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Summary
A large amount of multi-species functional genomic data from high-throughput assays are becoming
available to help understand the molecular mechanisms for phenotypic diversity across species. How-
ever, continuous-trait probabilistic models, which are key to such comparative analysis, remain under-
explored. Here we develop a new model, called phylogenetic hidden Markov Gaussian processes (Phylo-
HMGP), to simultaneously infer heterogeneous evolutionary states of functional genomic features in a
genome-wide manner. Both simulation studies and real data application demonstrate the effectiveness
of Phylo-HMGP. Importantly, we applied Phylo-HMGP to analyze a new cross-species DNA replication
timing (RT) dataset from the same cell type in five primate species (human, chimpanzee, orangutan,
gibbon, and green monkey). We demonstrate that our Phylo-HMGP model enables discovery of ge-
nomic regions with distinct evolutionary patterns of RT. Our method provides a generic framework for
comparative analysis of multi-species continuous functional genomic signals to help reveal regions with
conserved or lineage-specific regulatory roles.

Introduction
Multi-species functional genomic data from various high-throughput assays (e.g., ChIP-seq of transcrip-
tion factor proteins or histone marks) are highly informative for the comparative analysis of gene reg-
ulation conservation and differences between human and other mammalian species (Villar et al., 2015;
Cotney et al., 2013; Brawand et al., 2011; Levin et al., 2016). Continuous-trait models, which are key to
the modeling of functional genomic signals, are gaining increasing attention in genome-wide compara-
tive genomic studies (Naval-Sánchez et al., 2015; Rohlfs et al., 2013). However, computational models
are under-explored to fully model continuous functional genomic data in the context of multi-species
comparisons. In particular, to the best of our knowledge, there are no existing algorithms available to
simultaneously infer heterogeneous continuous-trait evolutionary models along the entire genome.

Several types of continuous-trait evolutionary models have been developed for individual loci. One
basic model (Felsenstein, 1985; Pagel, 1999; Freckleton, 2012) assumes that continuous traits evolve
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by Brownian motion. This model has been extended to more complicated Gaussian processes such
as the Ornstein-Uhlenbeck (OU) process (Hansen, 1997; Butler and King, 2004; Hansen et al., 2008).
However, the existing methods that use continuous-trait evolutionary models in comparative genomics
either apply a single evolutionary model to signals of selected regions, or test different evolutionary
model assumptions with prior knowledge at selected regions (Rohlfs et al., 2013; Brawand et al., 2011;
Naval-Sánchez et al., 2015; Drummond et al., 2012). In other words, the continuous-trait evolutionary
models have not been utilized in simultaneously estimating heterogeneous phylogenetic trees across
different loci along the entire genome based on functional genomic data.

In this paper, we develop a new continuous-trait probabilistic model for more accurate state estima-
tion based on multivariate features from different species using functional genomic signals. We call our
model phylogenetic hidden Markov Gaussian processes (Phylo-HMGP). Our new method incorporates
the evolutionary affinity among multiple species into the hidden Markov model (HMM) for exploiting
both temporal dependencies across species in the context of evolution and spatial dependencies along
the genome in a continuous-trait model. Note that our Phylo-HMGP is fundamentally different from
the existing models that are restricted to discrete state space of the studied traits (Siepel and Haussler,
2005; Hobolth et al., 2007; Liu et al., 2014; Jensen and Pedersen, 2000; Lunter and Hein, 2004; Qu et al.,
2018). In particular, Phylo-HMMs define a stochastic process of discrete-trait character changes (Siepel
and Haussler, 2005), where different states estimated by Phylo-HMMs can reflect different patterns of
substitutions or background distributions. However, Phylo-HMMs do not handle continuous signals. The
models in (Jensen and Pedersen, 2000; Lunter and Hein, 2004) share similar mechanisms and have the
same limitations. In the recent phylo-epigenetic model (Qu et al., 2018), the nature of the method is still
based on transitions between discrete levels of observed signals, with the need to discretize the traits.
In this work, our Phylo-HMGP explores a new integrated attempt to utilize continuous-trait evolution-
ary models with spatial constraints to more effectively study the genome-wide features across species.
Our model is also flexible such that various continuous-trait evolutionary models or assumptions can be
incorporated according to the actual problems. We believe that Phylo-HMGP provides a generic frame-
work, which can be applied to different types of functional genomic signals, to more precisely capture
the evolutionary history of regulatory regions across different species.

In this work, we generated a new cross-species DNA replication timing (RT) dataset from the same
cell type in five primate species (human, chimpanzee, orangutan, gibbon, and green monkey). The RT
program in eukaryotic cells duplicates the genome with a highly regulated temporal pattern. Genome-
wide RT maps have revealed replication domains that correlate with higher order genome organization
such as Hi-C A/B compartments and topologically associating domains (TADs) (Rhind and Gilbert,
2013; Ryba et al., 2010; Pope et al., 2014; Dileep et al., 2015; Solovei et al., 2016). It is known that
RT changes across half of the genome during cell differentiation and disease (Ryba et al., 2011, 2012;
Yue et al., 2014; Rivera-Mulia et al., 2015; Dileep et al., 2015). In addition, studies have shown con-
servation of RT between human and mouse (Yaffe et al., 2010; Ryba et al., 2010; Yue et al., 2014; Pope
et al., 2014). Microscopy also revealed that chromosome regions with early and late RT have specific
spatial localization preferences in nucleus that are conserved in evolution (Solovei et al., 2016). How-
ever, we have limited understanding of how the RT program has evolved in mammals. To the best of
our knowledge, there is no existing study to investigate the RT conservation and dynamics for more
than two mammalian species beyond the human-mouse comparison. Here we apply Phylo-HMGP to
reveal genome-wide distributions of distinct evolutionary patterns of RT in five primates. We found that
constitutive early and constitutive late RT regions, as defined from human ES cell differentiation (Ryba
et al., 2011; Dileep et al., 2015), exhibit a strong correlation with the predicted conserved early RT and
conserved late RT patterns. We also found distinct gene functions associated with different RT evolution
patterns. In addition, the predicted RT patterns across species show correlations with other genomic
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and epigenomic features, including higher order genome organization, cis-regulatory elements, chro-
matin marks, and transposable elements. Our results from the comparative RT analysis in five primate
species demonstrate the potential of our Phylo-HMGP model to help reveal regions with conserved or
lineage-specific regulatory roles for the entire genome.

Results

Overview of the phylogenetic hidden Markov Gaussian processes (Phylo-HMGP) model

Here we first provide an overview of the proposed model (Fig. 1). The details of the model are described
in the Methods section. Our model aims to estimate different evolutionary patterns from multi-species
functional genomic signals. As illustrated in Fig. 1C, the input contains the observed continuous-trait
signals from orthologous genomic regions from multiple species. The output is a genome-wide partition
where neighboring genomic segments have different predicted states of multi-species signals, reflecting
different evolution patterns of the signals being considered.

We define a Phylo-HMGP model as h = (S, ψ,A, π), where S is the set of states, ψ is the set
of phylogenetic models, A is the state-transition probability matrix, and π represents the initial state
probabilities, respectively. Suppose there are M hidden states. We have S = {s1, · · · , sM}, ψ =
{ψ1, · · · , ψM}, A = {aij}, 1 ≤ i, j ≤ M , and π = {π1, · · · , πM}. Fig. 1A shows the state space where
different states are associated with varied phylogenetic tree models. Each phylogenetic tree model is
parameterized with the OU processes, an example of which is shown in Fig. 1B. Note that in this paper,
we focus on the Ornstein-Uhlenbeck (OU) process and apply it to analyze cross-species RT data. We also
discuss and compare with Brownian motion process within the framework (see later section), which is
also used as the Gaussian process for realizations of ψj to construct the emission probability distributions,
j = 1, · · · ,M . ψj differs under different evolutionary models. Other Gaussian processes can also be
embedded into the framework by alternative definitions of ψj .

Phylo-HMGP provides a generic framework to more effectively incorporate multi-species functional
genomic data into the HMM for analyzing both temporal dependencies across species in the phylogeny
and spatial dependencies along the entire genome in a continuous-trait model. The framework is flexible
and the Gaussian processes embedded in the HMM can be specialized to different evolutionary models
(e.g., in this work we focus on OU processes to construct the phylogenetic tree model). The source code
of Phylo-HMGP can be accessed at: https://github.com/ma-compbio/Phylo-HMGP.

Simulation study demonstrates the robustness of Phylo-HMGP

To explore whether incorporating evolutionary temporal constraints into the HMM can improve the ac-
curacy of identifying different evolutionary patterns, we applied our method to 12 synthetic datasets in
two types of simulation studies. We assessed the performance based on Adjusted Mutual Information
(AMI), Normalized Mutual Information (NMI), Adjusted Rand Index (ARI), Precision, Recall, and F1

score (Manning et al., 2008; Vinh et al., 2010) by comparing the predicated states with the ground truth
states (Supplementary Methods A.6). We used HMM to generate the samples in simulation study I
(SS-I), while simulation study II (SS-II) did not use HMM and was instead based on a Gaussian Mix-
ture Model (GMM). Both SS-I and SS-II contained six synthetic datasets (sample size = 50,000 each),
respectively. Detailed descriptions of the simulated datasets are in the Methods section.

We compared Phylo-HMGP-OU and Phylo-HMGP-BM with the Gaussian-HMM method, the GMM
method, and the K-means clustering method in both SS-I and SS-II. For each dataset, we ran each method
10 times. Each method was started from different initializations and given the state number as 10. We
reported the average performance of the 10 runs as the final performance of the respective method. We
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applied the same regularization parameter to Phylo-HMGP-OU on all of the 12 datasets, without tuning
the parameter specifically on each dataset. The results show that Phylo-HMGP-OU outperforms the
other methods on AMI, ARI, and F1 score on all of the six datasets in SS-I (Fig. 2A and Table. S1). In
particular, Phylo-HMGP-OU shows significant advantage in reaching higher ARI on average in different
datasets, as compared to the other methods. In SS-II (Fig. 2B and Table. S2), the performance of Phylo-
HMGP-OU decreases occasionally (SS-II-1 and II-2) as compared to its performance in SS-I. However,
Phylo-HMGP-OU still outperforms the other methods in five of the six datasets. Phylo-HMGP-BM
reaches the highest performance on SS-I-1, while Phylo-HMGP-OU maintains comparable performance
to Phylo-HMGP-BM on this dataset. These simulation results strongly suggest that Phylo-HMGP-OU
can achieve robust performance even when the data are simulated from a non-HMM model such as the
Gaussian mixture model. Note that in the rest of the Results section, we use “Phylo-HMGP” to refer to
“Phylo-HMGP-OU”.

Phylo-HMGP reveals genome-wide patterns of replication timing across primate species

Next, we applied the Phylo-HMGP method to study different evolutionary patterns of RT in mammalian
genomes. We generated genome-wide RT maps based on Repli-seq (Marchal et al., 2017) in lymphoblas-
toid cells from five primate species, including human, chimpanzee, orangutan, gibbon, and green mon-
key. See Methods section for the details on how we processed the data. We then applied Phylo-HMGP
to this multi-species RT dataset. We set the state number as 30 based on estimation from K-means clus-
tering (see Supplementary Methods A.8 and Fig. S3). We identified both conserved and lineage-specific
states with differences in RT patterns across species. Here we classified the 30 states into five groups:
conserved early (denoted as E), conserved late (L), weakly conserved early (WE), weakly conserved
late (WL), and non-conserved (NC) (Supplementary Methods A.9). In the E group, all five species have
early RT. In the WE group, four species have early RT. We assign states to the L group and the WL group
similarly. The remaining states are assigned to the NC group.

The representative RT signal patterns of the 30 predicted states are shown in Fig. 3A, with examples
of the states and groups shown in Fig. 3B and Fig. 3D. Distributions of RT signals of the five species in
each of the 30 states are shown in Fig. S2, including other lineage-specific patterns, conserved patterns,
or divergent patterns. States 1-8 are conserved early or conserved late states of RT, making up approx-
imately 47.7% of the whole genome. States 9-18 display different lineage-specific RT patterns. State
9 (Fig. 3B) and 10 represent human-chimpanzee (hominini) specific patterns of early RT and late RT,
respectively. State 11 shows human-chimp-orangutan (hominid) specific early RT. States 12-18 reflect
single-lineage specific patterns, where one species differs from all the other species.

Phylo-HMGP estimated the transition probabilities between the 30 predicted states (Fig. S4). We
noticed that overall the transition probabilities are higher within the E group and L group. Phylo-HMGP
also simultaneously estimated the model parameters of selection strength, Brownian motion intensity,
and optimal values of the phylogenetic model associated with each state (Fig. S5 and Fig. S6). We found
that the estimated parameters correspond very well to the lineage-specific RT patterns. For example, for
state 9 and 10, the human-chimpanzee specific states, the estimated strongest Brownian motion intensity
happened on the branch leading to human and chimpanzee, and strong selection strength is also estimated
for human and chimpanzee. We observed similar correlations for other states. We also compared Phylo-
HMGP with the other methods on an evaluation dataset constructed from the RT data and found that
Phylo-HMGP outperforms other methods (Supplementary Results B.1 and Fig. S7).

RT evolution patterns correlate with A/B compartments and histone marks

Analysis based on Hi-C data has shown that the genome can be divided into two compartments called
A/B compartments (Lieberman-Aiden et al., 2009), with at least five subcompartments, namely A1, A2,
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B1, B2 and B3, which have different genomic and epigenomic properties (Rao et al., 2014). A1 and
A2 subcompartments both show early RT, with the difference that replications in A2 regions finish later
than A1. B2 and B3 subcompartments show late RT, while replications in B1 happen in the middle of
S-phase (Rao et al., 2014). We used the subcompartment definitions in the human lymphoblastoid cell
line GM12878 from (Rao et al., 2014) and calculated the enrichment of the five subcompartments in
the 30 predicted RT states. We observed that different predicted RT evolution patterns show distinct
enrichments of the subcompartments. For example, the predicted RT states in the E group (state 1-4)
show the strongest correlation with A1 or A2, while the predicted RT states in the L group are enriched
with B2 and B3. The majority of the states in the NC group are most enriched with A2 or B1. States in
the WE group and WL group are enriched with A2/B1, and B2/B3, respectively.

We next compared the enrichments of different histone marks and CTCF binding site within each RT
state. Fig. 3A panel 3 shows the enrichment distributions of histone marks and CTCF binding site across
the five predicted RT groups. These distributions are consistent with the epigenomic feature patterns
of the subcompartments that are enriched in the corresponding states. We found that RT states in the
E group show strong positive correlation with active histone marks (e.g., H3K27ac, H3K36me3, and
H3K4me1) and the CTCF binding sites. On the contrary, RT states in the L/WL groups show distinct
depletion of these histone marks and the CTCF binding sites. The majority of predicted states in the NC
group instead exhibit variations in the enrichments of different types of histone marks.

Among the NC states, state 9 is identified as a human-chimpanzee specific early RT state (Fig. 3B).
It displays a unique pattern of histone mark enrichment, showing the strongest correlation with H2A.Z
(p-values<1e-07) as compared to other predicted states. Recent studies have reported that H2A.Z is
progressively enriched towards early RT loci (Du et al., 2018). Another state with interesting features
is state 4, a conserved early state. The RT is significantly early in human in state 4, similar to other
states in the E group. All of the other states in the E group (state 1-3) are strongly correlated with
A1 subcompartment. State 4, however, is enriched with A2 subcompartment and is more positively
correlated with H3K9me3, which generally has stronger enrichment in A2 than A1 (Rao et al., 2014).
Therefore, state 4 represents a distinct state in the E group. These results demonstrate that Phylo-HMGP
has the sensitivity to distinguish within similar evolutionary patterns of RT.

Different RT evolution patterns reflect different functions

Previous studies have shown that different genomic regions have different levels of cell type specificity
for RT, including constitutively early, constitutively late, and more dynamic across different cell types
(Ryba et al., 2011; Dileep et al., 2015). We compared the states from Phylo-HMGP with the constitutive
and developmental RT patterns discovered during ES cell differentiation (Dileep et al., 2015), including
constitutively early (CE), constitutively late (CL), developmentally regulated (D), and undetermined. We
found that overall the constitutively early or constitutively late RT regions in the human genome have
high consistency with the strongly conserved RT evolution patterns (Fig. 3C). The findings are consistent
with previous observations in human-mouse RT comparison (Ryba et al., 2011).

Among the CE regions that are also covered in the cross-species RT comparisons by Phylo-HMGP,
99.45% of the regions are assigned to the states of conserved early or weakly conserved early (p-
value<2.2e-16). Also, 86.94% of the CL regions in human are within states of conserved late or weakly
conserved late (p-value<2.2e-16). In contrast, the D regions show more diverse patterns across the five
RT groups predicted by Phylo-HMGP. This also suggests that the RT regions in lymphoblastoid cells
with similar RT profile across different cell types are highly likely to be conserved in primates. However,
a significant fraction of conserved RT regions in primates also shows cell-type specific RT patterns in hu-
man. We performed Gene Ontology (GO) analysis for the conserved RT early regions with respect to the
constitutive/non-constitutive RT patterns using DAVID (Huang et al., 2007), and found clear differences
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in gene functions (Table S3). We further performed GO analysis for the lineage-specific RT states (see
Fig. 4A and Table S4). We found that genes associated with different states have different functions and
biological processes. For example, the hominini-specific early RT state (state 9) is enriched with genes
having sensory functions. These analyses suggest that regions with different RT evolution patterns may
contain genes with distinct functions.

Boundaries of RT evolution patterns correlate with TAD boundaries

Earlier studies discovered that TADs defined from Hi-C data have high correspondence with replication
domains (Pope et al., 2014; Dileep et al., 2015). We next asked whether the states found by Phylo-
HMGP correlate with the boundaries of TADs. We used the TADs called by two methods, Directionality
Index (DI) (Dixon et al., 2012) and Arrowhead (Rao et al., 2014). We named the TADs as DI TADs and
Arrowhead TADs, the median lengths of which are 440kb and 185kb, respectively. For each boundary of
a TAD, we calculated the distance between the TAD boundary and the nearest state boundary from Phylo-
HMGP. We then calculated the percentages of boundary distances that fall into four distance intervals
respectively, and estimated the empirical distributions of boundary distances in the different intervals by
shuffling the TADs (Supplementary Methods A.10).

We found that the boundary distances between the DI TADs and the predicted RT states are signif-
icantly more enriched in the interval [0,12kb] than expected (Fig. 4B, empirical p-value<1e-03). The
percentage drops in the intervals that correspond to increased boundary distances. The percentage is
significantly lower than expected in the fourth interval that covers the largest distances (empirical p-
value<1e-03). The comparison based on Arrowhead TADs show similar results. This analysis demon-
strates the correlation between the boundaries of RT evolution states and the TAD boundaries.

RT evolution patterns have enrichment of different transposable elements

It is known that RT correlates with certain transposable element (TE) families, e.g., the early RT re-
gions are typically enriched with SINE elements (Rhind and Gilbert, 2013). We next looked at the
connection between RT evolution patterns and the involvement of TEs based on RepeatMasker annota-
tion. We obtained the RepeatMasker annotations for each of the five primate species from the UCSC
genome browser (Karolchik et al., 2004). For the TE families shared among the five primate species,
we calculated the fold change of their enrichment in the orthologous regions of each species in each
state (Fig. 4C). We found that there exist distinct patterns of TE enrichment across different RT states
and RT groups. Alu elements are strongly involved in conserved early RT states and depleted in con-
served late RT states across the five species, with a clear changing correlation with RT across the five RT
groups. On the contrary, L1 and LTR elements ERVL and ERV1 correlate negatively with early RT but
positively with late RT. TEs in the LTR class and DNA class generally have more diversity in their distri-
butions over states in the WE, WL, and NC groups. We also found that the repetitive sequence elements
srpRNA, scRNA, and snRNA (based on RepeatMasker annotations) have a strong positive correlation
with conserved early RT and negative correlation with conserved late RT (p-value<1e-04), having a sim-
ilar enrichment pattern to Alu in the E, WL, and L groups. Although some of these correlations (such
as those with srpRNA, scRNA, and snRNA) have not been reported before and further investigations
are needed, this nevertheless demonstrates the potential of our method to provide new insights into the
impact of sequence evolution on DNA replication timing.

Lineage-specific early RT regions harbor unique TFBS

We then asked whether there are specific transcription factor binding sites (TFBS) that are enriched in
regions with specific types of RT evolution patterns. We used FIMO (Grant et al., 2011) to perform motif
scanning in the orthologous open chromatin regions of each species (Supplementary Methods A.11),
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using 635 position weight matrices (PWMs) of TF binding motifs from the JASPAR 2016 core vertebrate
motif database (Mathelier et al., 2016). We then computed the motif frequency for each of the PWMs for
each species, using the threshold of p-value<1e-04, and normalized the frequency by the open chromatin
region size. We used two types of tests jointly to identify TF binding motifs that may be enriched in
predicted lineage-specific RT states. First, within each lineage-specific RT state, we performed binomial
tests to find the motifs that are more enriched in the particular lineage than expected (p-value<0.05).
Second, we examined if the species-specific enrichment of a motif in a state is also significantly different
from the genome-wide background distribution (Supplementary Methods A.11).

We identified a set of motifs that show lineage-specific enrichment for each of the lineage-specific
early RT states (Fig. 4D). We found that the identified lineage-specific enriched TF motifs vary in differ-
ent states. However, there are still a number of TF binding motifs (or motifs with similar PWMs) shared
between different states. For example, FOXC1 is significantly enriched in human and chimpanzee in the
hominini-specific state (state 9), and also enriched in green monkey in the green monkey-specific state
(state 18). Interestingly, many of the TF motifs associated with species-specific early RT are from the
FOX family (e.g., FOXC1, FOXO3, FOXD1, and FOXD3), the ELF family (e.g., ELF1 and ELF3), and
the ETV family (e.g., ETV3 and ETV6). TFs of the FOX family are known regulators in B cells (Laurenti
et al., 2013) (lymphoblastoid cells are B cells) and FOXO3 was previously found to be crucial for regulat-
ing cell cycle progression through its binding partnership with DNA replication factor Cdt1 (Zhang et al.,
2012). Many of the other identified TFs are also regulators in B cells, such as EBF1, IRF8, RUNX2, and
POU5F1 (Laurenti et al., 2013). Although these findings need further studies to evaluate their functional
significance in lineage-specific biology, our analysis points to the direction that connects lineage-specific
changes in cis-regulatory elements with lineage-specific changes in RT.

Discussion
In this paper, we developed Phylo-HMGP, which is a new continuous-trait probabilistic model for more
accurate genome-wide state estimation based on multivariate features from different species using func-
tional genomic signals. The proposed Phylo-HMGP explores a new integrated framework to utilize the
continuous-trait evolutionary model with spatial constraints to more effectively study the heterogeneous
evolutionary feature patterns encoded in the genome-wide functional genomic datasets across multiple
species. Both simulation studies and real data application demonstrate the advantage of Phylo-HMGP
as compared to other methods. Importantly, we generated a new cross-species RT dataset from the same
cell type in five primate species (human, chimpanzee, orangutan, gibbon, and green monkey) to study RT
evolution patterns in primates for the first time using Phylo-HMGP. Our results from the comparative RT
analysis demonstrate the potential of the model to help reveal regions with conserved or lineage-specific
regulatory roles for the entire genome.

There are a number of areas that our model can be further improved. For Phylo-HMGP, the number
of model parameters increases linearly with the number of species. There can be many local minima in
parameter estimation for large scale evolutionary trees. Therefore, both more effective parameter con-
straints in accordance with the tree structure and more effective optimization methods need to be devel-
oped. Also, hierarchical state estimation methods can be developed to to group similar predicted patterns
for state prediction refinement. In addition, the current Phylo-HMGP assumes that all the phylogenetic
tree models have the same tree topolopy. But in certain application domains this may not be accurate.
Therefore, it would be useful to improve the model by incorporating inference of alternative tree topolo-
gies (Friedman et al., 2002). Furthermore, we need to improve the interpretation of the estimated model
parameters of the evolutionary models associated with the predicted states, to gain deeper understanding
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of the evolutionary mechanisms underlying the different functional genomic feature patterns.
We believe that Phylo-HMGP provides a generic framework to more precisely capture the evolu-

tionary history of functional genomic signals across different species. In addition to the cross-species
RT comparisons, we also applied Phylo-HMGP to predict the evolution of cis-regulatory modules and
demonstrated the advantage and the generic utility of our new method (Supplementary Results B.2,
Fig. S8, and Fig. S9). From the application to the RT data, we found that different RT evolution pat-
terns predicted by Phylo-HMGP correlate with RT patterns across different cell types and various other
genomic and epigenomic features, including higher-order genome organization features, cis-regulatory
elements, transposons, and gene functions. Such insights from comparative functional genomic analysis
may in turn help interpret the impact of sequence evolution on genome organization and function. One
important future direction would be to develop more integrated models to holistically consider sequence
features and functional genomic signals across multiple species.

Methods

Data simulation for the simulation studies

We used two types of models for data simulation, corresponding to Simulation Study I (SS-I) and Sim-
ulation Study II (SS-II) (Supplementary Methods A.5). Each study consists of six synthetic datasets. In
SS-I, for each dataset, samples were generated from an HMM with 10 states and with multivariate Gaus-
sian distribution as the emission probability distribution. The Gaussian distribution of each state follows
a different OU model on the same phylogenetic tree topology. The OU model parameters of each state
were randomly generated with non-negative constraints of selection strength {αj}Mj=1 and Brownian mo-
tion intensity {σj}Mj=1 (M is the state number). Phylogenetic trees with four leaf nodes and with five leaf
nodes were used as tree topologies for parameter simulation, each used for three datasets. The transition
probability matrix of the HMM was randomly generated with the assumption that self-transition proba-
bility of a state is the dominant probability as compared to probabilities of transitions to other states.

In SS-II, samples were generated from a Gaussian mixture model instead of an HMM. For each
dataset, 50,000 samples were generated based on a mixture model with 10 states where Gaussian distri-
butions are the emission probability distributions. We defined a transition probability matrix between the
10 states as we defined in SS-I, and computed the equilibrium probability distribution of the 10 states
from the transition probability matrix. We then divided the genome into continuous segments of varied
lengths. Each segment represents a series of samples that share the same state, e.g., adjacent fixed-size
bins of the same state on the genome. We randomly sampled the segment length from a truncated Normal
distribution by which the length is non-negative. The state of each segment was drawn randomly and
independently from the computed equilibrium probability distribution of the 10 states. Parameters of the
Gaussian distribution of each state were shared between two corresponding datasets in SS-I and SS-II.
For example, simulation dataset I-1 (dataset 1 in SS-I) and simulation dataset II-1 (dataset 1 in SS-II)
are assigned with the same set of Gaussian distributions for 10 states. However, different assumptions
(HMM and non-HMM models) were used to simulate the two types of datasets.

Cell culture, replication timing profiling, and Repli-seq data processing

The GM12878 cells were grown according to the protocols defined in https://data.4dnucleome.org/biosour-
ces/4DNSRH17RFKR/ and https://data.4dnucleome.org/biosamples/4DNBS3I5U7BY/. For the other
primate species, lymphoblastoid suspension cells were grown in RPMI-1640 media supplemented with
15% FBS and 2mM L-glutamine. Cultures were maintained in T25 flasks at 37°C, 5% CO2 and passaged
to maintain adequate confluency. Next, we performed Repli-seq for the cultured cells of each species
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using the protocol defined in (Marchal et al., 2017).
To obtain multi-species RT signals from the Repli-seq data, we first mapped the preprocessed se-

quencing reads after quality control to the genome assemblies of hg19, panTro4, ponAbe2, nomLeu3,
and chlSab1, respectively, using Bowtie2 (Langmead and Salzberg, 2012). Second, we used human
genome (hg19) as the reference and divided the reference genome into 6kb bins. We then aligned each
bin in human genome to each of the other species with reciprocal mapping using liftOver (Hinrichs
et al., 2006) to obtain the orthologous regions. Third, for each species, we calculated Repli-seq read
count within a given genomic window (an orthologous region) in early and late phases of RT, respec-
tively, normalized by the total read count in early or late RT phase on the whole genome accordingly. The
RT signal in each orthologous region is defined as the base 2 logarithm ratio of read count per million
reads between the early and late phases of RT within this region (see Supplementary Methods A.7 for
additional data processing steps). For each 6kb genomic bin in human, if the RT signals in the ortholo-
gous regions across five species are all available, we form the signals into a feature vector and assign it
to the bin as a sample. Overall, we obtained 419,754 samples.

Ornstein-Uhlenbeck process in the Phylo-HMGP model

Overall framework
We define a Phylo-HMGP model as h = (S, ψ,A, π), where S is the set of states, ψ is the set of phyloge-
netic models, A is the state-transition probability matrix, and π represents the initial state probabilities,
respectively.

In Phylo-HMGP-OU, we can model the continuous traits with the Ornstein-Uhlenbeck process,
which is a stochastic process that extends the Brownian motion with the trend towards equilibrium around
optimal values. It is characterized by the following stochastic differential equation (Hansen, 1997; Butler
and King, 2004):

dXi(t) = α[θ −Xi(t)]dt+ σdBi(t), (1)

where Xi(t) represents the observation of the i-th species at time point t, Bi(t) is the Brownian motion,
α, θ, and σ are parameters that represent the selection strength, the optimal value, and the Brownian
motion intensity, respectively. For example, Xi could be the ChIP-seq signal of a certain histone mark
from a specific cell type at a specific locus in a species. Under the assumption of the OU process, we
can derive the expectation, the variance, and the covariance of the observations of species given the
phylogenetic model ψj . The phylogenetic model is the combination of multiple OU processes that share
parameters along common branches. Suppose that Xp is the trait value of the ancestor of the i-th species,
and Xa is the trait value of the common ancestor of the i-th and j-th species. Following Butler and King
(2004); Rohlfs et al. (2013), we have:

E(Xi) = E(Xp)e
−αitip + θi

(
1− e−αitip

)
, (2)

Cov(Xi, Xj) = Var(Xa) exp
(
−Σk∈lijαktk − Σk∈ljiαktk

)
, (3)

Var(Xi) =
σ2
i

2αi

(
1− e−2αitip

)
+ Var(Xp)e

−2αitip , (4)

where tip is the length of the branch from p to i, and lij represents the set of the ancestor nodes of i and i
itself after its divergence with j.

In the Phylo-HMGP model with OU process, ψj is defined as: ψj = (θj, αj, σj, τj, βj), j = 1, · · · ,M ,
where θj , αj , σj denote the OU process parameters of the j-th state, respectively. τj , βj represent the
topology of the phylogenetic tree and the branch lengths, respectively. We allow varied selection strength
and Brownian motion intensity along each branch and varied optimal values at interior nodes or leaf
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nodes. Suppose there are n branches. We have θj ∈ Rn+1, αj, σj ∈ Rn. Suppose x = (x1, · · · , xN)
are observations of consecutive regions along a sequence of length N , and y = (y1, · · · , yN) are the un-
derlying hidden states, respectively. Each observation xi is a multi-dimensional vector of the trait values
of the compared species with respect to a certain type of functional genomic feature for an orthologous
genomic region. Suppose there are d species, which correspond to the d leaf nodes in the phylogenetic
tree. We have xi ∈ Rd, yi ∈ {1, · · · ,M}, i = 1, · · · , N . The hidden state yi indicates a specific phylo-
genetic model ψj from which the observation xi is generated. {ψj}Mj=1 represent different evolutionary
patterns of the genomic features across the multiple species. For example, one phylogenetic model ψi
may represent conserved evolution of the feature across species, while another model ψj may represent
strong selection strength along one lineage that results in a lineage-specific pattern. Given the input of
multi-species functional genomic signals over a range of regions, which can be processed into the obser-
vations x, we are trying to infer the underlying evolutionary patterns and predict the evolutionary states
y through model parameter estimation. Each yi represents an evolutionary pattern, parameterized by the
inferred phylogenetic model ψyi . The output includes the estimated model parameters ĥ and predicted
states ŷ. Note that our Phylo-HMGP-OU is different from the HMMSDE methods that use a temporal
HMM to simulate a single OU process (Dittmer, 2009). Phylo-HMGP-OU embeds phylogenetic mod-
els constructed by complex of OU processes into a spatial HMM to utilize both temporal and spatial
dependencies between variables.

Parameter estimation
Let Θ be the model parameters. The joint probability of the observations x and states y is p(x,y|Θ) =
πy0
∏N

t=1 ayt−1,ytp(xt|yt,Θ) (Bilmes et al., 1998). We use Expectation-Maximization (EM) algorithm (Demp-
ster et al., 1977) for parameter estimation. Suppose Θg is the current estimate of model parameters. The
EM algorithm computes the expectation of the complete-data log likelihood, which is defined as the Q
function Q(Θ,Θg):

Q(Θ,Θg) = E[log p(x,y|Θ)|x,Θg] =
∑
y∈SN

p(x,y|Θg) log p(x,y|Θ), (5)

where SN is the set of all state sequences of length N . We have:

Q(Θ,Θg) =
∑
y∈SN

p(x,y|Θg)πy0 +
∑
y∈SN

p(x,y|Θg)
N∑
t=1

log ayt−1,yt +
∑
y∈SN

p(x,y|Θg)
N∑
t=1

log p(xt|yt).

(6)

Model parameters π, A and ψ can be updated separately in the Maximization-step (M-step), correspond-
ing to the three parts of Q(Θ,Θg), respectively. Define that q−t = (y1, · · · , yt−1, yt+1, · · · , yN). We
represent the third part as:

∑
y∈SN

p(x,y|Θg)
N∑
t=1

log p(xt|yt) =
N∑
t=1

M∑
l=1

∑
q−t∈SN−1

p (x, y1, · · · yt−1, yt = l, yt+1, · · · , yN |Θg) log p(xt|yt = l)

=
M∑
l=1

N∑
t=1

p (x, yt = l|Θg) log p(xt|yt = l). (7)

p(x, yt = l|Θg) can be computed using forward-backward algorithm (Rabiner, 1989; Bilmes et al.,
1998). We have log p(x|µ(l)

Θ ,Σ
(l)
Θ ) ∝ −1

2
log |Σ(l)

Θ | − 1
2
(x− µ(l)

Θ )T [Σ
(l)
Θ ]−1(x − µ

(l)
Θ ) for a given state

l. The underlying phylogenetic model ψl is embedded into Σ
(l)
Θ and µ(l)

Θ by Eq. (2)-(4). Assume that
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continuous-trait variables follow multi-variate Gaussian distributions. The negative log likelihood of
state l is:

L(Θ(l)) =
1

2
log |Σ(l)

Θ |
N∑
i=1

p (x, yt = l|Θg) +
1

2

N∑
i=1

(
xi − µ(l)

Θ

)T
[Σ

(l)
Θ ]−1

(
xi − µ(l)

Θ

)
p(x, yt = l|Θg),

(8)

We need to perform parameter estimation for each of the possible states. We assume τl is given. βl can
be combined in effect to αl and σl. In practice, if the real branch lengths are unknown, we perform the
transformation that α̃i = αiβi, σ̃2

i = σ2
i βi, where βi represents the length of branch from the parent of

node i to node i. Using this approach the branch lengths are incorporated into {αl, σl}. Then Θ(l) =
{θl, αl, σl}. A challenge is that there are approximately two times more model parameters than the feature
dimension for each state. We apply `2-norm regularization to the parameters Θ(l). In each M-step, the
objective function of a given state l is defined as:

min
Θ(l)

1

N
log |Σ(l)

Θ |
N∑
i=1

w
(l)
i + tr

(
[Σ

(l)
Θ ]−1S̃

(l)
Θ

)
+ λ‖Θ(l)‖2

2, (9)

where w(l)
i = p(x, yt = l|Θg), and S̃(l)

Θ = 1
N

N∑
i=1

w
(l)
i

(
xi − µ(l)

Θ

)(
xi − µ(l)

Θ

)T
. We define λ = λ0/

√
N ,

and tune λ0 based on a fixed simulation dataset. We estimated the range of λ0 that can improve the
performance of Phylo-HMGP-OU (Supplementary Methods A.4 and Fig. S1). Accordingly, we applied
the same λ0 to all the simulation datasets and the real data as a fixed coefficient, without tuning λ0 on
each dataset specially, in order to avoid overfitting of λ0 on a particular dataset.

From the first two parts of Q(Θ,Θg) we can update the estimates of π and A accordingly:

πi =
p(x, y0 = i|Θg)

p(x|Θg)
, (10)

aij =

∑N
t=1 p(x, yt−1 = i, yt = j|Θg)∑N

t=1 p(x, yt−1 = i|Θg)
. (11)

Therefore, in each E-step, given the estimated parameters Θg, we compute p(x, yt = l|Θg) and p(x, yt−1 =
i, yt = j|Θg) using the forward-backward algorithm, l = 1, · · · ,M . In each M-step, we solve the Max-
imum Likelihood Estimation problem to update the parameters π, A, and {ψj}Mj=1. Given the estimated
model parameters, we can predict a most likely sequence of hidden states ŷ using the Viterbi algo-
rithm (Viterbi, 1967). Further details of Phylo-HMGP-OU are included in Supplementary Methods A.1
and A.3.

Note that the existing discrete-trait Phylo-HMMs (Siepel and Haussler, 2005; Hobolth et al., 2007)
can also be represented as h = (S, ψ,A, π), where ψj is defined according to the substitution process
with respect to an alphabet Σj of discrete characters, e.g., Σj = {A,C,G, T} for nucleotides. In discrete-
trait Phylo-HMMs, ψj is defined as ψj = {Qj, bj, τj, βj}, where Qj is the substitution rate matrix, bj is
the vector of the background character frequencies, τj is the tree topology, and βj represents the branch
lengths. This realization of ψj is limited to the discrete characters, where transition probabilities between
two characters can be computed to model evolution of characters, e.g., the HKY85 model (Hasegawa
et al., 1985). For the continuous traits, we need to use continuous-trait evolutionary model assumptions
to define ψj .
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Brownian motion in the Phylo-HMGP model

For more comprehensive method evaluation of the proposed framework, we also developed the Phylo-
HMGP-Brownian Motion (Phylo-HMGP-BM) method, where the embedded continuous-trait model is
the Brownian motion model. Phylo-HMGP-BM is also built from h = (S, ψ,A, π). For Phylo-HMGP-
BM, ψj is defined as ψj = (µj, τj, βj, λj), 1 ≤ j ≤ M , where µj denotes the mean values of leaf
nodes, and τj , βj , λj denote the phylogenetic tree topology, the branch lengths, and the evolution rates
on branches, respectively. Under the Brownian motion assumption, the covariance between observations
of two species depends on the depth of their nearest common ancestor in the phylogenetic tree. The co-
variance matrix based on the BM model can therefore be presented as a linear combination of covariance
matrices (Zwiernik et al., 2017). More detailed description of Phylo-HMGP-BM is in Supplementary
Methods A.2.
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Figure 1: Overview of the Phylo-HMGP model. (A) Example of the state space and state transition probabilities
of the Phylo-HMGP model associated with the continuous genomic data in (C). Si represents a hidden state.
Each hidden state is determined by a phylogenetic model ψi, which is parameterized by the selective strengths
αi, Brownian motion intensities σi, and the optimal values θi of ancestor species and observed species on
the corresponding phylogenetic tree. αi, σi, and θi are all vectors. (B) Illustration of the Ornstein-Uhlenbeck
(OU) processes along the species tree specified in (C). X(t) represents the continuous trait at time t. The
trajectories of different colors along time correspond to the evolution of the continuous trait in different lineages
specified by the corresponding colors in (C), respectively. The time points t1, t2, t3, and t4 represent the
speciation time points, which correspond to the speciation events shown in (C). The observations of the five
species also represent an example of state S2 in (C). (C) Simplified representation of input and output of the
Phylo-HMGP model. The five tracks of continuous signals represent the observation from five species. Si

represents the underlying hidden states. Specifically, the example is the replication timing data, where ‘early’
and ‘late’ represent the early and late stages of replication timing, respectively. The species tree alongside
the continuous data tracks shows the evolutionary relationships among the five species in this study. See also
Fig. S2, Fig. S8, and Fig. S9.
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Figure 2: Evaluation using simulated datasets. (A) Evaluation of Gaussian-HMM, GMM, K-means Clustering,
Phylo-HMGP-BM, and Phylo-HMGP-OU on six simulation datasets in Simulation Study I in terms of AMI (Ad-
justed Mutual Information), ARI (Adjusted Rand Index), and F1 score. (B) Evaluation of Gaussian-HMM, GMM,
K-means Clustering, Phylo-HMGP-BM, and Phylo-HMGP-OU on six simulation datasets in Simulation Study II
in terms of AMI, ARI, and F1 score. In both (A) and (B), the standard error of the results of 10 repeated runs
for each method is also shown as the error bar. See also Table S1, Table S2, and Fig. S1.
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Figure 3: RT evolution patterns identified by Phylo-HMGP. (A) Panel 1 (leftmost): Proportions of the 30 RT
states on the entire genome. The RT states are categorized into 5 groups: conserved early (E), weakly con-
served early (WE), weakly conserved late (WL), conserved late (L), and other stages (NC), respectively. Panel
2: Patterns of the 30 states. Each row of the matrix corresponds to the state at the same row in Panel 1, and
columns are species. Each entry represents the median of the RT signals of the corresponding species in
the associated state. Panel 3: Enrichment of different types of histone marks and CTCF binding site (higher
fold change represents higher enrichment). Panel 4: Enrichment of subcompartment A1, A2, B1, B2, and B3.
(B) Four examples of RT signal distributions in states with different patterns (State 1: E; State 5: L; State 22:
WE; State 9: NC with human-chimpanzee specific early RT). (C) Comparison of predicted RT patterns with
the constitutively early/late RT regions identified across cell types. (D) Examples of different RT states and RT
groups in five species predicted by Phylo-HMGP. TADs called by the Directionality Index method are shown at
the top. See also Fig. S2, Fig. S3, Fig. S4, Fig. S5, Fig. S6, and Fig. S7.
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Figure 4: Comparisons between the RT evolution patterns and other genomic features. (A) Example gene
ontology (GO) analysis results of state 9, state 11, and state 14. (B) Percentages of the distances between
TAD boundaries and boundaries of predicted states in different intervals. The expected distances are calculated
based on randomly shuffled TADs. Two types of TADs from different methods are used, namely TADs called
by the Directionality Index method and TADs called by Arrowhead. (C) Transposable element enrichment in
different RT states. (D) Motif enrichment in different lineage-specific RT states. State 9: human-chimpanzee
specific early RT. State 11: human-chimpanzee-orangutan specific early RT. State 14: orangutan specific early
RT. State 18: green monkey specific early RT. See also Fig. S2, Table S3, and Table S4. The GO analysis
results of other lineage-specific RT states are included in Table S4.
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