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Abstract 

Data-independent acquisition (DIA-MS) strategies, like SWATH-MS, have been developed 
to increase consistency, quantification precision and proteomic depth in label-free proteomic 
experiments. They aim to overcome stochasticity in the selection of precursor ions by 
utilising (mass-) windowed acquisition that is followed by computational reconstruction of 
the chromatograms. While DIA methods increasingly outperform typical data-dependent 
methods in identification consistency and precision specifically on large sample series, 
possibilities remain for further improvements. At present, only a fraction of the information 
recorded in the complex DIA spectra is extracted by the software analysis pipelines. Here we 
present a software tool (DIA-NN) that introduces artificial neural nets and a new 
quantification strategy to enhance signal processing in DIA-data. DIA-NN greatly improves 
identification of precursor ions and, as a consequence, protein quantification accuracy. The 
performance of DIA-NN demonstrates that deep learning provides opportunities to boost the 
analysis of data-independent acquisition workflows in proteomics.  
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Introduction 

Mass spectrometry-based quantitative proteomics is an invaluable tool in a wide range of 
clinical and research applications. Data-independent acquisition (DIA) is devoid of the 
inherent stochasticity of data-dependent acquisition (DDA) workflows, which manifests itself 
as missing measurements between successive runs. Its identification performance is hence not 
limited by stochastic elements and only indirectly dependent on the sampling velocity of the 
mass analyzer. In addition, quantification via DIA is more reliable, as it is performed on the 
fragment (MS/MS or MS2) level and is thus less susceptible to interferences [1]. Introduced 
already in 1970s, with new instruments and acquisition strategies available (like SWATH-MS 
[2,3]), DIA is becoming increasingly popular. In an increasing number of instances, DIA 
workflows outperform label-free DDA in terms of reproducibility [1,4]. Recently, a highly-
optimised DIA workflow has been shown to be capable of identifying more precursors than 
the theoretical maximum number of tandem spectra that can be acquired in the DDA mode 
[4]. Thus, considerable attention has been dedicated to devising advanced algorithms for 
processing DIA-proteomics data [5–17]. 

A main restriction remains in the computational processing of DIA data, as the available 
algorithms are still underperforming compared to the theoretical information content of DIA 
data. In particular, the use of wide isolation windows, which are needed to achieve fast scan 
times, is associated with high levels of interferences in the tandem-MS spectra [18]. The 
interferences cause false-positive discoveries as well as lower accuracy and precision in 
proteomic experiments.  

Here, we demonstrate the application of artificial neural nets to the extraction of information 
from the complex SMATH-MS data. Our approach allows to increase the precursor 
identification performance and, therefore, the number of protein groups that can be accurately 
quantified. Neural networks have been used previously to classify spectra in DDA-
proteomics data [19–21]. However, to the best of our knowledge, DIA-proteomics data 
processing has so far only employed linear classifiers such as linear discriminant analysis or 
support vector machines [7–9,13,16,17]. In addition, we introduce an efficient method for the 
removal of interferences from tandem-MS spectra, thus significantly improving 
quantification precision. Our software tool, DIA-NN (Data Independent Acquisition by 
Neural Networks), implements all stages of DIA data processing in a single program, taking a 
set of raw data files as input and reporting quantitative values for precursor ions and protein 
groups. DIA-NN is written in C++ and is designed to be fast. Its memory requirements are 
independent of the number of LC-MS runs in the experiment, as the computationally 
intensive processing of raw data is performed for each run separately, and the results are 
saved to the hard drive (the space requirements are several orders of magnitude less than the 
volume of the respective raw data files). This makes DIA-NN ideal for automated handling of 
data generated in large-scale experiments. 
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Results 

1. General architecture of DIA-NN 

DIA-NN takes as input a collection of centroided mass spectrometry data files (corresponding 
to individual runs) and a spectral library. Each of the files is processed separately to match 
precursor ions to elution peaks, the result being saved to the hard drive. Quantification of 
fragment ions generated from the precursors is also performed at this stage. Interferences are 
detected and removed for each fragment.  

To speed up the data processing, DIA-NN supports optional restriction of the number of 
elution peaks considered as potentially valid matches for a given precursor. For this, DIA-NN 
can use a defined set of added or internal reference precursors. These can be provided as a list 
by the user or automatically generated by DIA-NN using high confidence identifications in 
previous analyses with the same spectral library. Once elution peaks for these precursor ions 
are identified, they allow the relationship between the retention times in the data file and in 
the spectral library to be inferred. DIA-NN then only searches for elution peaks within an 
automatically generated retention time window. 

False discovery rate (FDR) is estimated using a modified version of the target-decoy method 
[22]. Briefly, for a precursor ion, target or decoy, a set of scores is calculated for each 
potential elution peak. First, one of the scores is used to select the best peak. Second, a 
classifier is trained to distinguish between the sets of scores corresponding to the best peaks 
matched to target and decoy precursors. It is then used to generate a "combined score" that 
allows to refine the selection of peaks. The process is repeated iteratively for a specified 
number of iterations. In our tests, eight iterations proved to be sufficient for the efficient 
training of the classifier. After each iteration, the mapping between the actual and library 
retention times is refined; the normalised retention time of the elution peak as well as the 
square root of its difference from the library retention time are added to the set of scores. 
Finally, the ratio of decoy to target precursor numbers with combined scores exceeding a 
given threshold is used as the FDR estimate. 

Once the initial processing of all runs in the experiment is finished, DIA-NN quantifies 
precursor ions using the previously collected information on the quality of extracted ion 
chromatograms of their individual fragments. The best three fragments per precursor are 
selected in a cross-run manner and eventually used for its quantification. DIA-NN also 
supports automatic cross-run retention time profiling. Briefly, if a precursor is identified in 
some runs with FDR lower than a specified threshold, the retention time information in the 
spectral library is corrected based on the run in which this precursor was identified with 
lowest FDR. All the runs are then reanalysed using corrected retention times. 

After precursor ion quantification, optional cross-run normalisation and protein quantification 
can be performed. All the precursor intensities corresponding to identifications with FDR 
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estimates above a given threshold are replaced with zeroes. Precursors are then ordered by 
their coefficients of variation. Top pN precursors are selected, where N is the average number 
of identifications passing the FDR threshold and p is between 0 and 1. Sums of the intensities 
of these precursors are calculated and are used for normalisation, i.e. the levels of all 
precursors are scaled to make these quantities equal in different runs. A "Top N" method is 
eventually used for protein quantification: protein intensities are obtained as sums of the 
intensities of top N most abundant precursors identified at FDR lower than a given threshold 
in a particular run. 

1.1. Decoy precursors generation 

A decoy precursor is generated for each target precursor. The m/z value of the decoy 
precursor as well as its reference retention time are set to be equal to those of the target 
precursor, as specified in the spectral library. The order of amino acid residues (except for the 
first and the last ones) is reversed. If the resulting sequence of amino acid masses happens to 
be the same as the one corresponding to the target precursor, then the mass of the central 
amino acid is increased by an artificial value (i.e. 12 m/z). The fragmentation spectrum of the 
decoy precursor is then calculated using the same fragmentation pattern as that of the target 
precursor.  

1.2. Detection and scoring of elution peaks 

Each precursor is represented in the spectral library by its m/z value as well as the m/z values 
and reference intensities of its fragments. Six fragments with the highest reference intensities 
are considered in DIA-NN, and their m/z values are used to extract the respective 
chromatograms from the data. First, the sequence of spectra is filtered to leave only MS1 
spectra and those MS2 spectra that were obtained using precursor ion selection windows 
containing the m/z value of the precursor. In each of the remaining spectra, the highest peak 
is chosen within a window centered at the m/z value of interest. The radius of this window is 
calculated as the product of this m/z value and the specified mass accuracy coefficient. 

The chromatograms are scanned using retention time (RT) windows. The window size can be 
either specified by the user or chosen by DIA-NN automatically. In the latter case, the 
diameter of the RT window is taken to be 1 + 4.4 · 𝑓𝑤ℎ𝑚,	
  where	
  𝑓𝑤ℎ𝑚	
  is the average peak 
width at half maximum for the reference precursors. These can be defined by the user or 
inferred automatically as high-confidence precursors during an initial search with a wide scan 
window. This procedure is carried out for the first run in the experiment, subsequent runs 
using the same RT window size. DIA-NN calculates pairwise correlations of elution curves 
of all fragments of the precursor within the window. The fragment with the largest sum of 
correlations is then designated as the “best” fragment. It is assumed that this fragment is 
likely to be the one least affected by interferences; hence its elution curve is expected to be 
representative of the true elution curve of the precursor. If the level of the best fragment at the 
center of the window is close to its maximum level within the window, then this window is 
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considered as an elution peak. The elution curve of the best fragment is smoothed and is 
designated as the "reference" elution curve. For each elution peak, a set of scores is then 
calculated.  

Signal scores. Total signals of the top five fragments normalised by the total signal of all 
fragments are used as scores. These scores are ordered by the reference intensities of the 
respective fragments. 

Correlation scores. First, correlations of the fragments' elution curves with the reference 
curve are calculated. The sum of these correlations is used as a score. Second, each fragment 
chromatogram is processed by taking minima of each three consecutive values, correlations 
with the reference curve are calculated, and the sum of these is used as another score. Finally, 
the correlation between the MS1 elution curve and the reference curve is also used as a score. 

Additional scores. The cosine between the set of reference intensities of the fragments 
(obtained from the spectral library) and their measured intensities is calculated for each time 
point in the RT window. These values are then weighted by the squared values of the 
reference elution curve at the respective time points, summed, and the resulting quantity is 
used as a score. The normalised retention time of the elution peak as well as the square root 
of its difference from the library retention time are also used as scores. 

1.3 Target-decoy classification 

DIA-NN implements two different classifiers: a linear classifier and an artificial neural 
network classifier. Optionally, the set of precursor ions is randomly split in the proportion 3:1 
to generate the training and test datasets, respectively. Only the test dataset is then used to 
calculate the "combined score" level that corresponds to a given FDR threshold. 

Linear classifier. DIA-NN calculates {∆+}+ - the set of score vector differences between the 

paired target and decoy precursors. Here 𝑝 denotes a target-decoy pair. A weight vector 𝑤	
  is 
then obtained as the solution of the equation 𝑅𝑥 = µ, where µ is the average of these vector 
differences and 𝑅 is their covariance matrix. The "combined score" 𝑤𝑠 is then calculated for 
each score vector 𝑠. 

The Neural network classifier is employed for the final two iterations of elution peak scoring. 
Training of the neural network is only performed during the first of these iterations. In 
comparison to the linear classifier, some additional scores are used. First, correlations of 
individual fragments’ elution curves with the reference curve are included. Second, the 
elution curve of each fragment is split into five segments and the total signals in each of these 
are normalised by their sum and used as scores. In addition, the reference intensities of the 
fragments (L1-normalised) are also considered. Finally, the normalised total signal of the 
sixth fragment (skipped in the linear classifier training) is added to the set of scores. A feed-
forward neural network is then trained to distinguish between the target and decoy precursors 
for a specified number of epochs using batch gradient descent with momentum. The network 
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consists of the input layer, a specified number of hidden fully connected tanh layers, and a 
softmax layer. The size of 𝑛-­‐‑th hidden layer is set to 5(𝑁 − 𝑛	
   + 	
  1),	
  where	
  𝑁	
  is	
  the number 
of hidden layers. Optionally, standardisation of the input and L2 regularisation of the neural 
network weights can be performed. Cross-entropy is used as the loss function. Ensemble 
learning is employed to reduce the effects of overfitting: a specified number of networks 
having random initial weights are trained independently in parallel, and their predictions are 
averaged. Optionally, the neural network can be pre-trained in a cross-run manner.  

1.4. Interference correction 

For quantification, the size of the chromatogram RT window is halved. The elution curve 
x(·)	
  of each fragment is compared to the reference curve 𝑟𝑒𝑓(·) - the smoothed elution curve 
of the best fragment. The "weighted" fragment intensity is calculated as the sum of the 
fragment elution curve values weighted by the respective squared values of the reference 
curve. This emphasises the contribution of the data points close to the apex of the reference 
elution curve, thus making the impact of potential interferences manifesting far from the apex 
negligible. The ratio 𝑟 of weighted intensities of the fragment under consideration and the 
best fragment is calculated. All values of x(·) exceeding 1.5 · 𝑟𝑒𝑓(·) · 𝑟 are replaced with 
1.5 · 𝑟𝑒𝑓(·) · 𝑟. The area under the resulting curve is then considered to be the intensity of the 
fragment. 

1.5. Cross-run precursor ion quantification 

DIA-NN enables cross-run precursor ion quantification. In each run, each fragment is 
assigned a score which is the correlation score of its elution curve with the respective 
reference curve, i.e. the smoothed elution curve of the best fragment. For each precursor, 
three fragments with highest average correlations are selected in a cross-run manner. For this, 
only runs where the precursor was identified with FDR below a given threshold are 
considered. The intensities of these fragments are then summed in each run to obtain the 
precursor ion intensity. 

 

2. Identification performance of DIA-NN 

We explored the precursor identification performance of DIA-NN when using the linear 
classifier and the artificial neural network classifier, which was trained in either run-specific 
or cross-run manner. We compared the performance characteristics of DIA-NN to the results 
obtained with Spectronaut Pulsar (version 11.0.15038.17.27438, Biognosys AG) [1], one of 
the currently most advanced commercial software solutions for the analysis of DIA-data. To 
perform the comparison, we generated a 40-variable window LC-SWATH-MS dataset using 
a ten-time injection of yeast (S. cerevisiae) full-proteome tryptic digests, and that has been 
analysed on a microLC system (Waters nanoAcquity) coupled to a Quadrupole Time of 
Flight (QqTOF) mass spectrometer (TripleTOF 6600, SCIEX). For other benchmarks, we use 
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a dataset previously generated as part of the LFQbench test, and the spectral library generated 
therein [23]. 

As different software tools employ different decoy precursor generation algorithms and use 
different classifiers, software-reported false discovery rates cannot be compared directly. We 
therefore followed a strategy suggested previously [4], and  ‘tested’ for false positive hits, by 
calling E. coli peptides in a yeast proteome. Almost every call of an E.coli-specific peptide in 
the pure yeast digest will be a false positive; and the number of such calls is hence an 
illustrative benchmark that visualizes the FD performance of the different methods (Fig. 1).  
We utilised a compound spectral library, which comprised both yeast and E.coli precursors 
(15153 and 13550, respectively). For this, a human-yeast-E.coli spectral library was obtained 
from the LFQbench test suite (64 var, openswath) [23], and precursors matching to human 
proteins were removed (calling for human-specific peptides is a less reliable benchmark 
against calling false positives, as human contamination due to sample handling is difficult to 
exclude). Both software tools were operated with standard parameters; in Spectronaut, 
precursor and protein qvalue cutoff thresholds were set to 1.0. The average numbers of total 
and E.coli-specific precursor identifications in the yeast proteome were calculated at different 
reported FDR levels.  

Written in C++, DIA-NN demonstrated high processing speed, once it converts the input 
mzML files with the raw data into its own format. For example, when using a neural network 
with two hidden layers trained in a run-specific manner, DIA-NN was able to process all the 
ten files in less than 13 minutes on a average processing workstation (2x 6-core Intel Xeon 
E5645). The fast performance renders DIA-NN suitable for the analysis of very large 
datasets. 

In this comparison, DIA-NN outperformed the Spectronaut-implemented data analysis 
pipeline both with the linear classifier as well as with the artificial neural network classifier 
(Fig. 1). Application of the latter substantially suppressed false peptide discoveries: the 
number of falsely discovered E. coli precursors (in the yeast dataset) was reduced to about 
38-48 at approximately 8000 precursor identifications, which is a 1.6- to 2-fold improvement 
over the linear classifier. Different settings for the neural network classifier show comparable 
performance.  

 

3. Quantification performance of DIA-NN 

While the identification performance is important, the key application of DIA is accurate, 
precise and consistent protein quantification in large sample series [24]. We illustrate the 
quantification performance of DIA-NN by comparing it to Spectronaut Pulsar using the 
LFQbench test [23]. In this benchmark, human, yeast, and E.coli lysates were mixed in 
different proportions and analysed via SWATH-MS. For each mixture, three injection 
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replicates were measured. The LFQbench R package takes as input quantitative values for 
precursor ions and uses these to quantify peptides and proteins. Two characteristics of these 
are being monitored: median bias ("accuracy") and standard deviation ("precision"). Median 
coefficients of variation in technical replicates (“technical variance”) are also calculated for 
human peptides and proteins.  

We considered the 64 variable windows acquisition schemes on TripleTOF 6600 (Sciex) 
datasets, as these were revealed in the LFQbench manuscript to perform best [23]. Both the 
software tools were operated with standard parameters; in Spectronaut, precursor and protein 
qvalue cutoff thresholds were set to 1.0; DIA-NN was set to use a run-specific neural network 
classifier with two hidden layers (Fig. 2 and 3). In order to be able to compare the 
quantification performance of the two methods on the same dataset, we aimed to fix the 
number of identified peptides, adjusting the FDR threshold supplied to the LFQbench R 
package accordingly. This strategy was necessary, as the FDR values reported by the 
software tools can not be compared directly. The number of peptides corresponds to an 
(FDR) cutoff of 0.01 on DIA-NN, and to 0.002 (HYE124 dataset) and 0.006 (HYE110 
dataset) on Spectronaut.  

With the FDR thresholds defined to obtain a similar number of peptide IDs from the same 
raw data, accuracy (bias) of quantification is comparable between DIA-NN and Spectronaut 
Pulsar. DIA-NN, however, performed better in most individual benchmark values considered 
(accuracy, precision, and technical variance on all Yeast, E. coli or human peptide and 
protein quantities; better performance values for both methods are highlighted in green). It 
also demonstrated lower technical variance and better quantification precision on both 
datasets (Fig. 2, 3). For example, in case of the yeast and E.coli proteins in the HYE110 
dataset, in which their ratios in different samples were expected to be very high (10:1), DIA-
NN shows almost 1.5-times better precision. 
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Figure 1. Identification performance of DIA-NN, in comparison to Spectronaut Pulsar. Ten yeast 
full-proteome digest injections were analysed via SWATH-MS. The identification performance of 
DIA-NN with different settings was compared to that of Spectronaut Pulsar. Data processing was 
performed with a spectral library which featured both yeast- and E.coli-specific precursor ions (15153 
and 13550, respectively). Since no E.coli-specific precursors are expected to be present in the 
samples, the numbers of false identifications are proportional to the respective numbers of reported 
identifications of E.coli-specific precursors. For each software configuration tested, these were plotted 
against the total number of reported identifications (which depends on the reported FDR threshold 
used) (top panel; lower is better). The numbers of false identifications normalised by the respective 
numbers of Spectronaut Pulsar are also presented (bottom panel). On this dataset, DIA-NN 
outperforms the conventional data analysis pipeline even when using a linear classifier; artificial 
neural networks allow to further reduce the false discovery rate. 
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Figure 2. Quantification performance of DIA-NN on the HYE124 dataset, in comparison to 
Spectronaut Pulsar. The LFQbench R package was used to compare the quantitative performance of 
DIA-NN (neural network classifier with 2 hidden layers, trained in run-specific manner) and 
Spectronaut Pulsar. In this test suite, human, yeast, and E.coli lysates were mixed in different 
proportions (sample series A and B) and analysed via SWATH-MS. For each data processing tool, 
median bias ("accuracy") and standard deviation ("precision") are calculated for the detected peptides 
and proteins from each species (top panel). Median coefficients of variation in technical replicates 
(“technical variance”) are also calculated for human peptides and proteins. Graphic representation of 
the detected proteins is presented (bottom panel). 
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Figure 3. Quantification performance of DIA-NN on the HYE110 dataset, in comparison to 
Spectronaut Pulsar. The LFQbench R package was used to compare the quantitative performance of 
DIA-NN (neural network classifier with 2 hidden layers, trained in run-specific manner) and 
Spectronaut Pulsar. In this test suite, human, yeast, and E.coli lysates were mixed in different 
proportions (sample series A and B) and analysed via SWATH-MS. For each data processing tool, 
median bias ("accuracy") and standard deviation ("precision") are calculated for the detected peptides 
and proteins from each species (top panel). Median coefficients of variation in technical replicates 
(“technical variance”) are also calculated for human peptides and proteins. Graphic representation of 
the detected proteins is presented (bottom panel). 
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Summary and Discussion 

In this work, we aimed to maximise the amount of information extracted from DIA-
proteomics data. Ultimately, the precursor identification problem relies on the classification 
of potential elution peaks as false or true positives. Linear classifiers, such as linear 
discriminant analysis or support vector machines, usually require careful selection of a small 
set of scores to be calculated for each elution peak. Since DIA-proteomics generates highly 
information-rich datasets (unlike DDA), conventional approaches to handling DIA data 
effectively discard a significant portion of information. To address this issue, we developed a 
set of highly optimised scores, which encodes smoothed elution curves for each fragment of 
the precursor ion under consideration. We demonstrated that these scores allow for an 
efficient solution of the classification problem with the use of deep neural networks. 

In this preprint, we have benchmarked the performance of DIA-NN against only one software 
tool, Spectronaut Pulsar. Given the widely recognised performance of Spectronaut and its 
broad use, we think this is the most reasonable choice. This benchmark is hence not yet 
comprehensive. It is important to mention in this context however, that in the LFQ 
benchmark study, several of the previously available software tools (DIA-Umpire 2.0, 
OpenSWATH1, Skyline 3.1.1.8669, Spectronaut 7.0.8065.1.24792 and SWATH 2.0) 
demonstrated converging performances. Spectronaut Pulsar is advanced compared to these 
tools, and hence is expected to perform better. 

So far we have benchmarked this first version of DIA-NN only on a small number of 
datasets; we expect its relative advantage in peptide quantification to be dependent on the 
dataset. The main advantage of DIA-NN is achieved with the use of an artificial neural 
network, the performance of which will depend on the number of true and false target 
precursor identifications used for its training as well as on such parameters as the number of 
data points per peak. The performance difference between DIA-NN and other tools will 
hence vary from dataset to dataset (it is not a ‘digital’, universal value) and will also depend 
on the spectral library used. However, we currently still work on improving DIA-NN; we will 
conduct a more comprehensive benchmark once a more ‘final’ version of the software is 
generated and a manuscript prepared for submission. We publish this preprint, to encourage 
other proteomic labs to try DIA-NN already at this stage; any feedback provided will help to 
improve it for the use in the community, or for its incorporation in commercial DIA software. 

In the identification benchmark conducted with the linear classifier, DIA-NN outperformed 
the conventional data analysis pipeline, exhibiting lower rate of false positive identifications 
across the wide range of reported precursor identification numbers considered. The use of 
artificial neural networks substantially improved this result. Neural networks with two and 
five hidden layers showed comparable performance; there was also little difference between 

                                                
1 https://github.com/OpenMS/OpenMS/commit/4bca6fc 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 15, 2018. ; https://doi.org/10.1101/282699doi: bioRxiv preprint 

https://doi.org/10.1101/282699
http://creativecommons.org/licenses/by/4.0/


training the network in a run-specific or a cross-run manner. This situation may, however, be 
different on more variable or complex samples.  

We also addressed another crucial issue associated with DIA-proteomics data processing, 
namely, the problem of interference removal to facilitate accurate and precise quantification 
of precursor ions and, therefore, proteins. For this, we introduced a novel approach based on 
selecting the “best” fragment per precursor in each run. Its elution curve is then assumed to 
be representative of the true elution curve of the precursor, and is used as a template for 
correcting interferences affecting other fragments. 

We validated the high performance of this method using the LFQbench test suite. We 
observed that while the accuracy (bias) of quantification is comparable between DIA-NN and 
Spectronaut Pulsar, DIA-NN tends to be superior in quantification precision and exhibits 
lower technical variance. 

In summary, DIA-NN is a fast software tool for processing of DIA proteomics data. Applied 
in datasets generated to benchmark SWATH platforms, it shows improved precursor 
identification performance as well as high quantification accuracy and precision. Our study 
demonstrates the power of using artificial neural networks in the analysis of DIA-proteomics 
data. 

 

Methods 

DIA-NN settings 

DIA-NN was run using its default settings. Briefly, the chromatogram scan window size was 
determined automatically. Mass accuracy was set to 20ppm. For cross-run neural network 
training, complete libraries were used. For run-specific classifier training, libraries were 
randomly split into the training and test datasets in a 3:1 ratio. The total number of classifier 
training iterations was set to eight. The neural network featured either two hidden layers 
(default) or five hidden layers. Standardisation of the neural network input and regularisation 
of weights were not used. The number of training epochs was set to 50. Batch size was set to 
Max(50, N / 100), where N is the number of training observations. Learning rate was set to 
10.0, and momentum was set to 0.9. Twelve neural networks were trained in parallel. For 
cross-run precursor quantification, FDR threshold was set to 0.01. For cross-run 
normalisation, top 40% of precursors with lowest coefficients of variation and having 
estimated FDR levels less than 0.001 were used.  

DIA-NN implementation 

To facilitate the very high processing speed demonstrated by DIA-NN, its code was written 
in C++. DIA-NN relies on the following third-party libraries:  
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-   Cranium (https://github.com/100/Cranium) provides functionality necessary for the 
implementation of the artificial neural network classifier; 

-   MSToolkit (https://github.com/mhoopmann/mstoolkit) provides an interface for files 
in the mzML format; 

-   Eigen (http://eigen.tuxfamily.org) is used to solve linear equations. 
DIA-NN executable (Windows, x64) as well as the source code are available for download 
from https://github.com/vdemichev/DiaNN (version 1.0).  

Yeast DIA analyses 

Saccharomyces cerevisiae (BY4743 rendered prototrophic with a plasmid encoding for HIS3, 
LEU2 and URA3 [25]) were grown to exponential phase in minimal synthetic nutrient media. 
Proteins were extracted by bead beating for 5min at 1500rpm in 8M urea/0.1M ammonium 
bicarbonate. Proteins were reduced with 5mM dithiothreitol, alkylated with 10mM 
iodoacetamide. The sample was diluted to 1.5M urea/0.1M ammonium bicarbonate before the 
proteins were digested overnight with Trypsin (1:30 Trypsin to total protein ratio). Peptides 
were cleaned-up with 96-well MacroSpin plates (Nest Group) and iRT peptides (Biognosys 
AG) were spiked in. 

The digested peptides were analysed on a nanoAcquity (Waters) coupled to a TripleTOF 
6600 (Sciex). Peptides were separated with a 23 minute non-linear gradient (4% 
Acetonitrile/0.1 % formic acid to 36% Acetonitrile/0.1% formic acid) on a Waters HSS T3 
column (150mm x 300µm, 1.8µm Particles) with a 5µl/min flow rate. The DIA method 
consisted of an MS1 scan from m/z 400 to m/z 1250 (50ms accumulation time) and 40 MS2 
scans (35ms accumulation time) with variable precursor isolation width covering the mass 
range from m/z 400 to m/z 1250. 

The raw mass spectrometry data files have been deposited to Zenodo repository 
(http://dx.doi.org/10.5281/zenodo.1187150).  

Raw mass spectrometry data files conversion 

SCIEX wiff files were converted to the mzML format using MSConvert with the following 
settings: binary encoding precision was set to 32-bit, MS1 and MS2 vendor peak picking was 
used; all other options were turned off. 
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