 561 

between the de novo sequence and protein sequence. Contiguous dimers are then merged into 562 

longer sequence substring “tags,” which are then input as nodes into a directed acyclic graph. 563 

Edges are drawn between any two nodes to represent regions in which the de novo sequence 564 

and matching candidate peptide sequence disagree. This disagreement could be due to a de 565 

novo sequencing error or the presence of a sequence variant, post-isolation modification, post-566 
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translational modification, or previously uncharacterized mass shift, in the peptide which gave 567 

rise to the source spectrum. Each edge is annotated with its possible interpretations and 568 

weighted based on a heuristic scoring scheme designed to weight more likely explanations 569 

more highly (Supplementary Fig. 1). The top scoring peptide matches for each candidate are 570 

retrieved from the graph as the top scoring paths between a set of start and end nodes 29. 571 

These start and end nodes represent potential start and end sites for a peptide interpretation in 572 

the candidate matching protein. The scored evidence supporting a peptide-spectrum 573 

interpretation from its start to its end nodes is referred to as its path score.  574 

Once identified, each candidate peptide match is scored against the observed MS/MS spectrum 575 

using a probabilistic model to derive its spectrum score.  This model scores all fragment ions 576 

that support the peptide identification according to the relative likelihood of measuring the 577 

observed fragment ion intensity versus random chance (Poisson) (Supplementary Fig. 1). The 578 

probabilistic fragmentation model described above was trained on a library of 20,000 high 579 

confidence in-house generated HCD MS/MS spectra, collected from peptides unrelated to the 580 

current study.  581 

To improve TagGraph’s ability to discriminate true PTMs over confounding isobaric 582 

interpretations (e.g., two phosphorylation events on neighboring serines versus the less likely 583 

explanation of pyrophosphorylation on a single serine, Supplementary Fig. 1), the algorithm 584 

creates a second set of candidate peptide-spectrum matches to explore alternate, isobaric 585 

modifications learned from the input dataset:  1) All combinations of mass shift and 586 

corresponding amino acid are tallied from the initial set of candidate peptide spectrum matches, 587 

to create a mass shift – amino acid frequency matrix. 2) Each candidate peptide’s mass shift is 588 

evaluated with respect to the frequency matrix generated in (1). 3) If the peptide’s mass shift is 589 

equal to an existing modification corresponding with the same peptide assigned to a different 590 

MS/MS spectrum, is more prevalent in the entire dataset than the existing modification, and has 591 

a valid modifiable amino acid on the unmodified peptide sequence, then a peptide with this 592 

alternate modification is added as a match candidate to the corresponding spectrum.  4) If the 593 

mass of a candidate modification can be explained by the sum of two modifications represented 594 

in the list learned in (1), an additional peptide carrying these two PTMs will be added as a match 595 

candidate to the corresponding spectrum.  This will occur, however, only if the expected number 596 

of peptides with this combination of modifications in the dataset is greater than one, and if both 597 

modifications have valid sites on the unmodified candidate peptide sequence. 5) All primary and 598 

secondary match candidates are assigned a path score and spectrum score as described 599 
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above. 6) These are combined and ranked with the existing peptide-spectrum matches from the 600 

first round of candidate generation (Supplementary Fig. 1).  601 

Supplementary Note 2. Target-decoy error estimation is poorly suited to 602 

unrestricted search results 603 

The target-decoy validation methodology is readily applicable to search results generated by 604 

conventional database search engines. Peptides identified by unrestricted search engines like 605 

TagGraph pose several challenges that were not anticipated in our initial description and of this 606 

error estimation tool, and which violate the major assumptions we proposed30–32. For target-607 

decoy to accurately estimate false discovery rates, the set of decoys must be chosen such that 608 

incorrect identifications have an equal chance of matching either the target or decoy databases. 609 

For conventional database search, choosing a decoy database composed of the reversed 610 

counterparts of sequences in the target database largely satisfies this criterion. However, even 611 

relatively simple searches permitting just one variable modification (e.g., phosphorylation), 612 

secondary validation methods (e.g., Ascore 33 are needed to measure the modification’s site 613 

localization accuracy. This issue arises because the assumptions underpinning target-decoy are 614 

violated: the likelihood of a correct (target) peptide bearing an incorrectly-localized modification 615 

matching a given MS/MS spectrum is far greater than an incorrect, decoy peptide. As we will 616 

demonstrate below, this problem is greatly compounded when considering hundreds of 617 

modifications simultaneously (as Peaks PTM does), and becomes exponentially worse still 618 

when allowing arbitrary mass modifications and no protease specificity. In all cases, errors 619 

pertaining to the identity and localization of the annotated modifications and the location of the 620 

peptide sequence in the proteome cannot be accurately estimated using target-decoy with 621 

reversed sequence decoys. 622 

Case 1: Improper modification annotation and localization 623 

This case is the most common source of error in unrestricted database search, and is not 624 

addressed by target-decoy based validation. When considering a peptide sequence with a 625 

potential modification, an unrestricted search algorithm must score all possible localizations of 626 

that modification on the peptide sequence.  The best, or highest scoring localization is often 627 

returned, although other localizations could be considered as well. Every residue in the peptide 628 

as well as the peptide’s N- and C-termini serve as potential modification sites.  629 

Algorithms which consider large numbers of known residue-specific modifications but not 630 

undefined mass shifts, such as Peaks PTM and Byonic (not in wildcard mode) are still 631 
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confronted by extremely large numbers of possible localizations. For instance, according to 632 

Unimod, methylation (+14.01565 Da) can be localized to the peptide N-terminus or C-terminus, 633 

as well as the amino acids C,H,K,N,Q,R,D,E,S, and T. Furthermore, many modifications in 634 

Unimod have similar, near-isobaric masses, increasing the set of potential localizations beyond 635 

those suggested by the modification itself. 636 

Another potential source of FDR estimation error lies in determining the number and types of 637 

modifications assigned to a peptide. When considering a peptide with a known mass shift 638 

corresponding to a limited set of potential modifications, an algorithm must decide whether the 639 

mass shift corresponds to a single modification, two modifications in combination, or three or 640 

more. Even when considering only well-defined modifications, the combined mass of two 641 

modifications often equals the mass of third modification – two phosphorylations equal the mass 642 

of one pyrophosphorylation; two methylations equal the mass of one dimethylation, etc. There 643 

are also a considerable number of cases in which a single parent mass could correspond to 644 

various combinations of different modifications. For instance, the mass 86.00 Daltons could 645 

correspond to two carbamylations or one acetylation and one carboxylation. In the case of 646 

arbitrary mass modifications, a given mass shift could correspond with an effectively infinite 647 

range of modifications and modification combinations. The enormity of the set of possible 648 

modifications also limits the effectiveness of the open search method 16, necessitating user-649 

supervised follow-up analysis to identity the modification corresponding with a measured mass 650 

shift, and to localize it on the returned peptide sequence.  651 

Due to the abundance of candidates considered by the search engine, errors in modification 652 

annotation are common in all unrestricted search methods. These errors can arise from low-653 

quality mass spectra, resulting from noise, incomplete fragmentation, co-isolated precursor ions, 654 

or other confounding features.  They can also arise from the search engine’s configuration, such 655 

as internal scoring functions that inappropriately give extra weight modifications believed to be 656 

more likely a priori, or because the algorithm did not consider the true modification annotation 657 

as a candidate. In general, peptide-spectrum matches with incorrect modification annotations 658 

share many of the same b- and y-ions as the correct modification annotations. Thus, it is far 659 

more likely for a peptide to match an incorrect modification annotation than a reversed decoy 660 

sequence. A few examples of such errors produced by previously published unrestricted search 661 

algorithms are provided (Supplementary Figure 7).  662 
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Rare but biologically important PTMs can often occur at rates orders of magnitude lower than 663 

the most common post-isolation modification in a dataset. Without an accurate method to 664 

estimate FDRs of modification annotations, systematic algorithm-dependent errors are subject 665 

to being mistaken for these kinds of rare peptide-spectrum matches, limiting the utility of 666 

unrestricted modification searches for finding them. TagGraph’s hierarchical Bayesian model 667 

addresses this issue by making no assumptions about types of modifications present in the 668 

dataset a priori (or about any other attribute of the dataset). Thus, the validation model learns 669 

the distribution of modifications present, and weights its confidence in a particular modification 670 

annotation against other attributes of the peptide-spectrum match, such as the evidence 671 

provided in the spectrum, localization of the peptide sequence, and other attributes. 672 

Case 2: Incorrect base peptide sequence 673 

The large set of possible modifications an unrestricted search algorithm must consider also 674 

makes it possible for such algorithms to choose an incorrect base peptide sequence. This 675 

incorrect peptide sequence could originate from a protein other than the correct sequence (i.e., 676 

a sequence from a homologous protein containing a single amino acid polymorphism), or could 677 

be a slight deviation from the correct peptide sequence (i.e., with several amino acids added or 678 

truncated from the N- or C- terminus). In all cases, these incorrect base peptide sequence 679 

predictions can be reconciled with the MS/MS spectrum’s precursor mass through erroneous 680 

modification annotations. As above, these incorrect base peptide matches are more likely than 681 

decoy sequence matches to a spectrum since they often share many b- and y-ions with the 682 

correct peptide-spectrum match. A few examples of such errors are provided (Supplementary 683 

Figure 7). 684 

The rate at which these types of errors occur is determined by the degree of sequence self-685 

similarity present in the sequence database and the number of modifications considered. As the 686 

number of modifications considered increases, more base peptide sequences can be 687 

considered as candidate matches for a peptide spectrum match. Similarly, as sequence self-688 

similarity increases (i.e., due to homology), more sequences similar to the true peptide 689 

sequence can be considered as candidates: mass shifts assigned to one or more modifications 690 

can make them consistent with the spectrum’s precursor mass, even with very high degrees of 691 

measurement mass accuracy.  692 

Exacerbation of Case I and Case II errors when allowing arbitrary protease specificity 693 
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We have shown with specific examples and with global analysis that previously described 694 

unrestricted search algorithms are prone to the above errors cases.  Furthermore, the rates of 695 

these errors greatly exceed what would be expected using target-decoy FDR estimation. This 696 

error underestimation problem could be worse for TagGraph, since it is the first to perform truly 697 

unconstrained search, with respect to protease specificity, and arbitrary types and numbers of 698 

modifications, and sequence variants. This larger search space raises the likelihood of matching 699 

an incorrect peptide sequence to an input spectrum by chance.  We explore several of these 700 

possibilities below. 701 

Peptides that are inconsistent with protease specificity can result from either in-source 702 

fragmentation or endogenous protease activity.  Though often excluded from reported datasets, 703 

TagGraph was designed to readily detect them in either modified and unmodified forms 704 

(Supplementary Note 1). Spectra corresponding to such peptides can return high-scoring 705 

incorrect identifications with a protease-constrained unrestricted search (i.e., returning the 706 

nearest protease-specific peptide with a modification annotation -- Open search is prone to this 707 

error). As such results must then be manually separated from true, modification-bearing 708 

peptides, an algorithm such as TagGraph which can correctly annotate these peptide-spectrum 709 

matches from the outset is highly desirable. 710 

However, opening up the search space in this way poses substantial challenges in validation in 711 

addition to those presented above. Namely, the set of candidates which must be considered by 712 

the algorithm increases exponentially. For instance, consider an MS/MS spectrum for which the 713 

correct identification is the following peptide-spectrum match: 714 

…KAAREE(+43)TDFCEEDSIEKSS… 715 

Where the underlined sequence indicates the returned peptide-spectrum match, placed in the 716 

context of its surrounding protein sequence in the database. The +43 indicates an N-terminal 717 

carbamylation. An algorithm which allows arbitrary mass modifications and no protease 718 

specificity must consider an effectively infinite number of candidates. However, unlike the case 719 

in which protease specificity is constrained a priori¸ the algorithm must also consider multiple 720 

base peptide sequences. For example, here are several incorrect annotations which could be 721 

candidate matches for the spectrum yielding the true match above: 722 

…KAAREE(-86)TDFCEEDSIEKSS… 723 

…KAARE(-86)ETDFCEEDSIEKSS… 724 
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…KAAREET(+172)DFCEEDSIEKSS… 725 

…KAAREET(+43)DFCE(+129)EDSIEKSS… 726 

…KAAREE(+43)TDFCEEDSIE(+128)KSS… 727 

…KAARE(-86)ETDFCEEDSIE(+128)KSS… 728 

 729 

These annotations have similar predicted fragmentations to the correct peptide-spectrum match. 730 

As described in Case I and II above, this similarity makes them far more likely than a match to a 731 

decoy sequence in the case of a false match, rendering target-decoy unsuitable. Algorithms 732 

which constrain the set of modifications and protease specificity face the possibility of Case I 733 

and II errors on a subset of spectra, and commit them involuntarily by excluding the correct 734 

peptide-spectrum match from the set of candidates on another subset of spectra. By allowing 735 

arbitrary mass modifications and no protease specificity, TagGraph must be able to discriminate 736 

correct peptide spectrum matches from Case I and Case II errors for every spectrum.  737 

 738 

We address this problem by using an expert-designed hierarchical Bayesian model 739 

(Supplementary Note 3) which can learn the specific attributes of correct and incorrect peptide-740 

spectrum matches from each dataset individually, including the attributes of correct and 741 

incorrect modification annotations. This avoids problems present in the scoring functions of 742 

some previously published unrestricted algorithms, which make a priori assumptions on the 743 

likelihood of observing certain modifications in the dataset that are often untrue. Unlike target-744 

decoy, this model is able to assign higher or lower confidence to a peptide-spectrum match 745 

based on its modification annotation, and consider this attribute in the context of the peptide 746 

localization, evidence in the spectrum, etc. The model is both flexible and extensible, enabling 747 

further refinement based on discriminatory criteria discovered to be useful in the future.  748 

Supplementary Note 3. Estimating peptide identification error through a 749 

hierarchical Bayes probabilistic model, optimized by Expectation Maximization 750 

A. Overview. We developed a peptide identification error model that overcomes the limitations 751 

conventional target-decoy searching has for assessing modification-bearing peptide 752 

identifications. Our hierarchical Bayes model7 creates hypothetical structures for the probability 753 

distributions corresponding with observing a set of data features D given that the peptide 754 

interpretation is correct P(D|+) or incorrect P(D|-). D is defined as the set of peptide and 755 

fragmentation spectrum attributes that are represented by the hierarchical Bayes model 756 

(Supplementary Fig. 3a). These attributes were empirically chosen based on their utility in 757 

discriminating correct peptide-spectrum matches from incorrect ones. Considering both of the 758 
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above probability distributions, we calculate P(+|D), the probability that any given peptide-759 

spectrum interpretation is correct, using Bayes Theorem. 760 

B. Model attributes. The following describe the general and modification-specific attributes 761 

used in our hierarchical Bayes model, as represented in Supplementary Fig. 3a.  762 

General peptide attributes 763 

Spectrum Score: The spectrum score of a candidate peptide-spectrum match, as defined in (iii), 764 

above.  765 

Peptide Length: The length of an entire candidate peptide-spectrum match. This attribute is 766 

modeled jointly with the spectrum score due to the observation that the spectrum score is 767 

negatively correlated with peptide length (Supplementary Fig. 3b). 768 

Cleavage Specificity: If a protease was used to digest the sample, this attribute encodes 769 

whether a peptide-spectrum match has full protease specificity, a nonspecific n-terminus, a 770 

nonspecific c-terminus, or both nonspecific termini. This attribute is ignored if no protease was 771 

used. 772 

Missed Cleavages: If a protease was used to digest the sample, this attribute records how many 773 

missed protease cleavage sites are present in a peptide-spectrum match. 774 

Matching Tag Length: The length of the maximal matching substring between the de novo 775 

peptide interpretation and the candidate peptide-spectrum match. 776 

Sibling Peptides: Number of other unique peptides found from the same protein that produced 777 

the current peptide-spectrum match. 778 

Mass Error: The difference in Daltons between the mass of a peptide-spectrum match and the 779 

predicted mass based on the peptide sequence and the set of its annotated modifications. 780 

Modification-derived Attributes 781 

Modified?: Categorical attribute denoting whether or not the current peptide-spectrum match 782 

has modifications with respect to the underlying database sequence. 783 

Maximum Modification Mass: The mass (Da) of the largest modification assigned to a candidate 784 

peptide-spectrum match. 785 

Number Unique Occurrences: The number of unique peptides observed in the dataset with the 786 

same set of modifications as the candidate peptide-spectrum match. 787 
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Modification Type: Categorical labeling of annotated modification as either an amino acid 788 

substitution, defined modification (i.e., present in Unimod but not an amino acid substitution), 789 

insertion/deletion, or undefined mass shift.  790 

Number of Modifications: The number of modifications annotated on the peptide-spectrum 791 

match. 792 

Number of Context Variants: The number of unique peptides present in the dataset with the 793 

same base peptide sequence as the candidate peptide-spectrum match. A unique peptide is 794 

defined by its primary amino acid sequence, all modifications it may contain, and the 795 

corresponding modification positions along the sequence. 796 

Number of Single Modifications Found On Same Context: If a given peptide-spectrum match 797 

contains multiple modifications, this attribute records the number of distinct singly-modified 798 

forms of the same peptide found in the entire dataset.  799 

C. Learning the distributions P(D|+) and P(D|-). As the set of correct and incorrect peptide-800 

spectrum matches is not known a priori, we use an expectation maximization algorithm to learn 801 

the distributions P(D|+) and P(D|-) from observed data features D. Learning these distributions 802 

is accomplished through two steps: a re-ranking step and a convergence step.  803 

Several model attributes in the hierarchical Bayes model rely on quantities calculated from the 804 

set of all peptide-spectrum matches in a dataset. These attributes can significantly affect the 805 

probabilities P(+|D) of candidate peptide-spectrum matches for each spectrum. Thus, the 806 

estimate of P(+|D) within a given iteration of the expectation-maximization process can change 807 

both the attributes D for all peptide-spectrum matches and the optimal match for a particular 808 

spectrum relative to the previous iteration. We expect the rankings produced by the probabilities 809 

P(+|D) to be superior to the initial rankings TagGraph produces using the sum of the spectrum 810 

and path scores alone.  Given that the estimate of P(+|D) changes with each iteration, we 811 

further expect more sensitive discrimination between correct and incorrect identification  by 812 

allowing the rankings of candidates for each spectrum to shift as the estimate of P(+|D) 813 

increases in accuracy. This intuition informs the basis of the re-ranking step of model training. In 814 

this step, the estimates of P(D|+) and P(D|-) are calculated using the top scoring candidates for 815 

each spectrum per expectation-maximization iteration. The candidates for each spectrum are 816 

then re-ranked according to their corresponding probabilities P(+|D), and the estimates of 817 

P(D|+) and P(D|-) in the next expectation-maximization iteration are calculated based on this 818 

new set of top-ranked candidates. After 20 rounds of re-ranking, the top ranked candidates are 819 
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fixed in position and the algorithm is allowed to converge on stable estimates of P(D|+) and 820 

P(D|-) during the convergence step. Model variance is calculated as the Euclidean distance 821 

between the vectors P(+|D) for all spectra between the current and previous iteration. 822 

Convergence of the model to near zero variance typically occurs within 100 iterations. 823 

Within each iteration, the distributions P(D|-) and P(D|+) are learned as follows: the spectrum 824 

score and peptide length attributes are fitted as a multivariate Gaussian using a maximum 825 

likelihood estimator, weighted by the probability estimates derived from the previous expectation 826 

maximization iteration. The remaining model attributes are discretized into bins: the probability 827 

of observing each bin B for a given attribute A for the (+) distribution in the current expectation-828 

maximization iteration is calculated using the estimates of P(+|D) from the previous iteration 829 

according to the familiar formula34: 830 

𝑃(𝐵|+) =  
∑ 𝑃(+|𝐷)𝑖{𝑖|𝐴𝑖 ∈𝐵 }

∑ 𝑃(+|𝐷)𝑖
       (Equation 1) 831 

The formula for calculating attribute probabilities for the (-) distribution can be analogously 832 

generated using estimates of P(-|D). Before the first iteration, the EM algorithm is supplied with 833 

an initial guess for the parameters of the multivariate Gaussian describing the peptide length 834 

and spectrum score and for the distribution of the matching tag length attribute (Supplementary 835 

Fig. 3). Initial guesses for the parameters of both the correct (+) and incorrect (-) distributions 836 

are supplied. These guesses are used to populate initial estimates for the probabilities P(+|D) 837 

for each peptide-spectrum match in the dataset. These probabilities are then iteratively 838 

improved using the expectation maximization algorithm as described above. The spectrum-level 839 

probabilities P(-|D) can be readily converted to a global false discovery rate for a given set of 840 

spectra S using the following formula: 841 

𝐹𝐷𝑅𝑆 =  
∑ 𝑃(−|𝐷)𝑗{𝑗|𝑗 ∈𝑆}

𝑁𝑆
× 100      (Equation 2) 842 

Where NS is the number of spectra in S. The large number of free parameters used to generate 843 

this model could be susceptible to overtraining with datasets of small size. However, we found 844 

that the algorithm converges onto accurate probability estimates for datasets of the size typically 845 

produced in modern proteomics experiments (Supplementary Fig. 4, Supplementary Note 846 

3D).   847 
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D. Evaluating EM model stability. We probed the robustness of the expectation-maximization 848 

based learning approach in two different ways, both using the cell line dataset described in 849 

Figure 1. First, the initial guesses used to seed the model training were randomly varied. The 850 

EM algorithm was run as described in section (iv), and the estimates of P(+|D) of all peptide-851 

spectrum matches in the dataset were recorded for each iteration following the random initial 852 

guess. The root mean square deviation (RMSD) of each probability estimate was computed and 853 

averaged over the entire probability vector to derive the Mean RMSD over all initial guesses. 854 

This deviation asymptotically approaches zero with increased iterations, demonstrating that the 855 

final probability estimates are independent of the initial guess used (Supplementary Fig. 4a). 856 

Second, to assess whether or not the EM model was susceptible to over-fitting, we employed 857 

five-fold cross validation. First, the dataset was randomly split into testing and training subsets, 858 

consisting of 10% and 90% of the peptide-spectrum matches, respectively. Slices consisting of 859 

80% of the training dataset were randomly chosen and used to train the parameters of the 860 

P(D|+) and P(D|-) distributions. Estimates of the probabilities P(+|D) for the peptide-spectrum 861 

matches in the testing dataset were computed at each iteration using the models trained from 862 

each slice. The final probability estimates derived from the testing set were found to be 863 

independent of the slice used for training, demonstrating that the model learned general 864 

features of the data and did not over-fit to specific attributes of the randomly chosen subsets 865 

(Supplementary Fig. 4b). 866 
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