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Abstract 

RNA interference was first described in the nematode Caenorhabditis elegans. Ever since, 

several new endogenous small RNA pathways have been described and characterized to different 

degrees. Much like plants, but unlike Drosophila and mammals, worms have RNA-dependent RNA 

Polymerases (RdRPs) that directly synthesize small RNAs using other transcripts as a template. The 

very prominent secondary small interfering RNAs, also called 22G-RNAs, produced by the RdRPs RRF-

1 and EGO-1 in C. elegans, maintain the 5’ triphosphate group, stemming from RdRP activity, also 

after loading into an Argonaute protein. This creates a technical issue, since 5’PPP groups decrease 

cloning efficiency for small RNA sequencing. To increase cloning efficiency of these small RNA 

species, a common practice in the field is the treatment of RNA samples, prior to library preparation, 

with Tobacco Acid pyrophosphatase (TAP). Recently, TAP production and supply was discontinued, so 

an alternative must be devised. We turned to RNA 5’ pyrophosphohydrolase (RppH), a commercially 

available pyrophosphatase isolated from E. coli. Here we directly compare TAP and RppH in their use 

for small RNA library preparation. We show that RppH-treated samples faithfully recapitulate TAP-

treated samples. Specifically, there is enrichment for 22G-RNAs and mapped small RNA reads show 

no small RNA transcriptome-wide differences between RppH and TAP treatment. We propose that 

RppH can be used as a small RNA pyrophosphatase to enrich for triphosphorylated small RNA species 

and show that RppH- and TAP-derived datasets can be used in direct comparison. 
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Introduction 

RNA interference (RNAi), the process whereby small RNAs and their cognate Argonaute 

proteins regulate gene expression, was initially discovered in the nematode Caenorhabditis elegans 

(Fire et al., 1998). Interestingly, in nematodes several endogenous small RNA pathways and 27 

genomically-encoded Argonautes are present (Billi et al., 2014). Two classes of endogenous small 

RNAs are transcribed by RNA-dependent RNA Polymerases (RdRPs), the 22G- and 26G-RNAs. The 

22G-RNAs exist in large numbers and, consensually, have 22 nucleotides with a 5’ bias for guanosine 

(Billi et al., 2014). RdRP transcription leaves a triphosphate group at the 5’ end of the small RNA and 

consequently, mature 22G-RNAs still have this RdRP signature at their 5’ end (Billi et al., 2014). 

Mature 26G-RNAs do not have a 5’-triphosphate group, but it is currently unclear how this is 

achieved. 

The 5’ triphosphate group decreases clonability of 22G-RNAs in standard small RNA library 

preparations. A common practice in the field to improve the yield of 22G-RNA reads in deep-

sequencing experiments is to treat samples, prior to library preparation, with Tobacco Acid 

Pyrophosphatase (TAP) (Gu et al., 2009). TAP hydrolyzes several types of pyrophosphate bonds, 

including the eukaryotic 5’ Cap, but it does not hydrolyze polymerized RNA and DNA (Shinshi et al., 

1976). TAP can also hydrolyze pyrophosphate groups from small RNAs, for example 22G-RNAs, 

increasing the likelihood of cloning 22G-RNAs during library preparation. This type of treatment is 

essential to address aspects of 22G-RNA biology. For example, 22G-RNAs provide transcriptome-wide 

self- and non-self recognition platforms that silence foreign gene expression or license bona-fide 

gene expression, respectively (Ashe et al., 2012; Bagijn et al., 2012; Claycomb et al., 2009; Lee et al., 

2012; Luteijn et al., 2012; Seth et al., 2013; Shirayama et al., 2012; Wedeles et al., 2013; van 

Wolfswinkel et al., 2009). Also, several studies focused on understanding the dynamics of inheritance 

and establishment of silencing by these small RNA species (Houri-Ze’evi et al., 2016; Sapetschnig et 

al., 2015).  

Recently, TAP production was discontinued, so we sought a commercially available 

alternative. We chose E. coli RNA 5' Pyrophosphohydrolase (RppH). RppH primes mRNA degradation 

in E. coli by converting the 5’ triphosphate into a 5’ monophosphate (Deana et al., 2008). In practical 

terms, RppH is an enzyme analogous of TAP, allowing for a direct replacement of TAP in the 

established protocols, and it is available commercially at a comparable price. Here, we treated small 

RNAs from C. elegans with TAP and RppH and compared their performance in regard to 22G-RNA 

enrichment. We show that 22G-RNAs were similarly enriched in both treatments and there were no 

global differences in mappability to the C. elegans genome. Furthermore, RppH-treatment retrieves 

22G-RNA sequences targeting known 22G-RNA regulated genes to an extent comparable to TAP-

treated samples. Therefore, RppH is a viable and affordable alternative to TAP for 22G-RNA 

enrichment and TAP- and RppH-treated libraries can be compared directly. 

 

Materials and methods 

 Worm culture, RNA extraction and enrichment for small RNAs 

Caenorhabditis elegans populations were grown according to standard conditions (Brenner, 

1974). Wild-type N2 worms were grown at 20oC on nematode growth medium (NGM) plates seeded 
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with E. coli OP50. For synchronization, gravid adult worm populations were bleached and eggs were 

allowed to hatch in an overnight incubation at 20oC, in M9 buffer. Synchronized L1 larvae were 

plated the next day on OP50-seeded plates and allowed to grow at 20oC for 60-63 hours until 

adulthood. Gravid adults were washed off plate with M9 buffer and lysed in 250 µL of Worm Lysis 

Buffer (0.2M NaCl, 0.1M Tris pH 8.5, 50 mM EDTA, 0.5% SDS) with 150 µg Proteinase K (Sigma-Aldrich 

#P2308) for at least 30 minutes at 65oC. 750 µL of Trizol LS (Life Technologies, 10296-028) were 

added per sample and extraction followed manufacturer’s instructions, with the exception that 

phase-lock tubes were used to facilitate phase-separation. Total RNA extraction was followed by 

TURBO DNase treatment (Life Technologies #AM1907) according to manufacturer’s instructions. 

Small RNAs were isolated from DNase-treated total RNA using MirVana (Life Technologies #AM1561). 

 

RppH and TAP treatments and library preparation  

Pre-treatment. A single RNA sample was divided into 6 technical replicates. Three of these technical 

replicates were treated with Tobacco Acid Phosphatase (TAP, Epicentre) and the other three, with 

RNA 5’Pyrophosphohydrolase (RppH, New England Biolabs, #M0356S). For TAP-treated samples, 1 µg 

of total RNA was incubated for 2 hours at 37C, with 5 units of TAP enzyme and 10X TAP buffer. For 

RppH treated samples, 1µg of RNA was incubated for 1 hour at 37°C, with 5 units of RppH enzyme 

and 10X NEB Buffer 2. To stop the RppH treatment, 500mM EDTA was added and samples were 

incubated for 5 minutes at 65°C. 

Library preparation. Small RNAs (16-30nt) were enriched by performing size selection of the RNA 

prior to library preparation. RNA samples were run on a 15% TBE-Urea polyacrylamide gel (BioRad), 

and purified with sodium chloride/isopropanol precipitation. Library preparation was performed 

using the NEBNext Multiplex Small RNA Library Prep Set for Illumina (New England BioLabs) as 

recommended by the manufacturer (protocol version v2.0 8/13), but replacing the RNA ligation 

adapters with adapters with 4 additional random bases at their 3’ ends to allow identification of PCR 

clonal artefacts (synthesized by Bioo Scientific). Fourteen PCR cycles were used for library 

amplification The PCR-amplified cDNA was purified using AMPure XP beads (Beckman Coulter). Size 

selection of the small RNA library was done on LabChip XT instrument (Perkin Elmer) using DNA 300 

assay kit extracting the 135-170 bp fraction.  

Next generation sequencing. The 135-170 bp library fractions of the RppH and TAP-treated libraries 

were pooled in equal molar ratio. The resulting 4 nM pool was denatured and diluted to 9 pM with 

5% PhiX spike-in and sequenced as single-read on MiSeq (Illumina) for 68 cycles. Libraries for 

untreated samples, originating from a different biological replicate, were also prepared using the 

protocol above, but were sequenced as single-read on HiSeq 2500 (Illumina). Untreated samples 

were originally used in (Almeida et al., 2018). 

 

Bioinformatics analysis 

Read processing and mapping. The quality of raw sequenced reads was accessed with FastQC, 

illumina adatpers were then removed with cutadapt (-O 8 -m 26 -M 38), reads with low-quality calls 

were filtered out with fastq_quality_filter ( -q 20 -p 100 -Q 33). Using information from unique 

molecule identifiers (UMIs) added during library preparation, reads with the same sequence 
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(including UMIs) were collapsed to removed putative PCR duplicates using a custom script. Prior to 

mapping, UMIs were trimmed (seqtk trimfq) and library quality re-assessed with FastQC. Reads were 

aligned against the C. elegans genome assembly WBcel235 with bowtie v0.12.8 (--tryhard --best --

strata --chunkmbs 256 -p 8 -v 1 -M 1). For the analysis, only reads mapping to a single genomic 

location were used. Except where indicated, reads used for comparison are those whose sequence is 

exactly 22 nucleotides long and have a guanine at their 5’.  

RppH and TAP sample correlation. To determine the similarity between libraries, two approaches 

were used: (1) the genome was divided into equally sized bins and reads mapping to each bin were 

counted (DeepTools, multiBamSummary bins); or (2) reads mapping to a set of published 22G small 

RNA targets (DeepTools, multiBamSummary BED-file). Using either of those counts, the correlation 

coefficient (spearman and Pearson) between samples was calculated and plotted (DeepTools, 

plotCorrelation).  

Differential gene expression. We used featureCounts (v1.4.6) with options -s 2 --ignoreDup to count 

the number of reads mapping to the annotated C. elegans genes (Ensembl, WBcel235). Read counts 

were then used in DESeq2 to determine differential expression between RppH and TAP treatments. 

Since the goal was to determine the experimental (technical) differences between both treatments, 

we considered each technical replicate as a biological replicate to perform the analysis. 

22G-RNA target annotation. The list of genes targeted by 22G-RNAs was compiled from previous 

publications (Claycomb et al., 2009; Conine et al., 2010, 2013; Gu et al., 2009; Phillips et al., 2014; 

Vasale et al., 2010). We then used the gene IDs to retrieve genomic locations from Ensembl using the 

bioconductor package biomaRt (Durinck et al., 2009). 

 

Results and Discussion 

To address if RppH treatment enriches for 22G-RNAs as efficiently as TAP, we sequenced 

small RNAs of wild-type adult worms with prior treatment with TAP or RppH. To properly compare 

both treatments, we sequenced three technical replicates of TAP treatment and three technical 

replicates of RppH treatment, all derived from a unique biological sample.  

We first determined if RppH treatment would affect the quality of the sequenced reads. QC 

reports generated by FastQC shows that the per base sequence quality of RppH-treated libraries is at 

least as good as that of TAP-treated libraries (Supplementary Figure 1). Other key indicators such as 

the average quality per read and sequence duplication levels are also similar in libraries treated with 

either method. Importantly, the three RppH-treated technical replicates show that these libraries are 

consistently of high quality.  

The goal of both Rpph- and TAP-treatment is to enrich the library for 22G-RNAs. This class of 

small RNAs has two features that can be readily used to determine if and how successful the 

enrichment was: (i) most sequences are 22 nucleotides in length and; (ii) high proportion of 

sequences with a Guanine at their 5’ end. After adapter and UMI removal we plotted the distribution 

of read length in the sequenced libraries (Figure 1A). Reads were normalized to total number of 

sequenced reads. For comparison purposes, we added samples that were neither treated with TAP 

nor RppH, to set the baseline for enrichment. Untreated libraries have two abundant populations of 

reads with lengths of 21 and 23 nucleotides, accounting for 21U-RNAs and miRNAs, respectively, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 31, 2018. ; https://doi.org/10.1101/283077doi: bioRxiv preprint 

https://doi.org/10.1101/283077
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

whereas in the RppH- and TAP-treated libraries there is a clear enrichment of reads with 22 

nucleotides. Furthermore, in sequences originating from untreated libraries most reads contain a 5’ 

Uracil, but approximately 50% of reads from RppH and TAP-treated libraries have a Guanine at this 

position (Figure 1B). This shows that RppH-treatment is as effective as TAP in enriching for reads with 

22G-RNAs. 

For both treatments, reads were mapped to the C. elegans genome with equal efficiency, and 

similarly to untreated libraries (Figure 2A). Despite achieving a high enrichment of 22G-RNA 

sequences (Figure 1), it is possible that the TAP- and RppH-treatment select for different 

subpopulations of these small RNAs. To exclude this possibility, we selected, in the RppH- and TAP-

treated libraries, only reads that are 22 nucleotides in length and have a guanine at the 5’ (22G 

reads), and tested if these reads map to the same genomic locations. All the follow-up analysis in this 

manuscript is done using these 22G-RNA reads. The overall 22G-RNA genomic coverage appears to 

be similar between RppH and TAP-treated libraries (Figure 2B, Supplementary Figure 2). To confirm 

this observation the genome was split in bins of equal lengths, we counted the number of reads 

mapped to genomic bins, and compared these for all samples (Figure 2C). The mapped positions of 

22G-RNAs from TAP- and RppH-treated libraries are highly correlated (Spearman’s correlation > 

0.86), and as expected are very different from those of the untreated libraries (Spearman’s 

correlation < 0.43). Technical replicates of the RppH treatment are also consistently highly 

correlated, indicating that the RppH treatment is reproducible.  

Even though the overall genomic location of RNA recovered from RppH or TAP treatment is 

very similar (Figure 2B, Supplementary Figure 2), there might be subtle differences between the 

treatments, possibly in genes known to be targeted by 22G-RNAs. To exclude this possibility, we 

determined if the RppH treatment recovered small 22G-RNAs that map to known 22G-RNA targets. 

We counted the number of reads mapping to lists of published target genes of certain small RNA 

pathway factors  (Claycomb et al., 2009; Conine et al., 2010, 2013; Gu et al., 2009; Phillips et al., 

2014; Vasale et al., 2010) and plotted sample correlations (Figure 3A). Replicates from TAP- and 

RppH-treated libraries are highly correlated (Spearman’s correlation >= 0.82), whereas untreated 

samples show very different patterns, (Spearman’s correlation <= 0.48 versus TAP or RppH). 

Furthermore, RppH and TAP libraries are enriched in 22G small RNAs in these regions, compared to 

untreated libraries (Supplementary Figure 3). We have also looked in detail into the coverage of 

known 22G-RNA targets, and confirmed that the level of genic reads resulting from either treatment 

show the same patterns (Figure 3B). This strongly suggests that RppH and TAP treatment enriches for 

22G-RNAs that target the same genes. To further determine if there is some bias in either treatment, 

we performed differential gene expression analysis comparing TAP vs RppH and found only 1 gene 

differentially enriched between TAP and RppH libraries (F38E11.21, a non-coding RNA, FDR < 0.1). 

Importantly, F38E11.21 is not a known 22G-RNA target. From this, we conclude that RppH treatment 

faithfully recapitulates TAP treatment. 

The unavailability of TAP from commercial sources eliminated a common tool used in the 

field of small RNA research, where, amongst other uses, TAP was used to enrich samples for 22G-

RNAs in C. elegans. Whilst no consensus alternative for TAP has been found, others have used other 

alternatives to TAP and RppH (Houri-Ze’evi et al., 2016; Sapetschnig et al., 2015), however, no 

systematic comparison of these enzymatic treatments was performed. Here, we show that another 

decapping enzyme, RppH, is a suitable alternative to TAP. Small RNA-seq libraries of samples treated 

with RppH not only have similar number of 22G-RNA reads, but these also originate from the same 
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genomic locations as that of TAP-treated libraries. While preparing this manuscript, we sequenced 

small RNAs of various other RppH-treated libraries (data not shown). Analysis of those small RNA 

sequencing datasets attested for the reproducibility of RppH treatment (data not shown). Overall, we 

can recommend RppH as a direct replacement of TAP as a small RNA pyrophosphatase to enrich RNA 

samples for 22G-RNAs with almost no changes to existing protocols or added costs.  

 

Figure legends 

Figure 1. RppH-treatment enriches for sequences of 22 nucleotides in length and with 5’ guanine 

bias. (A) Distribution of sequence lengths normalized to the total number of sequenced reads for 

each library. RppH- and TAP-treated libraries show a larger number of 22 nucleotide long reads. (B) 5’ 

nucleotide bias in sequenced reads. R1-R3: Replicates 1-3. 

 

Figure 2. RppH-treatment does not affect the amount of reads mapped to the genome or the 

location of 22G-RNA reads, compared to TAP-treatment. (A) Efficiency of read alignment to the C. 

elegans genome. Total number of reads (red bars) refers to the number of reads that passed the pre-

processing and quality filtering steps. Mapped reads (blue bars) are those that map at least once to a 

region in the genome, and unique reads (green bars) are those that align to a single genomic 

location. (B) Overview of normalized read coverage in chromosome X. Reads of 22 nucleotides in 

length and a guanine at the 5’ were isolated (22G) and their abundance plotted. For visualization 

purposes the three replicates of the libraries of each preparation method where merged. Plots for all 

chromosomes with individual replicates are provided in Supplementary Figure 2. (C) Spearman 

correlation matrix of all replicates obtained from 22G read counts to genomic bins. R1-R3: Replicates 

1-3. 

 

Figure 3. 22G-RNA reads isolated with RppH- or TAP-treatment mapped similarly to known 22G-RNA 

targets. (A) Spearman correlation of reads mapping to known 22G-RNA targets. (B) Normalized read 

coverage at two known 22G-RNA targets, Y47H10A.5 and ama-1 (Corrêa et al., 2010; Gu et al., 2009). 

For visualization purposes the three replicates of each library preparation method where collapsed. 

 

Figure S1. Per base sequence quality of TAP- and RppH-treated libraries.  

 

Figure S2. Genomic coverage of 22G-RNAs in TAP- and RppH-treated libraries. All chromosomes are 

shown. 

 

Figure S3. 22G-RNA enrichment in 22G-RNA targets, as defined in other studies. 
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