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Abstract

Vision must not only recognize and localize objects, but perform richer inferences about the
underlying causes in the world that give rise to sensory data. How the brain performs these
inferences remains unknown: Theoretical proposals based on inverting generative models
(or “analysis-by-synthesis”) have a long history but their mechanistic implementations have
typically been too slow to support online perception, and their mapping to neural circuits
is unclear. Here we present a neurally plausible model for e�ciently inverting generative
models of images and test it as an account of one high-level visual capacity, the perception
of faces. The model is based on a deep neural network that learns to invert a three-
dimensional (3D) face graphics program in a single fast feedforward pass. It explains both
human behavioral data and multiple levels of neural processing in non-human primates, as
well as a classic illusion, the “hollow face” e↵ect. The model fits qualitatively better than
state-of-the-art computer vision models, and suggests an interpretable reverse-engineering
account of how images are transformed into percepts in the ventral stream.

Introduction

Perception confronts us with a basic puzzle: how can our experiences be so rich in content, so

robust to environmental variation, and yet so fast to compute, all at the same time? Vision

theorists have long argued that the brain must not only recognize and localize objects,

but make inferences about the underlying causal structure of scenes (Olshausen; Yuille and

Kersten, 2006; Barrow and Tenenbaum, 1978). When we see a chair or a tree, we perceive

it not only as a member of one of those classes, but also as an individual instance with

many fine-grained three-dimensional (3D) shape and surface details, which persist in long-

term memory (Brady et al., 2008) and are crucial for planning our actions – sitting in that
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chair or climbing that tree. Similarly, when seeing a face, we not only identify a person,

but also perceive details of momentary shape, texture, and subtleties of expression. Various

frameworks for scene analysis by inverting causal generative models, also known as “analysis-

by-synthesis”, have been proposed in computational vision (Barrow and Tenenbaum, 1978;

Lee and Mumford, 2003; Blanz and Vetter, 1999; Barron and Malik, 2013; Kulkarni et al.,

2015a), and these models have some behavioral support (Yildirim and Jacobs, 2013; Erdogan

and Jacobs, 2017). However, inference in these models is typically based on top-down

stochastic search, which is highly iterative and implausibly slow: a single scene percept may

take hundreds of iterations to compute (which could be seconds or minutes on conventional

hardware), in contrast to the nearly instantaneous processing in the visual system which is

mostly feedforward (DiCarlo et al., 2012). There is also no direct empirical evidence about

whether or how analysis-by-synthesis models are implemented in stages of actual neural

processing.

In part for these reasons, recent work in computational vision has focused on a di↵erent

class of architectures, deep convolutional neural networks (DCNNs), which are both more

directly relatable to neural circuits and more consistent with the fast bottom-up processing

dynamics of the brain (DiCarlo et al., 2012; Serre et al., 2007). DCNNs consist of many

layers of features arranged in a feedforward hierarchy, discriminatively trained to optimize

detection of objects and object categories from labeled data. They have been instrumental

both in leading engineering applications (Krizhevsky et al., 2012; Simonyan and Zisserman,

2014; Szegedy et al., 2015) and in predicting neural responses at the level of single units

in macaque cortex as well as fMRI in humans (Yamins et al., 2014; Eickenberg et al.,

2017; Khaligh-Razavi and Kriegeskorte, 2014; Güçlü and van Gerven, 2015). Despite their

impressive successes, however, DCNNs do not attempt to address the question of how vision

infers the causal structure underlying images. How we see so much so quickly, how our brains

compute rich descriptions of scenes with detailed 3D shapes and surface appearances, in a

few hundred milliseconds or less, remains a challenge for all existing approaches.

Here, we present a computational model that combines the best features of analysis-by-

synthesis and neural network approaches in order to answer that challenge. Our e�cient

inverse graphics (EIG) network recovers 3D object shape and texture from a single image

with a performance similar to the best inverse graphics approaches, but does so quickly
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using only feedforward computations, without the need for iterative algorithms. The model

consists of two parts: a probabilistic generative model based on a multistage 3D graphics

program for image synthesis (Fig. 1A), and an approximate inverse function of this gener-

ative model based on a DCNN that inverts (explicitly or implicitly) each successive stage

of the graphics program (Fig. 1B), layer by layer. The inverse model, also known as an

inference network or recognition model, is di↵erent from conventional DCNNs for vision in

two critical ways: (1) It is trained to produce the inputs to a graphics engine, the latent

variables of the generative model, rather than to predict class labels such as object cate-

gories or face identities; (2) it is trained in a completely self-supervised way, with inputs and

outputs internally synthesized by the generative model component, rather than requiring

externally supervised training on large sets of labeled images. In this way, the EIG network

embodies principles similar to the Helmholtz machine originally proposed by Hinton and

colleagues in the 1990’s (Hinton et al., 1995; Dayan et al., 1995), but with a generative

model that is based on a graphics program (instead of a generic function approximator)

and thus more faithfully captures the causal structure of how real-world scenes give rise to

images. We return to this contrast in the discussion at the end of the paper.

As a test case, we apply our EIG model in the domain of face perception where, in a rare

co-occurrence, data from brain imaging, single-cell recordings, quantitative psychophysics

and classic visual illusions all come together to strongly constrain possible models. Although

the Helmholtz machine and other analysis-by-synthesis models have existed for decades

as theoretical proposals, only now do we have the empirical data needed to test these

theories in a strong way. EIG implements the hypothesis that the targets of ventral stream

processing, a series of interconnected cortical areas, are 3D scene properties analogous to

the latent variables in a causal generative model of image formation (referred to as the

“latent variables” hypothesis). We compare EIG against a broad range of alternatives,

including both lesions of EIG (leaving out components of the model) and multiple variants of

state-of-the-art networks for face recognition in computer vision. These variants implement

an alternative hypothesis that the targets of ventral stream processing are points in an

embedding space optimized for discriminating across facial identities (referred to as the

“discriminative” hypothesis), without necessarily any goal of reconstructing the structure

of the 3D scene. The EIG model, and therefore the latent variables hypothesis, but not
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other models, accounts for the full set of neural and behavioral data, at the same time as it

matches the most challenging perceptual function of the system: computing a rich, accurate

percept of the intrinsic 3D shape and texture of a novel face from an observed image in a

single, fast, feedforward circuit.

E�cient Inverse Graphics (EIG) Network

The model consists of two components, a probabilistic generative model and a deep network-

based recognition model. The generative model takes the form of a hierarchy of latent

variables and causal relations between them, representing multiple stages in a probabilistic

graphics program for sampling face images (Fig. 1A). The top level random variable specifies

an abstract person identity, F , drawn from a prior Pr(F ) over a finite set of familiar

individuals but allowing for the possibility of encountering a new, unfamiliar individual. The

second level random variables specify scene properties: an intrinsic space of 3D face shape

S and texture T descriptors drawn from the distribution Pr(S, T |F ), as well as extrinsic

scene attributes controlling the lighting direction, L, and viewing direction (or equivalently,

the head pose), P , from the distribution Pr(L,P ). We implement this stage using the Basel

Face Model (a probabilistic 3D Morphable Model) (Blanz and Vetter, 1999; IEE, 2009),

although other implementations are possible. These 3D scene parameters provide inputs to

a z-bu↵er algorithm  (·) that outputs the third level of random variables, corresponding

to intermediate-stage graphics representations (or 2.5D components) for viewpoint-specific

surface geometry (normal map, N) and color (albedo or reflectance map, R), {N,R} =

 (S, T, P ). These view-based representations and the lighting direction then provide inputs

to a renderer, �(·), that outputs an idealized face image, I = �(N,R,L). Finally, the ideal

face image is subject to a set of image-level operations including translation, scaling, and

background addition, ⇥(·), that outputs an observable raw image, O = ⇥(I) [Fig. 1A;

Supporting Online Material (SOM) Section 1].

In principle, perception in this generative model can be formulated as MAP (Maximum

A Posterior) Bayesian inference as follows. We seek to infer the individual face F , as well

as intrinsic and extrinsic scene properties S, T, L, P that maximize the posterior probability
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Pr(F, S, T, L, P |O) /
R
I,N,R dI dN dR Pr(O|I) · Pr(I|N,R,L) · Pr(N,R|S, T, P ) · Pr(L,P ) · Pr(S, T |F ) · Pr(F ),

(1)

where Pr(N,R|S, T, P ), Pr(I|N,R,L) and Pr(O|I) express likelihood terms induced

by the mappings  , �, and ⇥ respectively, and we have integrated out the intermediate

representations of surface geometry and reflectance N and R, which perceivers do not

normally have conscious access to, as well as the ideal face image I. Traditional analysis-

by-synthesis methods seek to maximize Eq. 1 by stochastic local search, or to sample from

the posterior by top-down Monte Carlo inference methods; all of these computations can be

very slow. Instead we consider a bottom-up feedforward recognition model that is trained

to directly estimate MAP values for the latent variables, F ⇤, S⇤, T ⇤, L⇤, P ⇤.

This recognition model comprises a bottom-up hierarchy of functional mappings that

parallels (in reverse) the top-down hierarchy of the generative model, and exploits the

conditional independence structure inherent in the generative model for e�cient modular

inference. In general, if a random variable (or set of variables) Z renders two (sets of)

variables A and B conditionally independent in the generative model, and if our goal in

recognition is to infer A from observations of B, then an optimal (maximally accurate and

e�cient) feedforward recognition model can be constructed in two stages that map B to Z

and Z to A respectively(Stuhlmüller et al., 2013; Lin et al., 2017). Here our recognition

model exploits two such crucial independence relations: (i) The observable raw image is

conditionally independent of the 2.5D face components, given the ideal face image and (ii)

The 2.5D components are conditionally independent of person identity, given the 3D scene

parameters that describe the individual’s face. This conditional independence structure

suggests a recognition network with three main stages, which can be implemented in a

sequence of deep neural networks where the output of each stage’s network is the input to

the next stage’s network.

The first stage segments and normalizes the input image to compute the attended face

image, i.e., the most probable value for the ideal image I⇤ given the observed image O, by

maximizing Pr(I|O) using a DCNN module trained for three-dimensional face segmentation

(Jackson et al., 2017) and adapted to compute the face region given images of faces with

background clutter (f1 in Fig. 1B; SOM Section 2.1).
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Figure 1: Overview of the modeling framework. (A) Schematic of the probabilistic gener-
ative that consists of a distribution over familiar person identities, detailed view
of a graphics program with its key stages exposed, and an image-level transfor-
mations module. (B) A recognition model for e�cient inference in the generative
model that is based on DCNNs. f1 is for face segmentation and zooming, f2 to f5
for 3D scene parameter inference, and finally f6 for person identity recognition.
(C) Schematic of the ventral stream with the three face patches indicated. Col-
ored boxes in (A) to (C) show the hypothesized explanations of the neural sites
based on the generative and recognition models. Rectangles indicate represen-
tations, trapezoids indicate transformations or algorithms using representations.
(D) Example results of inference using the recognition model. Inferred scene pa-
rameters are rendered, re-posed, and re-lit using the generative model. Results
are shown for images without backgrounds skipping the face segmentation step
and for images with backgrounds where the output of f1 applied to the input is
also shown.
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The second stage is the heart of our EIG model, and consists of a second DCNN mod-

ule trained to estimate intrinsic and extrinsic scene properties {S⇤, T ⇤, L⇤, P ⇤} maximizing

Pr(S, T, L, P |I⇤) from the attended face image. This network is adapted from the architec-

ture of a standard DCNN (Krizhevsky et al., 2012) for object recognition, which consists of

four convolutional layers (f2 in Fig. 1B) ending in a fifth, top convolutional feature space

(TCL, f3 in Fig. 1B), followed by two fully connected layers (FCLs, f4 and f5 respectively).

The second FCL f5 is the key di↵erence from the conventional object recognition pipeline:

instead of being trained to predict class labels, f5 is trained to predict scene properties,

{S, T, L, P}. Training begins from a pre-trained version of the basic architecture, fixing or

fine-tuning weights up to layer f4, with only weights in the new scene property layer f5

being learned from random initial values. Training images for stage two were generated by

forward-simulating (or “dreaming”) images drawn from the generative model (in the spirit

of the Helmholtz machine (Hinton et al., 1995)), each with a di↵erent randomly drawn

value for the scene parameters {S, T, L, P}, and using the generative model to produce the

corresponding ideal face image I conditioned on those scene parameters (SOM Section 2.2).

Finally, a third recognition stage estimates the most likely face identity label F ⇤ given

the scene properties, maximizing Pr(F |S⇤, T ⇤, L⇤, P ⇤). This module comprises a single new

FCL f6 for person identity classification, and like the previous module is trained (with

fine-tuning of f5) on another self-generated set of simulated faces drawn randomly from the

generative model but starting from the prior over individuals P (F ), which can be specific

to a particular set of faces encountered in an individual experiment (see SOM Section 2.3).

Together these three modules form a complete recognition model for the generative

model of face images, which satisfies the crucial characteristics of face perception and per-

ceptual systems more generally: The recognition model (i) infers both rich 3D scene struc-

ture and the identities or class labels of individuals present in the scene, in a way that is

robust to many dimensions of image variation and clutter, and (ii) computes these inferences

in a fast, almost instantaneous manner given observed images.

The model’s inferences are both qualitatively reasonable (Fig. 1D) and quantitatively

accurate (SOM Section 1.2; Fig. S1), suggesting it is a good functional solution to the prob-

lem of face perception (but see SOM Section 2.4 for a discussion of potential weaknesses as

well). In the remainder of the paper, we ask how well the model captures the mechanisms of
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face perception in the mind and brain, by comparing its internal representations (especially

f3, f4, f5) to neural representations of faces in the primate ventral stream, and its estimates

of intrinsic and extrinsic face properties with the judgments of human observers in several

hard perceptual tasks.

E�cient inverse graphics stages explain macaque face-processing

hierarchy

The best-understood neural architecture on which we can evaluate EIG as an account

of perception in the brain is the macaque face-processing network (Freiwald and Tsao,

2010) (Fig. 2A-i; see SOM Section 4.1 and 4.2 for experiment and neural data analysis

details). This three-level hierarchy exhibits a systematic progression of tuning properties:

neurons in the bottom-level face patches ML/MF are tuned to specific poses; those in the

mid-level patch AL exhibit mirror-symmetry for pose; and those in the top-level patch

AM exhibit view-robust identity coding (Fig. 2A-ii). It has also been argued that these

neural populations encode a multidimensional space for face, based on controlled sets of

synthetically generated images. (Leopold et al., 2006; Freiwald et al., 2009; Chang and

Tsao, 2017). However, it remains unclear how the full range of three-dimensional shapes

and appearances for natural faces viewed under widely varying natural lighting and view

conditions might be encoded, and how high-level face space representations are computed

from observed images through the multiple stages of the face-processing hierarchy.

We address these questions by first quantifying the population-level tuning properties for

three successive levels of face patches, ML/MF, AL and AM, using linear combinations of

three idealized similarity templates representing the abstract properties of view specificity,

mirror symmetry, and view-invariant identity selectivity (Kietzmann et al., 2012; Guntupalli

et al., 2016) (Fig. 2A-iv, SOM Section 4.5) to fit the empirical similarity matrices for neural

populations in each of these patches. The weights of these di↵erent matrices measure, in

objective terms, how view-specificity decreases from ML/MF to AM, how mirror-symmetry

peaks in AL, and how view-invariant identity coding increases from ML/MF to AL and

further to AM (Fig. 2A-iii), complementing the qualitative features shown in the population-

level similarity matrices (Fig. 2A-ii).

8

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 2, 2018. ; https://doi.org/10.1101/282798doi: bioRxiv preprint 

https://doi.org/10.1101/282798
http://creativecommons.org/licenses/by-nc-nd/4.0/


We then evaluated the ability of the EIG network and other models to explain both

these qualitative and quantitative tuning properties of ML/MF, AL and AM. In particular

we contrast EIG with several variants of the VGG network, a state-of-the-art DCNN for

machine face recognition built via supervised training with millions of labeled face images

from thousands of individual identities (Parkhi et al., 2015) (SOM Section 3.2). These

comparisons allow us to tell apart the latent variable hypothesis and the discriminative

hypothesis of the neural representations.

We first test all models using the FIV image set, the set of 175 face images (25 individuals

in 7 poses) shown to monkeys during neural recording (Fig. 2B). Given these stimuli,

the EIG network (Fig. 2C-i) faithfully reproduces all patterns in the neural data, both

qualitatively (Fig. 2C-ii) and quantitatively using the idealized similarity matrix analysis

(Fig. 2C-iii). The EIG model also closely tracks the functional compartmentalization

observed in the face-processing hierarchy: layer f3 best correlates with the ML/MF, layer

f4 best correlates with AL, and layer f5 best correlates with AM (p < 0.05, Fig. 2C-iv).

Comparing EIG to VGG (Fig. 2E-i) allows us to evaluate the discriminative hypothesis,

and comparing EIG to a lesion (“EIG�”, Fig. 2D-i) that omits the initial object segmen-

tation (f1) lets us test whether this stage of the recognition model (which has not been

a component of previous ventral stream models (DiCarlo et al., 2012; Serre et al., 2007;

Yamins et al., 2014)) is needed. Across the top three levels of each network (f3, f4 and

f5 for EIG and EIG�; TCL, FFCL and SFCL for VGG), only the full EIG network gave

the best fit at each model-level to the corresponding level of neural processing (ML/MF,

AL, and AM, respectively; panels (iv) of Figs. 2C, 2D, 2E); the full EIG model also corre-

lated more highly than either alternative model with the corresponding level of neural data

(p < 0.05 in all cases except for AM, where fits were not significantly di↵erent). Both VGG

and EIG� gave rise to patterns of selectivity with some qualitative similarity to those of the

neural data (Fig. 2D-ii, 2E-ii), but with pronounced quantitative di↵erences. Both alterna-

tive models were substantially more view-invariant in their first and second stages (f3, f4

for EIG� and TCL, FFCL for VGG) when compared to either the neural data (p < 0.05;

Fig. 2D-iii, 2E-iii) or the full EIG model (p < 0.05). Most dramatically, for both alternative

models, the two highest layers (f4, f5 and FFCL, SFCL) were almost indistinguishable from

each other, which fails to reflect the clear distinction of function in both the corresponding
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neural sites (AL and AM) and the corresponding layers of EIG. In short, only EIG cap-

tured the full progression of three functionally distinct stages from ML/MF through AM,

suggesting that the face processing network begins with an initial face segmentation stage,

and culminates in targets that encode 3D scene properties rather than features optimized

for identity discrimination.

To better understand the di↵erences between models, we tested EIG, EIG�, VGG, and

three variants of the VGG architecture using a synthetic analog of the FIV image set (FIV-S;

SOM Section 1.1), in which only faces were rendered (without clothing or backgrounds) in

di↵erent viewing and lighting positions. Using these synthetic faces gives us full control over

how each network is trained, and lets us unconfound the influences of network architecture,

training set, and loss function (or training objective; see SOM Sections 3.2, 3.3, 3.4, and

3.5 for these controls). We find additional support for the inverse-graphics account of the

primate face patch network (the “latent variables” hypothesis): The classic neural selectivity

patterns across all three levels of ML/MF, AL and AM appear pristinely in the EIG network

tested on synthetic faces, and arise uniquely when a recognition model is trained with targets

that are 3D scene properties – that is, when the network is trained to infer the 3D shape

and texture inputs to a causal generative model of observed face images (see Fig. S2 and

SOM Section 3.1).

Finally we ask whether intermediate stages of the face-processing hierarchy, ML/MF

and AL in the primate brain or f3 and f4 in the EIG network, can be given an interpretable

representational account as we did for AM and f5, or whether instead these patches are best

understood simply as a hierarchy of “black box” function approximators whose responses

arise just as the locally optimal parameterization of a deep recognition architecture that has

been trained to infer the 3D shape and texture properties of faces at the level of AM/f5.

Fig. 1 suggests one possible interpretation based on correspondences between the graphics

and inverse-graphics pathways: ML/MF could be understood as computing a reconstruction

of an intermediate stage of the generative model, the 2.5D components of a face (e.g.,

albedos and surface normals) analogous to the “intrinsic images” or “2.5D sketch” of classic

computer vision systems (Marr, 1982; Barrow and Tenenbaum, 1978). It is also possible

that these patches compute a reconstruction of an earlier stage in the generative model

such as the attended face image (corresponding to the output of f1), or that they are just
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Figure 2: Inverse graphics in the brain. (A) (i) Inflated macaque right hemisphere showing
six temporal pole face patches, including middle lateral and middle fundus areas
ML/MF, anterior lateral area, AL, and anteriormedial area, AM. (ii) Population
similarity matrices from face patches, from left to right: ML/MF, AL, and AM.
Each matrix shows 175 ⇥ 175 population response correlation coe�cients to im-
ages of 25 individual identities shown in seven di↵erent poses (FIV image set)
(Freiwald and Tsao, 2010). (iii) Normalized coe�cients resulting from a linear
decomposition of the population similarity matrices in terms of idealized simi-
larity matrices for view-specificity, mirror-symmetry, and view-invariance shown
in (iv), in addition to a constant background factor to account for overall mean
similarity. (B) Sample images from the FIV image set illustrating one of the 25
identities. (C) Full EIG network tested with FIV image set. (i) Schematic of
the EIG network with its key layers indicated, f3, f4, and f5. (ii) Layer-wise
similarity matrices. On a given layer, each entry is the Pearson’s r value between
two vectors, where each vector is the activation of all units given an image. (iii)
Normalized linear regression coe�cients for the idealized similarity matrices. (iv)
Correlation coe�cients between each of the population similarity matrices and
each of the layer-wise similarity matrices. (D) EIG� network tested with FIV
image set. (E) VGG network tested with FIV image set. Sub-figures follow the
same convention. Error bars show 95% bootstrap confidence intervals (CIs; SOM
Section 4.6).
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stepping stones to higher-level representations without distinct functional interpretations in

terms of the generative graphics model. We computed similarity matrices for each of these

candidate interpretations (each generative model stage), as well as for the raw pixel images

as a control (Fig. 3A; see SOM Section 3.6 for how 2.5D components of the FIV images

are approximated). We then correlated these similarity matrices with those for ML/MF

and AL. We find that the 2.5D components best explain ML/MF (p < 0.001), and closely

resemble their overall similarity structure (Fig. 3B). Attended images also provide a better

account of ML/MF than the raw pixel images (p < 0.001) but significantly worse than the

2.5D components (p < 0.001 for each component; Fig. 3B). We also find that the 2.5D

components explain f3 layer responses in the EIG model better than the raw pixel images,

and better than the attended face image when these can be discriminated (SOM Section

3.6, Fig. S3).

AL has no such straightforward representational account, but it may be understood as

implementing a densely connected hidden-layer mapping the estimated 2.5D face compo-

nents (in ML/MF and f3) to estimated 3D face properties (in AM and f5). Because this

transformation is highly nonlinear, some kind of hidden layer is required in any feedforward

recognition network (Rumelhart et al., 1985; Leibo et al., 2017), and this could be the role

of AL in the primate brain and the corresponding layer f4 in EIG. Note that such an in-

termediate layer appears to be functionally missing from VGG and its variants trained to

discriminatively predict identity rather than 3D object properties. These models always

show very similar responses in all their fully connected layers (compare Fig. 2C and 2E and

also see Fig. S2D-G). We conjecture that this AL-like intermediate stage nonlinearity is not

necessary because the fully connected layers of VGG are solving a di↵erent task than EIG

or the brain: VGG appears to be mapping high-level image features (computed at the top

of the convolutional layers) to person identities which are almost linearly decodable from

these features, without ever having to explicitly represent the 3D properties of a face (SOM

Section 3.7, Fig. S4).

E�cient inverse graphics scene parameters predict human behavior

We also tested EIG and alternative models’ ability to explain human face perception, by

comparing their responses to people’s judgments in a suite of challenging unfamiliar face
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Figure 3: Understanding ML/MF computations using the generative model and the 2.5D
(or intrinsic image) components. (A) Similarity matrices based on raw input im-
ages, attended images, albedos, and normals. Colors indicate the direction of the
normal of the underlying 3D surface at each pixel location. (B) Correlation coef-
ficients between ML/MF and the similarity matrices of each image representation
in (A) and f3. Error bars indicate 95% bootstrap CIs.

recognition tasks(Hancock et al., 2000). In three experiments (inspired by the passport

photo verification task), subjects were asked to judge whether two sequentially presented

face images showed the same or di↵erent identity (Fig. 4A). In Experiment 1 (“Regular”),

both study and test images were presented with pose and lighting directions chosen ran-

domly over the full range covered by the generative model. Experiments 2 and 3 probed

generalization abilities, using the same study items from Experiment 1 but test items that

extended qualitatively the range of training stimuli. In Experiment 2 (“Sculpture”), the

test items were images of face sculptures (i.e., texture-less face shapes in frontal pose) elim-

inating all of the texture information in the input. In Experiment 3, the test items were flat

frontal facial textures and distorted using a fish-eye lens e↵ect to reduce shape information

in the input (SOM Sections 5.1-3). We hypothesized that if face perception is based on

inverting a generative model with independent shape and texture latents, as in EIG but not

the VGG or VGG-FT models, participants might be able to selectively attend to shape or

texture latents in order to optimize performance.

We compared all three of these models’ predictions with human judgments, but the

comparison between EIG and VGG-FT is especially revealing. These two models are both

trained using an equal number of images synthesized from the same graphics program

used to generate the stimuli (although VGG-FT is fine-tuned on top of the VGG network

which itself is trained with millions of other face images), but their training targets are
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di↵erent: EIG’s target is a set of scene parameters, the latent variables of the generative

face model (latent variables hypothesis), while VGG-FT’s target is an embedding space

for discriminating person identities (discriminative vectors hypothesis). This allows our

behavioral results, like the neural data, to test between these two di↵erent hypotheses

about the functional goal of face perception.

We compared average human responses – i.e., Pr(“Same”), frequency of the “same”

response – to the models’ predicted similarity across trials. A model’s predicted similarity

for a given trial was computed as the similarity between the model’s outputs (i.e., its top

layer) for the study and test items (SOM Section 5.4). The VGG and VGG-FT networks’

outputs for an image is their identity-embedding spaces, the layer SFCL. (We found that no

other layer in the VGG network provided a better account of the human behavior than its

SSFL layer.) EIG’s output is its shape and texture parameters, which unlike other models

supports selective attention to these di↵erent aspects of a face. For each experiment we fit

a single weight for the shape parameters in EIG’s computation of face similarity (constant

across all trials and participants); the weight of the texture component is 1 minus that

value.

Overall, participants performed significantly better than chance (average percent correct

performance across experiments were 66% in Experiment 1, 64% in Experiment 2, and

61% in Experiment 3; see SOM Section 5.1-3 for further behavioral analysis). In trial-

by-trial comparisons to behavior, EIG consistently predicted human error patterns across

all three experiments, with r values 0.70[0.65, 0.76], 0.64[0.58, 0.69], and 0.54[0.47, 0.61]

(where [l, u] indicates lower/upper 95% confidence intervals; Fig. 4B). EIG also exhibited

better generalization when the test images were qualitatively di↵erent from the natural

texture or shape of the study images, fitting human judgments significantly better than both

alternative models in Exps. 2 and 3 (p < 0.001 for all comparisons based on direct bootstrap

hypothesis tests; SOM Section 5.5). We found that EIG’s inferred shape weights were not

significantly di↵erent from 0.50 (uniform weighting of shape and texture parameters) for

Experiments 1 and 3, but it attended to shape parameters almost exclusively for Experiment

2 (mean value of 0.95[0.84, 1]; Fig. 4C). These results show that EIG predicts the patterns

of human face perception more accurately than other models, especially under atypical
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stimulus conditions, and lends further support to the latent variables hypothesis over the

discriminative hypothesis.

Figure 4: Across three behavioral experiments, EIG consistently predicts human face
recognition performance. (A) Example stimuli testing same-di↵erent judgments
(“same” trials rows 1-2, “di↵erent” trials rows 3-4) with normal test faces (Exp.
1), “sculpture” (texture-less) test faces (Exp. 2), and fish-eye lens distorted
shade-less facial textures as test faces (Exp. 3). (B) Correlations between model
similarity judgments and human judges’ probability of responding “same”. (C)
Best-fitting weights of the shape latents (relative to texture latents) in the EIG
model predictions for Exps. 1-3. Note in Exp. 3, in addition to shape distortion,
texture is also distorted due to a di↵erent lighting and rendering mode used for
generating the test items. Error bars indicate 95% bootstrap CIs (SOM Section
5.5).

Human face perception is susceptible to illusions, and our model naturally captures one

of the most famous. In the hollow face illusion, a face mask reversed in depth (so the nose

points away from the viewer) and lit from the top or side appears to be a normally shaped

face, but with the lighting coming from the bottom or alternate side, respectively(Gregory,

1970). The illusion is often explained by saying that strong top-down priors on the shapes

of faces bias how we interpret otherwise ambiguous cues to depth in images, such as shad-

ing patterns which result from the interaction of surface normals and lighting direction

(Gregory, 1997). Our model provides a related but distinct account, in which the prior on

convexity for face shapes is implicitly encoded in the bottom-up weights of the EIG network

which has learned to jointly extract both intrinsic face properties such as shape as well as ex-

trinsic scene properties such as lighting direction. We quantitatively compared our model’s

inferences about lighting direction with people’s judgements, in both graded versions of the

hollow face illusion and normal lighting direction variation, as a control (Fig. 5). We found
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that the EIG network, like humans, perceived the light source direction to covary illusorily

with graded reversal of the face depth map, in a highly nonlinear pattern inflecting just

when depth values turned negative; in contrast, varying lighting direction in a normal way

while keeping face shape constant (the control condition) was perceived linearly and largely

veridically by both people and the model. That the EIG model captures the nonlinear

interaction of depth and lighting percepts in the hollow face illusion, as well as the fact

that these percepts are formed nearly instantenously upon seeing the stimulus, provides

further evidence that scene perception is implementing some form of analysis-by-synthesis

via an e�cient bottom-up recognition network rather than slow top-down hypothesis testing

mechanisms.

Discussion

Our results suggest that the primate ventral stream approaches face perception – and per-

haps object perception more generally – with an “inverse graphics” strategy implemented

approximately but e�ciently in a feedforward hierarchical network: Observed images are

mapped via a segmentation and normalization mechanism to a 2.5D-like map of intrinsic

surface properties (view-centered geometry and albedo) represented in ML/MF, which is

then mapped via a nonlinear transform through AL to a largely viewpoint-independent rep-

resentation of 3D object properties (shape and texture) in AM. The EIG network simulates

this process and captures the key qualitative and quantitative features of neural responses

across the face-patch system, as well as human perception for both typical and atypical face

stimuli. The EIG model thus suggests how the structure of the visual system is optimized

for its function: computing a rich and accurate representation of the shape and texture of

a novel object from an input image in a single, fast, feedforward pass.

Our results are consistent with strong evidence that neurons in areas ML/MF and AM

code faces in terms of a continuous “shape-appearance” space Chang and Tsao (2017), not

simply discrete identities. However, the EIG model goes beyond this finding to address core,

long-standing questions of neural computation: How is the ultimate percept of an object (or

face) derived from an image via a hierarchy of intermediate processing stages, and why does

this hierarchy have the structure it does? EIG is an image-computable model that faithfully

reproduces representations in all three face patches of ML/MF, AL and AM, and explains
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Figure 5: Light source localization task. On a given trial, participants saw an image of a
face lit by a single light source and judged the elevation of the light source using
a scale from 1 (bottom of the face) to 7 (top of the face; also see SOM Section
5.6). (A) One group of participants were presented with images of faces that were
always lit from the top, but where the shape of the face was gradually reversed
from a normally shaped face (convexity=1) to a flat surface (convexity=0) to
an inverted hollow face (convexity=-1). (B) Another group of participants were
presented with images of normally shaped faces (convexity=1) lit from one of the 9
possible elevations ranging from the top of the face to the bottom. (C) Normalized
average ratings of the depth-suppression participants, EIG’s predicted light source
elevation (r = 0.95, p < 0.01), and the ground truth light source location. (D)
Normalized average ratings of the lighting source elevation participants, EIG’s
predicted light source elevation (r = 0.95, p < 0.01), and the ground truth light
source location. Error bars indicate one standard deviation.

mechanistically how each stage is computed. It also suggests why these representations

would be computed in the sequence observed, in terms of a network for moving from 2D

images to 2.5D surface components to 3D object properties, to e�ciently invert a generative

model of how face images are observed in 3D scenes. The model thus gives a systems-level

functional understanding of perhaps the best characterized circuitry in the higher ventral

stream.
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Anatomical connectivity and temporal dynamics of responses in the face patches suggest

extensive feedback and other non-hierarchical connectivity that our current model does

not capture (Grimaldi et al., 2016). Following earlier models of primate face and object

processing (Serre et al., 2007; Yamins et al., 2014; Leibo et al., 2017), however, we see a

feedforward hierarchical network such as EIG as only a first approximation of the system’s

functional architecture, reflecting the first feedforward pass of spiking activity through the

ventral stream. The EIG model naturally extends to architectures involving feedback or skip

connections, which can support more powerful perceptual inferences as we discuss below.

The EIG model also has broader implications for neuroscience, perception, and cogni-

tion. Beyond the specific domain of faces, the finding that IT cortex supports decoding of

category-orthogonal shape information in addition to object category identity (Hong et al.,

2016) suggests that an extension of EIG could account for how the brain perceives the three-

dimensional structure of objects and scenes more generally. This perspective also suggests a

resolution to the problem of interpretability in systems neuroscience (Yamins and DiCarlo,

2016): Today’s best performing models are remarkable for their ability to fit stimulus-

dependent variance in neural firing rates, but often without an interpretable explanation

of what those neurons are computing. Our work suggests that in addition to maximiz-

ing variance explained, computational neuroscientists could aim for “semi-interpretable”

models of perception, in which some neural populations (such as ML/MF and AM) can

be understood as representing stages in the inverse of a generative model (such as 2.5D

components and 3D shape and texture properties), while other populations (such as AL)

might be better explained as implementing necessary hidden-layer (nonlinear) transforms

between interpretable stages.

In o↵ering a solution to the problem of how scene percepts can be so rich in content, yet

so fast to compute from observed images, EIG builds on a more general class of approaches

to e�cient analysis-by-synthesis including Helmholtz machines (Dayan et al., 1995; Nair

et al., 2008) and the more recent variational autoencoders (VAEs) (Kingma and Welling,

2015; Kulkarni et al., 2015b). In these approaches, as in EIG, patterns of inference in a

top-down generative model are learned by a complementary bottom-up recognition network,

which can then approximate the generative model’s inferences on new inputs without going

through costly iterative computations. These earlier approaches, however, used generative
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models learned implicitly with generic function approximators rather than instantiated in

an explicit graphics model as we do; this has the advantage of being very general, but the

weaknesses of producing only rough approximations to natural-looking images for faces or

any given real-world class of objects, and only approximately untangling the underlying

factors of variation or the independent degrees of freedom for objects in a scene. Our

work shows that inverse graphics networks can be implemented for much richer, structured

generative models based on a graphics model capable of generating realistic images for a

wide range of objects in natural scenes. We showed this specifically for one important class

of natural objects, faces, but our network is general and could be applied to other object

classes thought to have have functionally specific brain representations (bodies, hands, word

forms), as well as objects more generally.

Our approach can be extended in a number of directions important for human and

machine perception. EIG networks can be augmented with multiple scene layers in order to

parse faces (or other objects) under occlusion (Yildirim et al., 2017; Moreno et al., 2016).

They can be deployed in parallel or in series (using attention) to parse out multiple objects

in a scene (Romaszko et al., 2017; Eslami et al., 2017; Wu et al., 2017a). They can even be

extended to other modalities through which we perceive physical objects, such as touch, and

can support flexible crossmodal transfer, allowing objects that have only been experienced

in one modality (e.g., by sight) to be recognized in another (touch). We have already

developed several of these extensions in the domain of faces (Yildirim et al., 2017), but

much more work remains to be done to explore the full potential of the EIG approach.

Most intriguingly, our work suggests a clear role for causal models of image formation in

the visual system, and in perception more generally. Unlike many leading accounts of visual

recognition based on deep networks for classification (DiCarlo et al., 2012; Serre et al., 2007;

Krizhevsky et al., 2012), our approach naturally supports explicit representations of physical

objects in terms of their 3D shape and other properties (e.g, substances they are made of);

these basic components of generative models based on graphics engines become the targets

for training inverse-graphics recognition networks. Generative models in the brain could

also support other functional roles: They could be used during online perception to refine

a percept – particularly in hard cases such as under dim light or under heavy occlusion– by

enforcing re-projection consistency with intrinsic image based surface representations (Wu
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et al., 2017b; Yildirim et al., 2015; Kulkarni et al., 2015a; Wu et al., 2017a), and they could

also support higher functions in cognition such as mental imagery, planning, and problem

solving (Battaglia et al., 2013; Wu et al., 2015). It remains to be determined which of

these functions of generative models are actually operative in the brain, as well as where

and how generative models might be implemented in neural circuit. VAEs, and their close

cousins GANs (Goodfellow et al., 2014) and capsules (Sabour et al., 2017), as well as RCNs

(George et al., 2017), are recent developments in deep neural networks that suggest at least

partial hypotheses for how graphics models might be implemented neurally, but none of

these suggestions are yet well grounded in experimental work. We hope that the success of

the EIG approach here will inspire future work to explore potential neural correlates of these

architectures, as well as the other roles that generative models could play in perception,

cognition, and learning.
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1. Probabilistic graphics program

Our generative model builds on and extends the Basel Face Model (BFM) (Paysan et al.,

2009), a statistical shape and texture model obtained by applying probabilistic principal

component analysis (Tipping and Bishop, 1999) on a data set of 200 laser-scanned human

heads. BFM is publicly available and consists of a mean (or norm) face shape, a mean

texture, two sets of principal components of variance, one for shape and the other for

texture, and their corresponding eigenvectors that projects these principal components to

3D meshes.

The principal components of shape S and texture T accept a standard normal distribu-

tion such that Pr(S) and Pr(T ) are each multivariate standard normal distributions with

S 2 RDS , T 2 RDT . Each sample from Pr(S) (or Pr(T )) is a vector in a D = D
S

(or

D = D
T

) dimensional space specifying a direction and a magnitude to perturb the mean

face shape (or the mean texture) to obtain a new unique shape (or texture). Mean shape

and texture correspond to s = {0, 0, ..., 0} and t = {0, 0, ..., 0}. (Uppercase letters are used

for random variables and lowercase letters are used for assignments of these random vari-

ables to draws from their respective distributions. Non-random model parameters, such as

D are also uppercase.) We set D
S

, D
T

= 200 in our analysis. We found that the exact
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values of D
S

and D
T

did not matter as long as they were not too small, which leads to very

little variation across the samples.

We used the part-based version of BFM where the principal components of shape and

texture were partitioned across four canonical face parts: (i) outline of the face, (ii) eyes area,

(iii) nose area, and (iv) mouth area. Each face-part (e.g., shape of the nose area or texture

of the eyes area, etc.) was represented using 200/4 = 50 principal components. There are

four advantages of using BFM: it (i) allows a separable representation of shape and texture,

(ii) provides a probability distribution over both of these properties, (iii) allows us to work

with lower dimensional continuous vectors (400 dimensions in this case) as opposed to very

high dimensional meshes (meshes consisting of about 1 million vertices), and (iv) consists

of dimensions that are often but not always perceptually interpretable (e.g., a dimension

controlling the inter-eye distance).

The full scene description in the model also requires choosing extrinsic scene parameters

including the lighting direction and viewing direction or head pose. In our simulations,

we used Lambertian lighting where the lighting direction L can vary along azimuth L
a

and elevation L
e

. Pr(L
a

) and Pr(L
e

) are uniform distributions in the range {�1.4rad} to

{1.4rad}. The head pose P can vary along the z-axis P
z

with Pr(P
z

) a uniform distribution

in the range �1.5rad to 1.5rad, and the x-axis P
x

with Pr(P
x

) a uniform distribution in the

range �0.5rad to 0.5rad. In practice, rotation in the x-axis was conditionally dependent on

rotation in the z-axis in order to avoid rendering the back and hollow side of the face mesh.

In particular, we truncate Pr(P
x

) whenever P
z

takes values greater than 0.75rad or less than

�0.75�. Finally, we rendered each scene to a 227⇥ 227 pixels color image, unless otherwise

mentioned.

The behavioral stimuli were generated using the same Pr(L) and Pr(P ) as described

above unless otherwise mentioned (see Section 5).

1.1 Synthetic FIV image sets

The FIV-S stimuli underlying Figs. 2F-I used the pose distributions in Table S1. Each

of the 25 identities (i.e., unique pairs of shape and texture properties) were rendered at 7

di↵erent poses and with frontal lighting.
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Pose Category Azimuth (P
z

) Elevation (P
x

)
Frontal N(0, 0.05) N(0, 0.05)

Right-half profile 0.75 +N(0, 0.05) N(0, 0.05)
Right profile 1.50 +�1 ⇤ abs(N(0, 0.05)) N(0, 0.05)

Left-half profile �0.75 +N(0, 0.05) N(0, 0.05)
Left profile �1.50 + abs(N(0, 0.05)) N(0, 0.05)

Up N(0, 0.05) 0.5 +N(0, 0.05)
Down N(0, 0.05) �0.5 +N(0, 0.05)

Table S1: Pose distributions for the FIV-S image set (in radians).

The image set underlying Fig. S3B (referred to as FIV-S-2) used the same prior over

lighting and pose as the generative model, Pr(L) and Pr(P ). It used the same 25 identities

as FIV-S image set and as is the case with FIV-S image set we rendered 7 images (each with

its own randomly drawn pose and lighting parameters) per identity making 175 images in

total. Additionally, to increase the variability at the levels of raw and attended images, we

converted half of these images to gray-scale.

1.2 Conventional top-down inference with MCMC

Given a single image of a face as observation, I, and an approximate rendering engine, G(·)

– a combination of the z-bu↵er  (·) and image rendering �(·) stages introduced in the main

text – face processing in this probabilistic graphics program can be defined as inverting the

graphics pipeline using Bayes’ rule:

Pr(S, T, L, P |I) / Pr(I|I
S

) · Pr(I|S, T, L, P ) · Pr(S, T, L, P ) · �
G(·)

where I
S

is a top-down sample generated using the probabilistic graphics program, and

�(·) is a Dirac delta function. (We dropped the corresponding Dirac delta functions in

Equation 1 in the main text in order to avoid cluttered notation.) We assume that the

image likelihood is an isotropic standard Gaussian distribution, P (I|I
S

) = N(I; I
S

,⌃).

Note that the posterior space is of high-dimensionality consisting of more than 400 (404, to

be exact) highly coupled shape, texture, lighting direction, and head pose variables, making

inference a significant challenge for conventional methods.

Markov chain Monte Carlo (MCMC) methods provide a general framework for infer-

ence in generative models which have a long history of application to inverse graphics

problems (Yuille and Kersten, 2006). For this specific face model, we have explored both
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traditional single-site MCMC and a more e�cient multi-site elliptical slice sampler (Mur-

ray et al., 2009) to infer the 3D shape and texture vectors given an image, I
D

(Kulkarni

et al., 2014). Proposals in elliptical slice sampling are based on defining an ellipse using

an auxiliary random variable X ⇠ N(0,⌃) around the current state of the latent vari-

ables (shape and texture properties), and sampling from an adaptive bracket on this ellipse

based on the log-likelihood function. For the lighting direction and pose parameters, single-

site Metropolis-Hastings steps are used. At each MCMC sweep, the algorithm iterates a

proposal-and-acceptance loop over twelve groups of random variables: four shape vectors

(each of length 50), four texture vectors (each of length 50), and four scalars for lighting

direction and pose parameters. The detailed form of the proposal and acceptance functions

can be found in (Murray et al., 2009). This method often converges to reasonable inferences

within a few hundred iterations, although with substantial variance across multiple runs of

the algorithm (Fig. S1). In contrast, the EIG algorithm which we describe below and in the

main text reliably produces inferences that are as accurate as the best of these MCMC runs

(Fig. S1), far more quickly. EIG avoids the need for iterative computation by estimating 3D

shape and texture latents via a single feedforward pass through a deep recognition network.

Further comparisons between MCMC and e�cient recognition networks for inverse graphics

(using an earlier version of EIG, without the initial face detection stage and using a more

limited training regime and loss function) can be found in (Yildirim et al., 2015).

2. EIG model

The EIG model is a multistage neural network that attempts to estimate the MAP (Max-

imum A Posteriori) 3D scene properties and identity of an observed face image (approx-

imately maximizing the posterior in Equation 1 of the main text). EIG comprises three

recognition modules arranged in sequence to take advantage of the conditional indepen-

dence structure in the generative (graphics) model. These three modules compute (1) a

segmentation and normalization of the face image; (2) an estimate of the 3D face shape and

texture; and (3) a classification of the individual whose face is observed.

Below we describe how each of these modules is constructed. The EIG network can also

be seen as a multitask network that is designed to solve several tasks at once, including

segmentation, 3D scene reconstruction, and identification, where the generative model de-
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Figure S1: We evaluated the log-likelihood scores P (I|S, T, L, P ) of 100 randomly generated
images based on their reconstructions using the EIG network’s inferred scene
parameters (outputs at its layer f5), and compared them to the evolution of
the log-likelihood scores in MCMC. The EIG estimates are computed almost
instantaneously, with no iterations, yet achieve a higher score and lower variance
(mean score ⇠ 2.5⇥105; standard deviation ⇠ 1⇥105; dashed red line shows the
mean) than the MCMC algorithm. In addition, the MCMC algorithm requires a
great deal more time because it must perform hundreds of iterations to achieve
a similar level of inference quality (mean score ⇠ �5⇥ 105; standard deviation
⇠ 8 ⇥ 105; thick black line shows the mean, thinner black curves show 100
individual runs of the algorithm).

termines which tasks should be solved and the conditional independence structure of the

generative model determines the order in which they should be solved.

2.1 Estimating face image given a transformed image, Pr(I|O)

Given an observation consisting of a face image with background, O, MAP inference involves

estimating I⇤ that maximizes Pr(I|O). This can be achieved by a segmentation of the

observed image that only consists of the face-proper region and excludes the rest.

We implemented this inference problem using a convolutional neural network (Fukushima,

1988; LeCun and Bengio, 1995), referred to as f1 in the main text. We took a recent con-

volutional neural network with an hour-glass architecture that is trained for volumetric
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3D segmentation of faces from images (Jackson et al., 2017). This model takes as input

an image and outputs a 3D voxel map where a value of 1 indicates inside the face region

and a value of 0 indicates outside the face region. The output of this network is a rough

and noisy estimation of the face shape in the form of a voxel grid, V
xyz

, of dimensions 192

(width) ⇥192 (height) ⇥200 (depth), which in addition to the face-region, also includes

filled disconnected regions that are outside the face-proper region.

We adapted this output for accurate 2D segmentation in the following way. We first

sum over the depth dimension of V
xyz

to obtain a 2D map, V
xy

, of dimensions 192 ⇥ 192.

We then binarize V
xy

(i.e., replace all non-zero entries with 1) and compute its connected

components in Matlab. We segment O using the largest connected region of V
xy

as the mask.

Finally, we normalize it by zooming in on the segmented image using bicubic interpolation

such that the resulting image’s longer dimension is 227. We minimally translate this resized

image such that it doesn’t exceed the boundaries of the image. In practice, this procedure

yields good estimates for I⇤.

2.2 Scene parameters given face image, Pr(S, T, L, P |I)

Given a face image as input, MAP inference involves estimating the scene properties (la-

tent variables in the graphics program), {S⇤, T ⇤, L⇤, P ⇤} maximizing Pr(S, T, L, P |I). We

accomplished this using a recognition model by learning to map inputs to their underlying

latent variables in the graphics program.

Our recognition model is a convolutional neural network obtained by modifying AlexNet’s

network architecture in the following way (Krizhevsky et al., 2012): we removed its top two

fully-connected layers and replaced them with a single new fully-connected layer. Each layer

in the network implements a cascade of functions including convolution, rectified linear ac-

tivation, pooling, and normalization. The details of the resulting network architecture is

given in Table S2.

We initialized the parameters of f2, f3, and f4 using the corresponding weights of

AlexNet that was pre-trained on a large corpus of images, namely the Places data set

(Zhou et al., 2016). The pre-trained network weights are provided by its authors and can

be downloaded at

http://places2.csail.mit.edu/models places365/alexnet places365.ca↵emodel. This data set
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Type Patch size/stride Output size
Convolution (f21) 11x11/4 96x55x55
Max Pooling (f22) 3x3/2 96x27x27
Convolution (f23) 5x5/1 256x27x27
Max Pooling (f24) 3x3/2 256x13x13
Convolution (f25) 3x3/1 384x13x13
Convolution (f26) 3x3/1 384x13x13
Convolution (f3) 3x3/1 256x13x13
Max Pooling 3x3/2 256x6x6

Full-connectivity (f4) 1x4096
Full-connectivity (f5) 1x404

Table S2: Recognition model architecture

consists of about 2.5 million images and their corresponding place labels such as “beach,”

“classroom,” “landscape,” etc. (365�way categorization in total). The parameters of the

new fully-connected layer (also referred to as scene properties layer or latents layer) were

initialized randomly. We chose to use Places data set pre-trained weights to ensure that the

network started with already trained but generic visual feature extractors not specifically

related to faces. We also avoided using a face corpus pre-trained weights as this would

require access to a large labeled data set of weights, which EIG doesn’t require.

To learn the mapping from images to their latent variable representations, we drew

200, 000 random samples from the generative model. A random sample is as a tuple of

{s
i

, t
i

, l
ai , lei , pzi , pxi , ii}, each random variable drawn from their respective distributions.

Each image was a 227 ⇥ 227 color image with its corresponding target a concatenation of

all the latent variables making a continuous vector of length 404 (200 shape properties, 200

texture properties, and 4 extrinsic scene parameters). Using stochastic gradient descent over

minibatches of size 20 examples, we finetuned the parameters of f3, f4 starting from their

pre-trained weights and trained the parameters of f5 starting from random initialization.

The network learns a regression from images to their latent variable vectors based on the

mean squared error (MSE) loss function. In our simulations we used a learning rate of

10�4. In order to ensure that gradients were large enough throughout training, we also

multiplied the target latent variable vectors by 10. We accounted for this pre-processing

step by dividing the outputs of the network by 10 at test time. We trained the model until
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the error stopped decreasing on a held-out validation set, which was achieved by 64 epochs

of training.

2.3 Person identity given scene parameters, Pr(F |S, T, L, P )

We provide the details of Pr(F ) before describing this final component of the recognition

model. In principle, this distribution is over a finite set of familiar individuals but allowing

for possibility of encountering a new, unfamiliar individual (Allen et al., 2016). Here, we

approximated Pr(F ) as a uniform distribution over a set of familiar individuals. Specifically,

we treated Pr(F ) as a multinomial categorical distribution with K outcomes (i.e., K unique

person identities) with each outcome equally probable. Each person identity is chosen as a

pair of shape and texture properties and denoted as Pr(S, T |F ).

Given scene properties, MAP inference involves estimating the person identity, F ⇤, maxi-

mizing Pr(F |S, T, L, P ). To estimate F ⇤ given scene properties, we extended the recognition

model with a new fully-connected layer, f6, of length K. To learn this mapping from scene

properties to identities, we generated a new data set of K ⇤M images where M is the num-

ber of times the shape and texture properties associated with each of the K identities were

rendered. For each image, we randomly draw the lighting direction and pose properties

from their respective prior distributions, Pr(L) and Pr(P ). In our simulations we set K to

25 and M to 400.

In our FIV experiments, we do not have access to the ground truth shapes or textures

of the 25 person identities in that image set and so cannot use the graphics program for

generating a training image set. Instead, for a given identity, we obtained the M = 400

images by a bootstrapping procedure applied to the whole set of 7 attended images for

that identity. Given the image bounding box of the face proper region, we randomly and

independently stretched or shrank each side of the bounding box by 15%. We resized

the resulting bounding boxes by a randomly chosen scale between 75 � 99%. Finally, we

translated the resulting bounding boxes in the image randomly but ensuring that the entire

face proper region remains in the image. We refer to the resulting image set as bootstrapped

FIV image set.

The training procedure was identical for the FIV and FIV-S experiments. We train

the new identity classification layer f6 and finetune the scene properties layer f5 using
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M ⇤K = 10, 000 images and their underlying person identity labels minimizing the cross-

entropy loss (Kevin, 2012). We used a learning rate of 0.005 for training f6 and half of

that value for finetuning f5. We performed stochastic gradient descent with minibatches

of size 20 until the training performance exceeded 99%. Across multiple training sessions,

we found that this took two epochs of training for FIV-S image set and between 13 and 14

epochs for FIV image set.

All of our models are implemented in Torch, and will be made publicly available at

https://github.com/iyildirim/e�cient inverse graphics.

2.4 Weaknesses of EIG

We note two potential weaknesses of the recognition model. First, it may not perform as

well when the segmentation step f1 fails (e.g., too much of the background is left in the

attended face image). This is an issue only if the face doesn’t cover a spatially significant

portion of the input image. Second, the model’s reconstruction accuracy may degrade when

the observed faces have shapes and textures far from the regions of high prior probability

in the generative model, Pr(S, T ). We see these weaknesses mostly as challenges for the

model as currently implemented, with a rather limited set of face experiences for training

compared to what an individual encounters over the course of their lifetime – let alone what

is e↵ectively a much broader base of experience over evolutionary time that also shapes the

brain’s representations.

The training procedure underlying the third component of our recognition model, Pr(F |S, T, L, P ),

helps alleviate the second issue by allowing finetuning of f5, thereby adjusting Pr(S, T, L, P |I)

to the given training set (e.g., the bootstrapped FIV image set).

3. Alternative models and their evaluations

In this section, we provide the details of the VGG network and its variants and their further

evaluations using the FIV-S image set.

3.1 Overall results based on the FIV-S image set

On the FIV-S images, EIG� (Fig. S2C) fit just as well as the full EIG model (Fig. S2B),

in both qualitative and quantitative terms. This confirms our expectation that the face
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segmentation stage is needed only to handle background clutter in the image, or hair or

clothing that might occlude or distract from face shape and appearance, but that could also

provide spurious cues to a familiar person’s identity. When tested on the FIV-S images,

VGG again showed almost no di↵erence between its top two layers (Fig. S2D), unlike both

the neural responses (Fig. 2A, main text) and the EIG networks. VGG also showed less

view-invariance overall (Fig. S2D ii, iii; p < 0.05) in comparison to its performance on

the FIV images. This relative lack of generalization across viewpoint suggests a form of

dataset bias. Consistent with this interpretation, a version of VGG fine-tuned to images

from the graphics programs (i.e., images similar to the FIV-S faces; referred to as VGG-

FT and described further in detail below) gave rise to patterns of results very similar to

the regular VGG’s results on the more natural FIV image set, with strong view-invariance

in the top fully connected layers (Fig. S2E). Crucially, the training data used to fine

tune VGG-FT matches EIG’s training data, which suggests that the superior fit of EIG to

the neural data on the natural FIV faces, relative to VGG, is more likely a consequence

of their respective targets as opposed to di↵erences in training or test set distributions.

Two other VGG variants that further interpolated towards the EIG� model were also

tested to rule out possible alternative explanations for its lower fit, due to di↵erences in

architecture (ID network, described further in detail below; Fig. S2F) or training loss

functions (Regress-ID, described further in detail below; Fig. S2G). Taken together, these

results on the FIV-S image set positively support the inverse-graphics hypothesis for how

the multistage recognition network of primate face perception is organized: classic neural

selectivity patterns across all three levels of ML/MF, AL and AM arise uniquely when a

recognition model is trained with targets that are 3D scene properties – that is, when the

network is trained to infer the inputs to a causal generative model of observed face images.

We now provide the details for each of the VGG variants.

3.2 VGG network

We used the VGG face network (here referred to as VGG network for brevity) that is pub-

licly available,

http://www.robots.ox.ac.uk/ṽgg/software/vgg face/. This network consists of 13 convolu-

tional layers (8 more layers than AlexNet) and 3 fully-connected layers. The data set used
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Figure S2: Extending Fig. 2 from main text. (A) Sample images from the FIV-S image
set. (B) Full EIG network tested using the FIV-S image set. (C) EIG� network
tested with FIV-S image set, which replicates the results with the segmenta-
tion step. (D) VGG network, (E) VGG-FT network, (F) ID network, and (G)
Regress-ID network tested with the FIV-S image set. Sub-figures follow the same
conventions as Fig. 2, main text. Error bars show 95% bootstrap confidence
intervals (CIs).

for training this network consisted of more than 2.5 million images where each image is

labeled with one of the 2622 person identities. The details of the network architecture, its

training data set, and training procedure can be found in (Parkhi et al., 2015).
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3.3 VGG-FT network

VGG-FT network was identical to VGG in architecture except for its very last fully-

connected layer. We replaced the 2622-dimensional final classification layer (a fully-connected

layer of length 2622) in VGG with a 500-dimensional classification layer (a fully-connected

layer of length 500).

To train this network, we obtained a new data set where the person identities and train-

ing images were generated using the graphics program (Section S1). We first randomly

sampled 500 identities as pairs of shapes and textures from Pr(S, T |F ). We then ren-

dered each identity using 400 viewing conditions randomly drawn from Pr(L,P ), identical

to EIG’s training data set. This procedure gave us a total of 200, 000 images and their

corresponding identity labels (from 1 to 500).

We initialized the weights of VGG-FT using the weights of VGG except for its classi-

fication layer, which was initialized using random weights. We then finetuned the weights

associated with its TCL, FFCL, and SFCL and trained its classification layer (i.e., its third

fully-connected layer; TFCL) using stochastic gradient descent to minimize a cross-entropy

loss.

3.4 ID network

We tested two other VGG variants to rule out possible alternative explanations for its lower

fit, due to di↵erences in architecture or training loss functions. The first of these, the ID

network, is trained using the same data set as VGG-FT, but unlike VGG-FT it shared

the same architecture and pre-training weights as EIG. Specifically, the architecture of the

ID network was based on AlexNet similar to EIG except for its top layer (i.e., its TFCL),

which was a 500-dimensional classification layer. We provide the details of this network’s

architecture in Table S2.

In the same way as was done for EIG, we initialized the weights of this network using

the weights of AlexNet pre-trained on the Places data set, except for its new classification

layer. The training data set (200, 000 images obtained using the graphics program) and

training procedure (fine-tuning TCL, FFCL, and SFCL and training TFCL to minimize a

cross-entropy loss) were identical to that of VGG-FT.

This model gave rise to patterns similar to that of the VGG-FT network (Fig. S2F).
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Type Patch size/stride Output size
Convolution 11x11/4 96x55x55
Max Pooling 3x3/2 96x27x27
Convolution 5x5/1 256x27x27
Max Pooling 3x3/2 256x13x13
Convolution 3x3/1 384x13x13
Convolution 3x3/1 384x13x13

Convolution (TCL) 3x3/1 256x13x13
Max Pooling 3x3/2 256x6x6

Full-connectivity (FFCL) 1x4096
Full-connectivity (SFCL) 1x4096
Full-connectivity (TFCL) 1x500

Table S3: ID network architecture

3.5 Regress-ID network

Although the ID network matches EIG in training data and architecture, the loss function it

optimizes is di↵erent from EIG. We built Regress-ID to further evaluate the discriminative

hypothesis using the identical loss function as EIG, the MSE loss. Moreover Regress-ID’s

training set was the identical set of 200, 000 images we used for training EIG.

The Regress-ID network’s architecture is identical to the ID network except for it doesn’t

have a classification layer (i.e., removing the TFCL layer from the ID network gives the

Regress-ID). We paired each image in the training set with a discriminative vector rep-

resentation as its target. The discriminative vector representations were obtained using

the VGG-FT network: for each image, we recorded the SFCL activations of the VGG-FT

network. We trained the Regress-ID network to map images to their discriminative vector

representations using stochastic gradient descent and a MSE loss. This variant of VGG also

gave rise to very similar patterns as its two other variants (Fig. S2G).

3.6 Functionally interpreting ML/MF and f3 using the generative model

Albedos and normals for each of the 25 person identities in the FIV image set are approx-

imated using EIG and the generative model. The 3D shape and texture properties for

each frontal-pose FIV image are inferred using EIG (outputs at f5). Given the resulting

3D meshes, we obtained the face proper regions by masking out the neck, ears, and hair

from the resulting 3D meshes for each identity. Using the generative model, we rendered

the 2.5D components of each of the masked meshes at the 7 mean pose values underlying
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the extrinsic scene parameter distribution for the FIV-S image set (Table S1). Finally, we

adjusted the size and location of faces in the images using the same normalization procedure

as the attended images (SOM Section 2.1).

We hypothesized that the random variables in the generative model (Fig. 1A) that are

hierarchically below the 3D scene properties each provide a conditional independence stage

that could be exploited by ML/MF or AL. We tested this hypothesis using the similarities

arising from each of the potential conditional independence stages (Fig 3A, main text): raw

input images, attended images, and 2.5D components including albedos and normals. The

attended images and 2.5D components are both better accounts of ML/MF than the raw

images (p < 0.001; raw images r = 0.29[0.24, 0.35], attended images r = 0.52[0.47, 0.57],

albedos 0.60[0.56, 0.64], and normals 0.63[0.59, 0.67]) with the 2.5D components providing a

significantly better account than the attended images (p < 0.001 for each 2.5D component).

However, f3 continued to provide a better account of ML/MF than the 2.5D components

(p < 0.001).

Similar to our ML/MF results (Fig. 3B), we found that f3 itself was highly correlated

with the 2.5D components to a much better degree than the raw input images (albedos

0.83[0.81, 0.85], normals 0.84[0.82, 0.86], raw images 0.36[0.28, 0.44]; p < 0.001 for each

comparison), with the exception that attended images correlated with f3 as highly as the

2.5D components (0.86[0.85, 0.87]; Fig. S3A). To better understand f3 and its relationship

to attended images, we used the FIV-S-2 image set (SOM Section 1.1) which consists of

higher image-level variability in a way that allowed us to tell apart attended images from

the 2.5D components. Unlike the attended images, albedos and normals continued to corre-

late consistently well with f3 (raw images 0.25[0.23, 0.29], attended images 0.46[0.44, 0.50],

albedos 0.85[0.82, 0.86], normals 0.87[0.85, 0.88]; Fig. S3B). These results collectively sug-

gest that both ML/MF and f3 can be understood as 2.5D-like surface representations and

also suggests use of image sets with broader image-level variability in future experiments

for better understanding ML/MF computations.

3.7 Linear decodability of the 2.5D-like representations

We consistently find that VGG and its variants discriminatively trained to estimate face

identity (Fig. 2E and Fig. S2D-G) do not produce an AL-like mirror symmetric represen-
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Figure S3: Extending Fig. 3 from main text. (A) FIV image set based comparisons of
f3 similarity patterns to that of raw images, attended images, and the 2.5D
components. (B) FIV-S-2 image set based comparisons of f3 similarity patterns
to that of raw images, attended images, and the 2.5D components.

Figure S4: (A) Average accuracy of a 25-way linear classifier decoding FIV identities from
the VGG network and the EIG network. Dashed line shows chance performance
(4%). (B) Average goodness-of-fit R2 values resulting from linearly decoding
approximate shape and texture properties of the FIV images from the VGG
network and the EIG network. Error bars indicate standard deviation. All
results are based on held-out test sets (see text for further details).
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tation distinct from both the 2.5D-like representation in ML/MF and EIG-f3 and the 3D

scene property representation in AM and EIG-f5; instead, all fully connected layers of these

networks have similar responses with strong viewpoint-invariant identity coding from the

first fully connected layer (FFCL) upwards. To explain this, we hypothesized that these

discriminatively trained networks are performing a fundamentally di↵erent computation in

their hidden layers than EIG and the face-patch circuitry: While EIG and the ventral stream

appear to need a distinct hidden-layer transformation to solve the nonlinear mapping from

2.5D surface components to 3D object properties – our interpretation for the function of

AL and EIG-f4 – the identity classification task that VGG and its variants are trained for

might be linearly solvable from the high-level image features computed in these networks’

top convolutional layer (TCL), with no need for further nonlinear transformations.

To test this hypothesis, we attempted to linearly decode identity on the FIV faces from

each of the models: layers TCL, FFCL, and SFCL in VGG and layers f3, f4, f5 in EIG.

Specifically, we trained a one-layer linear-softmax classification network on ML/MF, and on

the max-pooling outputs of EIG-f3 and VGG-TCL, to decode all 25 FIV identities. We split

the 175 FIV images to 6 poses (6⇥25 = 150 images) for training and 1 pose (25 images) for

testing with averaging results across all 7 possible splits. Fig. S4A shows the held-out test

performance of the linear classifier. All layers in both networks gave rise to above chance

(4%) decoding performance, but we found far better decodability of identity in the VGG

network, with its TCL representation already achieving near FFCL and SFCL performance.

In contrast, in the EIG network identity wasn’t nearly as linearly decodable initially at its

f3 layer but increased to a comparable level of performance as the VGG network by layer

f5 (Fig. S4A). These results support our conjecture that the face identity might be linearly

solvable from the TCL representations of the VGG network and its variants, without a need

for further nonlinear transformations.

We also tested whether a nonlinear transformation on top of the 2.5D-like representa-

tions –e.g., the layer f4 in the EIG network– are required for mapping these representations

to 3D object properties. We attempted to linearly decode the shape and texture properties

of the FIV images –approximated using the EIG network as its layer f5 outputs given the

175 FIV images– based on both models, layers TCL, FFCL, and SFCL in VGG and layers

f3, f4, and f5 in EIG. We performed linear regression using the partial least squares (PLS)

16

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 2, 2018. ; https://doi.org/10.1101/282798doi: bioRxiv preprint 

https://doi.org/10.1101/282798
http://creativecommons.org/licenses/by-nc-nd/4.0/


method with 33 retained components (Helland, 2006; Pedregosa et al., 2011). We split the

175 FIV images to 6 poses (6 ⇥ 25 = 150 images) for training and 1 pose (25 images) for

testing with averaging results across all 7 possible splits. Fig. S4A shows the goodness-

of-fit R2 values on the held-out test sets. We found that these shape and texture vectors

were not linearly decodable from any of the VGG layers (Fig. S4B), whereas it became

increasingly more decodable in the EIG network from layer f3 to f4 (Fig. S4B). Notably,

the intrinsic scene properties (i.e., the shape and texture properties) were much less linearly

decodable at layer f3 when compared to layer f5 indicating that indeed the transformation

from 2.5D-like representations to 3D scenes requires some nonlinear transformation.

4. Neural data analysis

The neural experiments and the data presented in the main text were originally reported

in (Freiwald and Tsao, 2010).

4.1 Stimulus and experimental procedure

The neural experiments used the FIV image set. FIV included images of 25 person identi-

ties with each identity viewed at 7 di↵erent head orientations: left-profile, left-half-profile,

straight, right-half-profile, right-profile, upwards, downwards. (The original recordings also

used an 8th viewing condition,the back of the head, but we didn’t analyze the corresponding

data in this study).

Images were shown in a rapid serial presentation mode with 200 msec on-time followed

by 200 msec blank screen with gray background. Images were presented centrally and

subtended an angle of 7�. Monkeys were given a juice reward for maintaining fixation at

the center of the screen for 3 seconds.

4.2 Neural recordings

Single-unit recordings were made from three male rhesus macaque monkeys (Macaca mu-

latta). Before the recordings, face-selective regions in each subject were localized using

functional magnetic resonance imaging (fMRI). The face-selective regions were determined

as the regions that were activated more to faces in comparison to bodies, objects, fruits,

hands, and scrambled patterns. Single-unit recordings were performed at four of the fMRI-
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identified face-selective patches, all in the inferior temporal cortex: middle lateral and

middle fundus areas ML/MF, anterior lateral area, AL, and anteriormedial area, AM. Fol-

lowing the original study, we combined the responses from the regions ML and MF in our

analysis due to their general similarity (referred to as ML/MF).

A single neuron was targeted at each recording session, in which each image was pre-

sented 1 to 10 times in a random order. Following (Freiwald and Tsao, 2010), we only

analyze responses of the well isolated units.

4.3 Representational similarity matrices: Neurons

To compute the neural similarity matrices for a given neural site, each image was represented

as a vector of the average spiking rates of all neurons recorded at that site. Following (Meyers

et al., 2015), we obtained the average number of spikes for each neuron across the repetitions

of a given image using the time-binned spike counts centered at 200 msec after stimulus

onset with a time window of 50 msec in each direction. Following (Freiwald and Tsao,

2010), for each site, we min-max (range [0, 1]) normalized the average spiking rate of each

neuron. For a given neural site, similarity of a pair of images was computed as the Pearson’s

correlation coe�cient of the corresponding pair of the average spiking vectors. All spiking

data was processed using the Neural Decoding Toolbox (Meyers, 2013).

4.4 Representational similarity matrices: Models

For a given image set, model, and the model’s layer, images were represented as a vector of

activations of all units in that layer. The model similarity of a pair of images (i.e., each entry

in the similarity matrices in Figs. 2C-E and G-I, main text) is the Pearson’s correlation

coe�cient of their corresponding activations vectors.

4.5 Linear regression analysis using the idealized similarity templates

For a given representational similarity matrix M , we solved the following linear equation.

M = c1 ⇤ I1 + c2 ⇤ I2 + c3 ⇤ I3 + c4 ⇤B (1)

where {c1, c2, c3, c4} are non-negative coe�cients, I1 is the idealized view-specificity

matrix, I2 is the idealized mirror-symmetry matrix, I3 is the idealized view-invariant identity
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coding matrix, and B is the background matrix. These matrices are shown in Fig. 2A-iv in

the main text. All black entries have a value of 1, all gray entries have a value of 0.5 and

all white entries have a value of 0. We solve this equation above using a non-negative least

squares solver as implemented in the Python package scipy’s nnls method.

4.6 Bootstrap procedure

Due to the small number of subjects (N=3), we performed bootstrap analysis at the image-

level. Following the procedure in (Nili et al., 2014), a bootstrap sample was obtained by

sampling the 175 images in the FIV image set with replacement. Based on this sample,

we computed the neural and the model similarity matrices. To avoid spurious positive

correlations, we excluded all non-diagonal identity-pairs that could arise due to sampling-

with-replacement. Based on the discussion in (Diedrichsen and Kriegeskorte, 2017) and

following (Ejaz et al., 2015), we computed the Pearson correlation coe�cient between pairs

of representational similarity matrices. We repeated this procedure for 1000 bootstrap

samples. Significance was measured using a direct bootstrap hypothesis testing procedure

with a significance level of 0.05.

For the linear regression analysis with idealized similarity matrices, we again bootstrap

sampled the 175 images with replacement and performed the linear regression using the

resulting similarity matrix. We repeated this procedure for 1000 times.

5. Psychophysics methods

5.1 Experiment 1

A total of 48 participants were recruited over Amazon’s crowdsourcing platform, Mechanical

Turk (one additional participant was eliminated due to performing at or worse than the

chance performance, 50%). The task took about 10 minutes to complete. Each participant

was paid $1.50 ($9.00/hour). All participants provided their informed consent and were at

the age of 18 or older according to their self-report.

The experimental procedure consisted of a simple “same”/“di↵erent” judgment task as

the following. A study item was presented for 150 msecs, which was followed by a masking

stimuli in the form of a scrambled image of a face for 500 msecs. Finally a test item appeared

and stayed on until a response was entered (the participants were instructed to press “f” for
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“same” and press “j” for “di↵erent”). They performed 10 practice trials before performing

96 experimental trials. Participants did not receive any feedback at all during the practice

trial, which aimed to have participants get used to the experiment parameters (e.g., its

interface). During the experimental trials, participants were shown their current average

performance at every fifth trial.

The stimuli were 200 ⇥ 200 color images of faces photo-realistically rendered using the

generative model. None of the stimuli across the experiments were used during training of

the models. The viewing conditions for both the study and test items were drawn randomly

from their respective prior distribution, Pr(L,P ). All participants saw the same image set

(i.e., the viewing conditions were sampled once for all participants before the experiment

began). There were 48 “same” trials and 48 “di↵erent” trials.

No study identity (i.e., a pair of shape and texture properties) was presented twice

across trials. For the “di↵erent” trials, we chose the distractor face (the test item) by

running a Metropolis-Hasting based search until 50 accepted steps. The search started

from a random face but with matching lighting and pose parameters as that of the study

item and increasingly moved closer to the study face w.r.t. likelihood P (I|S, T, L, P ) by

generating proposals from the prior distribution over shape and texture properties, Pr(S, T ).

This procedure aimed to ensure that the test facial identities in “di↵erent” trials were not

arbitrarily di↵erent from the study item in obvious ways. Our data suggested that this

procedure was e↵ective: across the “di↵erent” trials average Pr(“Same”) was 0.35 with

a standard deviation of 0.15, min value of 0.10 and max value of 0.71. All stimuli were

rendered using Matlab’s OpenGL-based rendering pipeline.

The average performance of participants was 66% with a standard deviation of 7%, a

min value of 53%, and a max value of 78%. Two tailed t-tests revealed that the perfor-

mance of the Experiment 1 participants were not statistically distinguishable from that

of the Experiment 2 participants (p = 0.23) but both Experiment 1 and 2 participants

performed more accurately than the Experiment 3 participants (p < 0.001 and p < 0.05).

See the corresponding subsections below for further details of the accuracy distributions of

Experiment 2 and 3 participants.

The average reaction time of participants was 1479 msecs, with a standard deviation of

626 msecs, a min value of 426 msecs, and a max value of 3754 msecs. Two-tailed t-tests
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revealed that the reaction time distributions were not statistically distinguishable from each

other across all pairs of the three experiments (p > 0.2 in all pair-wise comparisons). See

the corresponding subsections for the reaction time statistics of Experiments 2 and 3.

To examine e↵ects of learning in each experiment, we considered a moving-window

performance of the participants as the trials progressed from the 1st trial to the 96th trial

(Fig. S5). We used a window size of 10 trials and stride of 1. For each participant and

moving-window index, we found that participant’s average performance in the next 10 trials

including the current trial. Even though the data suggested some learning in the early trials

in Experiment 1 (e.g., significant di↵erence between the 1st and 10th windows’ performance,

p < 0.05), there was no indication of learning in Experiments 2 and 3 (e.g., no significant

di↵erence between the 1st and 10th windows, p > 0.35 in both experiments).

5.2 Experiment 2

A total of 48 participants were recruited over Amazon’s crowdsourcing platform, Mechanical

Turk (seven additional participants were eliminated due to performing at or worse than the

chance performance, 50% and two other participants were eliminated because their average

reaction times were very short, 19 msecs and 30 msecs, much less than even the perception-

to-action cycle of the expert video game players, 100 msecs). The task took about 10 minutes

to complete. Each participant was paid $1.50 ($9.00/hour). All participants provided their

informed consent and were at the age of 18 or older according to their self-report.

The stimuli and procedure were identical to Experiment 1 with the following exceptions.

The test item was always presented frontal (i.e., frontal lighting and frontal pose) and

without texture. This was achieved by assuming a uniform gray color for all vertices of the

face mesh before rendering.

Participants’ average accuracy was 64% with a standard deviation of 7%, a min value of

52%, and a max value of 80%. Their average reaction time was 1542 msecs, with a standard

deviation of 564 msecs, a min value of 151 msecs, and a max value of 3716 msecs.

5.3 Experiment 3

A total of 44 participants were recruited over Amazon’s crowdsourcing platform, Mechanical

Turk (12 additional participants were eliminated due to performing at or worse than the
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chance performance, 50%, and one other participant was eliminated because their average

reaction time was very short, 16 msecs, much less than even the perception-to-action cycle

of the expert video game players, 100 msecs). The task took about 10 minutes to complete.

Each participant was paid $1.50 ($9.00/hour). All participants provided their informed

consent and were at the age of 18 or older according to their self-report.

The stimuli and procedure were identical to Experiment 1 with the following exception.

The test item was always presented frontal (i.e., frontal lighting and frontal pose), however,

the texture was rendered on a flat surface in order to eliminate shape information from

shading. In an attempt to further eliminate the shape information, we post-processed the

resulting images by applying a fish-eye lens e↵ect. All of the code used to generate stimuli as

well as the actual images used in the experiments will be released at the time of publication.

Participants’ average accuracy was 61% with a standard deviation of 6%, a min value of

51%, and a max value of 73%. Their average reaction time was 1403 msecs, with a standard

deviation of 472 msecs, a min value of 508 msecs, and a max value of 2792 msecs.

5.4 Calculating Similarity(study,test)

For a given pair of study and test images, their predicted similarity by a model was com-

puted as the similarity of their respective representations under the model. For the EIG

network, this representation was its f5 consisting of the shape and texture properties (a 400

dimensional vector), excluding the lighting and pose parameters. The model’s similarity

prediction was the Pearson’s correlation coe�cient of these two vectors.

For the other networks, the images were represented by their resulting SFCL activations.

The model’s prediction is the correlation coe�cient of these two vectors. We found that no

other layer in the VGG face network resulted in a better account of the human behavior

than the layer we used. We also considered using other similarity metrics in addition to

Pearson’s correlation coe�cient such as the cosine of the angle between two vectors and

Euclidean distance. We found no significant di↵erence in fits for any of the models.

5.5 Bootstrap analysis

In order to quantify the correlations between the models’ predictions and the data, we

sampled whole subject responses with replacement. We generated 10, 000 such bootstrap
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samples. All p-values were estimated using direct bootstrap hypothesis testing (Efron and

Tibshirani, 1994).

Figure S5: Learning curve analysis. The moving-window average performance of the partic-
ipants in each experiment. We don’t observe any pronounced e↵ects of learning,
especially in Exps. 2 and 3. Error bars indicate one standard deviation.

5.6 Hollow face illusion experiment

A total of 60 participants were recruited over Amazons crowdsourcing platform, Mechan-

ical Turk. The task took about 10 minutes to complete. Each participant was paid $1.50

($9.00/hour). Half of these participants participated in the light source elevation condi-

tion, and the other half participated in the depth-suppression condition. The experimental

procedure was identical between the two groups.

Before the beginning of the experimental trials, both groups of participants were in-

structed that they would see images of faces that could be lit anywhere from the top of

the face to the bottom of the face using an illustration of the range of possible scene light-

ing conditions (Fig. S6A). An example trial from the lighting source elevation condition is

shown in Fig. S6B.

Both groups of participants had to complete 5 training trials before they moved onto

45 test trials. We only used the test trials in our analysis. Each of the 45 trials featured

a di↵erent facial identity. In the depth-suppression group, each of the 9 levels of depth

suppression (from 1, regular faces, to 0, flat face, to -1, fully inverted faces with nose

pointing away from the observer; see also the main text) appeared 5 times throughout the

experiment. In the lighting source elevation experiment, each of the 9 levels of elevation
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appeared 5 times (from the top of the face, 1.31 radians of elevation, to the front of the

face, 0 radians of elevation, to the bottom of the face, -1.31 radians of elevation; see also

the main text).

For each condition, we z-scored each participant’s responses (a total of 45 ratings each

in the range of 1 to 7) before averaging all responses across participants and across the 9

levels. The error bars were obtained for each of the 9 levels as the standard deviation of

the average values of the 5 stimuli items corresponding to that level.

Obtaining the EIG network’s predictions was straightforward. For each condition, we

ran the EIG model on the same set of 45 images as the human subjects, recording its outputs

for the lighting elevation, L
e

. We averaged the values for the 5 images of each of the 9 levels.

The error bars in the main text (Fig. 5B, C) show the standard deviation across these five

images. For each condition, the main text reports the linear correlation between the EIG

model and the human behavior using their average predictions and responses across the 9

stimulus levels.

References

Kelsey R Allen, Ilker Yildirim, and Joshua B Tenenbaum. Integrating identification and

perception: A case study of familiar and unfamiliar face processing. 2016.

Jörn Diedrichsen and Nikolaus Kriegeskorte. Representational models: A common frame-

work for understanding encoding, pattern-component, and representational-similarity

analysis. PLoS Computational Biology, 13(4):e1005508, 2017.

Bradley Efron and Robert J Tibshirani. An Introduction to the Bootstrap. Chapman &

Hall/CRC press, New York and London, 1994.

Naveed Ejaz, Masashi Hamada, and Jörn Diedrichsen. Hand use predicts the structure of

representations in sensorimotor cortex. Nature Neuroscience, 18(7):1034–1040, 2015.

Winrich A Freiwald and Doris Y Tsao. Functional compartmentalization and viewpoint

generalization within the macaque face-processing system. Science, 330(6005):845–851,

2010.

24

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 2, 2018. ; https://doi.org/10.1101/282798doi: bioRxiv preprint 

https://doi.org/10.1101/282798
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S6: Lighting direction judgment experiment. (A) The lighting source could be lo-
cated at one of the 9 locations frontal to the center of the face, as illustrated
they covered the full range from above the face (1.31 rads) to below the face
(-1.31 rads). (B) An example trial.

Kunihiko Fukushima. Neocognitron: A hierarchical neural network capable of visual pattern

recognition. Neural Networks, 1(2):119–130, 1988.

Inge Helland. Partial least squares regression. Encyclopedia of statistical sciences, 2006.

Aaron S Jackson, Adrian Bulat, Vasileios Argyriou, and Georgios Tzimiropoulos. Large

pose 3d face reconstruction from a single image via direct volumetric cnn regression.

2017.

M Kevin. Machine Learning: a Probabilistic Perspective. The MIT press, 2012.

25

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 2, 2018. ; https://doi.org/10.1101/282798doi: bioRxiv preprint 

https://doi.org/10.1101/282798
http://creativecommons.org/licenses/by-nc-nd/4.0/


Alex Krizhevsky, Ilya Sutskever, and Geo↵rey E Hinton. Imagenet classification with deep

convolutional neural networks. In Advances in Neural Information Processing Systems,

pages 1097–1105, 2012.

Tejas D Kulkarni, Ilker Yildirim, Pushmeet Kohli, Winrich A Freiwald, and Joshua B

Tenenbaum. Deep Generative Vision as Approximate Bayesian Computation. In Neural

Information Processing Systems Workshop on Approximate Bayesian Computation, 2014.

Yann LeCun and Yoshua Bengio. Convolutional networks for images, speech, and time

series. The Handbook of Brain Theory and Neural Networks, 3361, 1995.

Ethan Meyers. The neural decoding toolbox. Frontiers in neuroinformatics, 7:8, 2013.

Ethan MMeyers, Mia Borzello, Winrich A Freiwald, and Doris Tsao. Intelligent information

loss: The coding of facial identity, head pose, and non-face information in the macaque

face patch system. The Journal of Neuroscience, 35(18):7069–7081, 2015.

Iain Murray, Ryan Prescott Adams, and David JC MacKay. Elliptical slice sampling. arXiv

preprint arXiv:1001.0175, 2009.

Hamed Nili, Cai Wingfield, Alexander Walther, Li Su, William Marslen-Wilson, and Niko-

laus Kriegeskorte. A toolbox for representational similarity analysis. PLoS Computational

Biology, 10(4):e1003553, 2014.

O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep Face Recognition. In British Machine

Vision Conference (BMVC), 2015.

P. Paysan, R. Knothe, B. Amberg, S. Romdhani, and T. Vetter. A 3d face model for pose

and illumination invariant face recognition. Genova, Italy, 2009. IEEE.
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