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Abstract 
Divisive normalization is a canonical computation that explains contextual modulation of visual 

perception and neural responses in the visual system. Conceivably, normalization also underlies 

contextual modulation of bimanual touch, a perceptual process that likely requires combining 

what is felt on the hands with where the hands are located in space. We found that touch 

experienced on one hand systematically modulates how touch is perceived on the other hand. 

Notably, bimanual interaction patterns and their sensitivity to hand locations differed depending 

on whether participants directed attention to the frequency or intensity of the cues, which were 

always mechanical vibrations. These idiosyncratic perceptual patterns were well explained by 

distinct cue combination models that each comprise divisive normalization. Our findings indicate 

that, while feature-specific rules govern bimanual touch, normalization underlies contextual 

modulation between the hands.   
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Significance Statement 
How we perceive sensory cues depends on the context in which we experience them. 

Contextual modulation of vision results from divisive normalization, a canonical computation 

which adjusts the activity of visual neurons according to the pooled activity over the neural 

population. We tested the hypothesis that contextual interactions between cues felt on the two 

hands are also consistent with normalization. We found that touch on one hand systematically 

influenced perception on the other hand. Moreover, we observed distinct contextual modulation 

patterns when subjects attended to the frequency or intensity of the cues, which were always 

mechanical vibrations. Despite these differences, normalization models accounted for both 

perceptual patterns. Our results support the notion that normalization underlies contextual 

modulation between the hands.       
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Introduction 
How we perceive and understand sensory information depends on the context in which we 

experience the sensory cues. For instance, the visual perception of stimulus contrast, tilt, and 

motion depend strongly on contextual spatial factors defined by the properties of the visual 

surround (1–3). These instances of contextualized perception are thought to be a consequence 

of spatial context processing in neural populations encoding visual features: the activity of an 

individual neuron is modulated by the neuronal population activity in which that neuron is 

embedded. Such gain control, termed divisive normalization (4), is thought to be a canonical 

computation performed by neural circuits (5). Indeed, normalization has also been invoked to 

explain contextual processing in audition (6), olfaction (7), and even value-guided decision 

making (8,9). Surprisingly, there have been limited efforts to relate touch and somatosensory 

operations to normalization (though see (10)). Spatial contextual processing in touch represents 

a unique challenge for the nervous system because the somatosensory system contains a 

deformable sensory sheet – the relative locations of touch receptors can change depending on 

the positioning of the limbs and hands. Accordingly, contextual processing of tactile cues on the 

two hands likely requires combining what is felt on the hands with where the hands are located 

in space. 

 

Here, we tested the hypothesis that contextual processing in touch is supported by divisive 

normalization. To probe contextual processing in touch, we characterized how subjects 

discriminate touch under bimanual stimulation and determined whether cutaneous interactions 

depend on the locations of the hands. We predicted that the experience of tactile cues on one 

hand would be contextualized by cues signaled on the other hand and the relative locations of 

the hands. We found that bimanual cue combination was obligatory regardless of whether 

subjects attended to vibration frequency or intensity; however, the specific contextual 

modulation patterns as well as their sensitivity to hand location differed depending on the 

attended feature. Critically, the idiosyncratic perceptual interactions were explained by distinct 

cue combination models that each involved divisive normalization.   

 

Results 
To characterize bimanual contextual modulation in the frequency domain, we had participants 

perform a frequency discrimination task using their right hand as we manipulated the frequency 

of a distractor cue presented to their left hand and the location of the left hand. While 

participants maintained high performance levels in all conditions, the distractor cues 
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systematically and reliably altered response patterns despite an explicit instruction to ignore the 

distractors (Fig. 1A and Fig. S1). The perceived frequency of the 200-Hz target stimulus (Fig. 
1B) was significantly biased toward distractor frequencies (frequency main effect: F2,14 = 147.0, 

P = 4.0e-10, ηp
2 = 0.95) in a manner that depended on distractor hand location (location effect: 

F2,14 = 6.9, P = 0.008, ηp
2 = 0.5; interaction effect: F4,28 = 17.8, P = 2.3e-7, ηp

2 = 0.72). 

Distractors also significantly altered perceptual thresholds (Fig. 1C) in a manner that depended 

on frequency and hand location (frequency main effect: F2,14 = 12.6, P = 0.0007, ηp
2 = 0.64; 

location main effect: F2,14 = 0.6, P = 0.55, ηp
2 = 0.08; interaction effect: F4,28 = 12.0, P = 8.6e-6, 

ηp
2 = 0.63). When the target and distractor frequencies differed, distractors induced greater 

biases in frequency judgments and elevated discrimination thresholds more as the hands were 

located closer in space. When the target and distractor frequencies matched, target frequency 

estimates remained unbiased, but discrimination thresholds increased with larger separations 

between the hands. Importantly, merely manipulating the location of the left hand without 

delivering distractor cues did not alter right hand discrimination performance (Fig. S2). These 

patterns reveal that tactile frequency perception on right hand is selectively contextualized by 

what was experienced on the left hand and the left hand’s location.   

 

To characterize bimanual contextual modulation in the intensity domain, participants performed 

an analogous intensity discrimination task in which distractor amplitude was manipulated in 

addition to distractor hand location. If left hand distractors similarly contextualize cue perception 

on the right hand for signals in the intensity and frequency domains, we predicted that 1) the 

perceived intensity of a target cue would be biased toward the intensity of the distractor cues, 

and 2) the magnitude of distractor effects would vary according to hand location. Although 

distractors systematically and reliably altered the perceived intensity of the target cue (Fig. 2A 

and Fig. S1), the pattern of distractor effects in the intensity discrimination task clearly differed 

from the pattern observed in the frequency discrimination task. Distractors only reduced the 

perceived intensity of target cues (Fig. 2B) and the magnitude of attenuation scaled with 

distractor amplitude (amplitude main effect: F2,14 = 12.4, P = 0.0008, ηp
2 = 0.64). Notably, 

distractor effects did not vary with hand location (location main effect: F2,14 = 0.3, P = 0.74, ηp
2 = 

0.04; interaction effect: F4,28 = 0.2, P = 0.94, ηp
2 = 0.03). Moreover, distractors exerted no 

consistent influences on intensity discrimination thresholds (Fig. 2C) (amplitude main effect: 

F2,14 = 1.7, P = 0.23, ηp
2 = 0.19; location main effect: F2,14 = 0.04, P = 0.96, ηp

2 = 0.005; 

interaction effect: F4,28 = 2.1, P = 0.11, ηp
2 = 0.23). Thus, tactile intensity perception on the right 

hand is modulated by signals on the left hand, but in manner that is invariant to hand position 
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changes. Because contextual modulation patterns in vibrotactile perception differ markedly 

depending on the attended feature, we infer that the nervous system employs distinct 

computations to support bimanual cue combination in the frequency and intensity domains.      

 

Because tactile contextual modulation patterns were feature-specific, we evaluated bimanual 

cue combination models in the frequency and intensity domains separately; however, in both 

domains, we tested the hypothesis that contextual modulation involves divisive normalization. 

To capture contextual modulation in the frequency domain, which depended on both distractor 

frequency and distractor location, we implemented a model that comprised three key 

components (Fig. 3A): A frequency-based modulation function that determined the variance of 

the target and distractor cue representations, a location-based weighting function that 

determined the cue weights, and a normalization term that rescaled the weights. The frequency- 

and location-based functions represent modulatory effects of feature-based attention and spatial 

attention, respectively. Accordingly, this model bears close resemblance to normalization 

models of attention in the visual domain (11). Our model fully recapitulated the observed bias 

and threshold changes (Fig. 3B,C). On average, the model accounted for 94±1.1% of the 

variance in split-half cross-validation tests performed on each subject’s data (Fig. 3D). 

Moreover, the model explained 96±1% of the variance in across-subject cross-validation tests 

(Fig. 3D), approaching the noise ceiling (98±1%) which provides an estimate of the maximum 

achievable model performance given measurement noise and inter-subject reliability in our 

sample. Importantly, we performed quantitative comparisons of a large number of models 

(Table S1) that each assumed a linear combination of the target and distractor cue estimates, 

but that differed in their treatment of the frequency and position contextual manipulations. The 

model comprising frequency-based reliability modulation, location-based cue weighting, and 

normalization substantially outperformed the alternative models according to a number of 

metrics (Table S2) and was the most probable model given our data based on Akaike weights 

(Fig. S3). 

 

Contextual modulation in the intensity domain, which was invariant to hand location changes 

and was manifest in biasing effects only, could be explained with a simple normalization model 

(Fig. 4A). The pooling of the target and distractor intensity representations for the normalizing 

factor explains why increases in distractor amplitude result in greater reductions in the 

perceived intensity of the target cue (Fig. 4B,C). The normalization model accounted for 92±2% 

of the variance in within-subject cross-validation tests (Fig. 4D). The normalization model also 
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accounted for 94±2% of the variance in across-subject cross-validation tests (Fig. 4D), which 

fell close to the theoretical maximum goodness-of-fit (95±3%). Because distractors only 

attenuated the perceived intensity of the target cue, their modulatory effects could not be 

explained by cue averaging (Table S3). 

 

Discussion 

We found that contextual modulation in touch, probed through bimanual interactions, are 

characterized by idiosyncratic patterns that depend on whether attention is directed to the 

frequency or intensity of the vibration cues. Cue combination in the frequency domain is marked 

by attractive interactions that depend on the locations of the hands while interactions in the 

intensity domain only consist of attenuation which is invariant to hand location changes. 

Notably, our modeling results imply that divisive normalization, a canonical computation (5), is 

critical for tactile contextual modulation irrespective of the attended feature. These collective 

results provide clear demonstrations of how theoretical frameworks relating attention modulation 

and gain control can elucidate the processes by which touch experienced on one finger 

influences perception on another finger (10,12–16) and how cutaneous sensing can be 

modulated by proprioception (17–21).   

 

That different patterns characterize bimanual interactions in the frequency and intensity 

domains is perhaps unsurprising given that these features are represented by distinct neural 

codes in somatosensory cortex (22). Normalization of rate-encoded intensity signals 

conceivably underlies the perceptual attenuation of the target cue intensity, as has been 

proposed for masking effects on tactile detection (10). The neural mechanisms underlying the 

representation and integration of vibration frequency remain more enigmatic. Our results 

suggest that the reliabilities of target and distractor frequency representations are modulated 

and differentially weighted before they are normalized and integrated. This contextual 

processing, which we interpret as reflecting a combination of attention modulation and 

normalization, may parallel the interactions between attention and divisive normalization 

previously described for visual processing (11). Because vibration frequency is represented by 

spike timing in cortical neuron populations that phase-lock to vibrations experienced on the skin 

(22–24), feature-based attention may enhance this temporal code’s precision (25,26). 

Alternatively, attention could modulate activity in putative downstream neurons that presumably 

convert the timing-based signals into rate-based representations (27,28). These representations 

could then be integrated through mechanisms analogous to those described for multisensory 
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cue combination (29), which also involve normalization (30,31). To set the weights to the target 

and distractor cues, spatial attention could either directly modulate the activity representing the 

cues or attention could change the weighting of the connections between the populations 

signaling this information (32). Whether contextual modulation occurs at a particular level in the 

neuraxis is unclear: Bimanual interactions would appear to implicate the higher-order 

somatosensory regions that contain neurons with bilateral receptive fields (33), although activity 

in earlier processing levels could be modulated and normalized via feedback or lateral 

connections. Identifying the neural populations involved in tactile contextual modulation and 

testing these potential mechanisms will require neurophysiology recording experiments. These 

experiments may provide insights into why frequency processing is sensitive to spatial context 

while intensity processing is not. Future experiments can also establish whether the same 

contextual modulation principles apply to the processing of vibrations and tactile flutter signals, 

which may be represented by distinct neural codes (23,34).     

  

Bimanual interactions that are sensitive to hand location likely involve conjunctive neural coding 

of cutaneous and proprioceptive signals (35). What reference frames or coordinate systems this 

conjunctively coded information occupies is an important consideration. Cutaneous events may 

be maintained in limb-based coordinates irrespective of their location in external space (36–38). 

In this case, tactile contextual modulation may be more probable and stronger when the hands 

are held in postures that dominate the statistics of bimanual actions or are learned through 

sensorimotor training (39,40). Alternatively, cue combination may occur after the tactile events 

are remapped from anatomical coordinates to external space (21,41–43). In this case, tactile 

contextual modulation may occur regardless of specific limb postures or even the contacted skin 

regions. Results from two control experiments support the remapping account. First, we 

observed robust proximity-dependent modulation patterns that were comparable in magnitude 

with the arms crossed and uncrossed (Fig. S4). Second, we found that distractors presented on 

the left forearm rather than the left hand also modulated frequency discrimination performance 

in a location-dependent manner (Fig. S5). These results implicate posterior parietal cortex in 

mediating tactile contextual interactions given its critical role in attention and coordinate 

transformations (41,44,45). 

 

Our results reveal obligatory interactions between bimanual sensory cues, the patterns of which 

differ according to the attended stimulus feature. Despite these differences, which likely reflect 

distinct neural operations, tactile contextual modulation in both the frequency and intensity 
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domains involve divisive normalization. These results reinforce the notion that normalization is a 

canonical neural computation which appears omnipresent in support of diverse functions like 

sensory processing, cue integration, attention, and decision-making (5). Our study may also 

have important clinical implications in light of recent efforts to relate divisive normalization to the 

atypical perceptual patterns associated with autism spectrum disorders (ASD) (46,47). Indeed, 

the prevalence of aberrant somatosensory processing is high in individuals with ASD and other 

neurodevelopmental disorders (48–50), and our study offers a tractable paradigm for exploring 

potential links between aberrant touch and alterations in contextual modulation. Future studies 

with neurotypical and clinical populations must also address how bimanual contextual 

modulation interacts with and supports bimanual motor control (51,52).  

 

Materials and Methods 
 
Participants. A total of 30 subjects participated in at least 1 of 5 experiments. Eight subjects 

(4m4f; mean age ± standard deviation: 24.5 ± 8.6 years; mean arm length ± standard deviation: 

70.8 ± 4.9 cm) performed the main frequency discrimination task (Experiment 1). Eight subjects 

(3m5f; 22 ± 5.3 years; 67 ± 3.6 cm) performed the main intensity discrimination task (Experiment 

2). Eight subjects (3m5f; 21.56 ± 3.9 years; 65.8 ± 3.2 cm) performed the frequency discrimination 

task in a control experiment with the arm crossing manipulation (Experiment 3). Eight subjects 

(3m5f; 25.4 ± 5.3 years; 66 ± 3.5 cm) performed the frequency discrimination task in a control 

experiment in which distractors were delivered to the left forearm (Experiment 4). Eight subjects 

(2m6f; 22.8 ± 4.6 years; 65.5 ± 3.6 cm) performed the frequency discrimination task on the right 

hand in a control experiment in which the position of the left hand was manipulated without 

distractor stimulation (Experiment 5). One subject participated in Experiments 3, 4, and 5; one 

participated in Experiments 1 and 5; one participated in Experiments 2 and 3; one participated in 

Experiments 3 and 5; two subjects participated in Experiments 1 and 4; and two subjects 

participated in Experiments 4 and 5. All subjects were right-handed according to the Edinburgh 

Handedness Inventory (53) and reported normal somatosensory functions. Testing procedures 

were performed in compliance with the policies and procedures of the Baylor College of Medicine 

Institutional Review Board. All participants provided informed written consent and were paid for 

their participation or declined compensation. 

 

Experiment 1. Frequency discrimination task. Tactile frequency discrimination was tested 

using a two-alternative forced choice (2AFC) design. On each trial, participants experienced 
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vibrotactile stimulation on their right thumb (target digit, DT) in two intervals: One interval 

(randomized over trials) always contained the 200-Hz standard stimulus and the other contained 

a comparison stimulus whose frequency varied (100, 140, 180, 200, 220, 260, 300Hz). Stimuli 

were delivered at amplitudes that were equated for perceived intensity (54). Subjects reported 

which interval contained the stimulus perceived to be higher in frequency. Participants performed 

the task in the absence (baseline) and presence of vibrotactile distractors presented to their left 

index finger (distractor digit, DD). Subjects were explicitly instructed to ignore the distractor stimuli. 

On each trial, distractors paired with the comparison stimulus were always matched in frequency. 

Distractors paired with the 200-Hz standard stimulus were set at 100, 200, or 300Hz. This design 

enabled us to characterize frequency-dependent distractor influences on the perception of the 

200-Hz standard stimulus. 

 

We also manipulated the position of DD to test whether distractor influences depended on the 

proximity of the hands. DT was always positioned 15cm in front the participant’s body (midline) 

with the finger pad facing away from the body. DD was positioned at three locations (Fig. S6A): 

DD was 1cm from DT (near position), DD was co-planar and aligned with DT as the left arm was 

fully extended and angled 60° with respect to the body (far position), or DD was located at the 

midpoint between the near and far positions (middle position). Magnetic holders secured the 

fingers to the table surface ensuring that hand positions and alignments were consistent 

throughout the experiment. Participants’ hands were visually occluded using custom-designed 

goggles.  

 

Each subject was tested in 2 sessions (inter-session interval: 4.3 ± 4.6 days). Within a session, 

an equal number of trials were tested under the baseline condition (DT with no distractor), 9 

distractor conditions (3 distractor frequencies x 3 distractor positions), and a condition in which 

the discrimination task was performed using DD only. In each condition, the total repetitions of 

each comparison frequency depended on its absolute difference with respect to 200Hz (D100Hz 

= 10 reps; D60Hz = 11 reps; ≤D20Hz = 12 reps) to bias sampling to the more challenging 

comparisons. This yielded 78 trials per condition and 858 trials per session. In each session, 

baseline trials were randomized and tested in a single block. Trials involving DD only were similarly 

tested. Distractor trials were pseudo-randomized according to distractor position. Each distractor 

position was tested in 3 blocks yielding a total of 9 distractor blocks, the order of which was 

counterbalanced over subjects and sessions. Subjects were provided 2-3 min between blocks to 

rest. Over two sessions, this study design yielded 1716 trials per subject.  
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Experiment 2. Intensity discrimination task. Subjects’ ability to discriminate vibration intensity 

was tested using the same 2AFC procedure as described for Experiment 1. On each trial, 

participants judged the intensity of tactile stimulus pairs that were delivered to their right thumb. 

All stimuli were matched in frequency (200Hz) and were clearly suprathreshold. The amplitude of 

the standard stimulus was 0.4 (arbitrary units). The amplitude of the comparison stimuli varied 

(0.05, 0.2, 0.32, 0.4, 0.48, 0.6, 0.75). The voltage measured from the amplifier’s output ranged 

from 0.6–3.3V over the tested vibration amplitudes. Subjects performed the intensity 

discrimination task in the absence and presence of distractors. The amplitude of the distractors, 

presented to the left index finger, were either 0.2, 0.4, or 0.7. As in Experiment 1, distractor stimuli 

presented during the comparison stimulus interval always matched the target stimulus 

experienced on DT. The position of the distractor digit was manipulated as in Experiment 1. Over 

two sessions, this study design yielded 1716 trials per subject.  

 

Experiment 3. Frequency discrimination task with arm crossing manipulation. The 

procedure was similar to that described for Experiment 1 with the major exception that only two 

limb configurations were tested: Arms uncrossed and crossed (Fig. S4 and Fig. S6B). In the 

uncrossed configuration, the target digit (right thumb) and distractor digit (left index finger) were 

positioned 15cm in front of the body to the right and left of midline, respectively. In the crossed 

configuration, the locations of the hands were reversed such that the right and left hands were 

positioned to the left and right of midline, respectively. In both configurations, the distance 

between the target and distractor digits was 20cm. Two distractor frequencies (100 and 300Hz) 

were tested. This design enabled us to test whether bimanual interactions in the frequency 

domain were associated with specific limb configurations or simply the distance between the 

hands irrespective of limb configuration. Over two sessions, this study design yielded 936 trials 

per subject. 

 

Experiment 4. Frequency discrimination task with forearm distractors. The procedure was 

similar to that described in Experiment 1 with the major exception that the distractors were 

presented on the left forearm rather than the left hand. As in Experiment 1, the target digit was 

maintained in front of the body at midline and the left arm was repositioned to manipulate the 

location of the distractor (Fig. S5 and Fig. S6C). In the near position, the stimulated forearm site 

was 1cm from the target digit. In the far position, the left arm was extended away from the target 

digit. Two distractor frequencies (100 and 300Hz) were tested. This design enabled us to test 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 12, 2018. ; https://doi.org/10.1101/283218doi: bioRxiv preprint 

https://doi.org/10.1101/283218


	 12	

whether position-dependent cutaneous interactions in the frequency domain only occur under 

bimanual stimulation conditions. Over two sessions, this study design yielded 780 trials per 

subject. 

 

Experiment 5. Frequency discrimination task with manipulations of the distractor hand in 
the absence of distractor stimulation. The procedure was identical to that described for 

Experiment 1 except that no distractor stimulation was presented. In this experiment, we only 

manipulated the position of the left hand (Fig. S2 and Fig. S6a) while subjects performed the 

frequency discrimination task using their right hand. In a single session, this study design yielded 

432 trials per subject. 

 

Vibrotactile stimulation. Sinusoidal signals were digitally generated (sampling rate: 44.1kHz) in 

Matlab (2011b, MathWorks) running on a Macbook Pro (model A1278; OS X 10.9.5, 2.5GHz Core 

i5, 4GB RAM)(54). The experiment was controlled using Psychtoolbox-3. Each 800-ms stimulus 

was characterized by linear on- and off-ramps (ramp duration: 50ms). Stimuli on each trial were 

separated by an 800-ms inter-stimulus interval. The signals were outputted via the auxiliary port, 

amplified (Krohn-Hite Wideband Power Amplifier, model 7500), and delivered to the skin through 

miniature electromechanical tactors (Fingers: type C-F, Engineering Acoustics, Inc.; Forearm: 

type C-2, Engineering Acoustics, Inc.). Tactors were fastened to the distal phalanges of the index 

fingers or the left forearm self-adherent cohesive wrap bandages. Subjects wore earmuffs (Peltor 

H10A Optime 105 Earmuff, 3M) to attenuate any sounds associated with the tactile stimulation. 

 

Data Analysis. Analyses were performed using Matlab and R-studio. To quantify each 

participant’s ability to discriminate tactile frequency in the baseline and distractor conditions, we 

fitted each subject’s performance data with a Gaussian cumulative distribution function: 

 

p 𝑓# > 𝑓% =
1
2
1 + erf

𝑓# − µ
2σ0

 

where p(fc > fs) is the choice probability (CP) indicating the proportion of trials a comparison 

stimulus with frequency fc was judged to be higher in frequency than the standard stimulus fs, µ 

and s are free parameters corresponding to the point of subjective equality (PSE) and just-

noticeable difference (JND), respectively, and erf(x) is the error function of x. The PSE is a 

measure of bias and indicates the comparison frequency perceived as equal to the standard 

frequency. The JND is a measure of sensitivity that is defined as the standard deviation of the 
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Gaussian, which corresponds to 84% performance. Participants’ ability to discriminate vibration 

intensity in Experiments 2 was also quantified using the Gaussian cdf.  

 

In group-level analysis, we determined whether baseline-subtracted PSE and JND estimates 

differed significantly according to distractor conditions. In Experiments 1–4, we conducted two-

way repeated-measures ANOVA (rmANOVA) with frequency (or intensity) and position as the 

within-subjects factors. In Experiment 5, we conducted a one-way rmANOVA with distractor hand 

position as the within-subjects factor.  

 

Modeling tactile cue combination. General. To understand the computing principles underlying 

tactile cue combination, we implemented and compared competing models for bimanual 

interactions in the frequency and intensity domains separately. For each model, we assumed that 

the nervous system initially represents the target stimulus and distractor stimulus as Gaussian 

probability distributions s2~N µ2, σ2  and s6~N µ6, σ6 , respectively. Based on these 

representations, we assumed that the nervous system computes a final estimate of the target 

stimulus, θ~N(µ9, σ9). The variances of the initial target and distractor representations were 

determined empirically in the psychophysical experiments. 

 

Cue combination in the frequency domain. We assumed that the final target estimate is computed 

as a weighted combination of the target and distractor representations. We also assumed that the 

weighting of the target and distractor representations as well as their variances (reliability) can be 

modulated before the final target estimate is computed. Thus, the model takes the general form: 

 

θ = W2a2 + W6a6       (1) 

 

where, θ is the representation of the final estimate, a2~N µ2, σ2  and a6~N µ6, σ6  are the 

modulated representations of s2 and s6, respectively, and W2 and W6 are their respective weights. 

According to this model, the predicted bias (µ9, PSE) and threshold (σ9, JND) of the final estimate 

are determined as: 

 

µ9 = W2µ2 + W6µ6, and, σ9 	= W2
0σ20 + W6

0σ60         (2) 
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The most probable model given our data (see Model selection) comprised 4 free parameters and 

included three key functions: frequency-based cue reliability modulation, location-based cue 

weighting, and normalization. The frequency-based reliability modulation function sets the 

reliability of each cue representation according to the cue’s frequency: 

 

MA Δf = cD exp − FGH

IH
       (3) 

 

where the modulation values in Mr are normally distributed over Δf (the difference in frequency 

between each cue and the standard frequency), and c1 and c2 are free parameters. This 

component can be considered to reflect feature-based attention directed toward the standard 

frequency, 200Hz. The function determines the modulated reliabilities of both the target and 

distractor cues: 

 

σ2 = σ2/MA 0 , and, σ6 = σ6/MA Δf       (4) 

 

Although the modulation function’s impact is substantially greater on the distractor 

representations, the function causes a slight increase in the variance of the target cue 

representation (Fig. 3b) which is consistent with an attentional cost to ignoring the distractor. Also, 

because the modulation function only sets the variance of the cue representations, µ2 = µ2 and 

µ6 = µ6. 

 

The location-based weighting function determines the contribution of each cue according to the 

cue’s position:  

 

ML Δp = exp − FM
IN

        (5) 

 

where Mw is exponentially distributed over Δp (the distance between the target and distractor 

hands) and c3 is a free parameter. To account for variations in subject arm lengths, the relative 

distances in the near, middle, and far positions were 0, 0.5, and 1, respectively. This component 

can be considered to reflect spatial attention directed toward the location of the target hand. 

Accordingly, before normalization, the target cue is assigned the maximum weight by Mw under 

all of the limb configurations while the weight to the distractor cue decreases with greater inter-

manual separation (Fig. 3a). 
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The final weights to the target (W2) and the distractor (W6) that determine their contributions to 

the final estimate are computed using a normalization function that includes a single free 

parameter, cO: 

W2 =
PQ R

ISTPQ R TPQ FM
, and, W6 =

PQ FM
ISTPQ R TPQ FM

    (6) 

 

We tested a total of 19 alternative models. All of the models assumed a linear combination of the 

target and distractor representations (Eqs. 1, 6) but differed in the determination of the target and 

distractor cue reliabilities and their weights (Table S1). 

 

Cue combination in the intensity domain. We separately modeled distractor influences on tactile 

intensity perception, which were limited to changes in bias. The most probable model given our 

data was one incorporating only divisive normalization: The perceived intensity of the target 

stimulus (µ9) is estimated by normalizing the representation of the target cue amplitude with the 

sum of the target and distractor cue amplitudes:  

µ9 =
UV

WTXH UVTUY
        (7) 

 

where I2 is the target amplitude, I6 is the distractor amplitude, and α is a free parameter. This 

model assumes no effects on discrimination thresholds in the intensity domain, so the threshold 

associated with the final estimate matches the threshold associated with the target cue alone, 

σ9 = σ2. 

 

We compared the normalization model to an alternative model based on simple cue averaging. 

In this model, the perceived intensity of the target stimulus is estimated by averaging the 

amplitudes of the target and distractor cues, again assuming no changes in the perceptual 

threshold: 

µ9 =
D
0
I2 + I6 , and		σ9 = σ2       (8) 

 

Model fitting and performance assessment. Single subject fitting. Model parameters were 

estimated using a within-subject cross-validation procedure. Each subject’s data were divided into 

two sets that contained an equal number of repetitions for each experimental condition. This 

pseudo-random data partitioning permitted the calculation of unbiased choice probability values 

for each split-half dataset. Using two-fold cross-validation, the model was trained on one dataset 
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using maximum likelihood estimation and tested on the second dataset. The squared correlation 

between the observed and predicted CP was computed as a measure of variance explained for 

each fold and the variance explained was averaged over both folds for a single goodness-of-fit 

measure. This two-fold cross-validation procedure was repeated 100 times for each subject.     

 

Group-level fitting. To compare parameter estimates and model performance at a group level, we 

adopted a leave-one-subject-out cross-validation approach. On each fold, the model was trained 

on the full datasets of 7 subjects and tested on the data of the held-out subject. The goodness-

of-fit calculated in this manner provides an estimate of the inter-subject reliability of the models. 

Using the same leave-one-subject-out procedure, we calculated the response variance in a single 

subject explained simply by the averaged data over the other 7 subjects. The group-averaged 

data provided a parameter-free model which established a noise ceiling against which we 

compared the goodness-of-fit values calculated for the fitted models.  

 

We additionally conducted Bayesian analyses to evaluate each candidate model against the 

parameter-free model established by the leave-one-subject-out cross-validation (Table S2 and 
Table S3). For each model separately, we quantified the relative support for the alternative 

hypothesis that the model was outperformed by the parameter-free model (H1) compared to the 

null hypothesis of no performance differences (H0) where the Bayes factor (BF) was 

p(data|H1)/p(data|H0). Thus, smaller BF values indicated stronger evidence for each fitted model.   

 

Model selection criteria. We adopted a number of complementary approaches for selecting a 

favored model among the alternative models. 
 
Log-likelihood. If an experiment consists of n independent Bernoulli trials, each having probability 

of success (p) and total number of successes in the trials (x), then the likelihood is: 

L p; x = ^!
`! ^a` !

p` 1 − p ^a`       

 

Maximizing the likelihood is equivalent to maximizing the log-likelihood (ll(p; x)), which is given 

by: 

ll p; x = log ^!
`! ^a` !

+ x log p + n − x log(1 − p)     
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The first term of the above equation is a constant that does not involve the parameter p, where p 

is expressed as a Gaussian cdf. So, for a given model, we maximize: 

ll p; x = x log p + n − x log 1 − p       	

= x log D
0
1 + erf Geaf

0gH
+ n − x log D

0
1 − erf Geaf

0gH
    

 

where, µ and σ are the bias and threshold parameters, respectively, estimated for the CP values 

predicted by the model. The log-likelihood value associated with each model was computed and 

we favored the model identified with the maximum log-likelihood value. 

 

Residual Sum of Squares (RSS). We computed RSS, the sum of squared errors between the 

measured data (p) and the data predicted (p) by the model, as a measure of prediction error. We 

favored the model with the minimum RSS value. 

RSS = pj − pj 0

j

 

 

Akaike Information Criteria (AIC). We computed AIC as a selection measure that balanced model 

complexity (k, number of estimated parameters) and model performance (L, the maximum 

likelihood of the model). We favored the model with the lowest AIC value. 

AIC = 2k − 2 ln L  

 

Bayesian Information Criteria (BIC). We computed BIC as another selection measure that 

balanced model complexity and performance while adjusting for the number of fitted data points 

(n). As with AIC, we favored the model with the lowest BIC value. 

BIC = ln(n) k − 2 ln L  

 

Likelihood Ratio Test (LRT). We performed LRT calculations of pairwise model comparisons: One 

model was designated the null model and the other was designated the alternative model.  

LRT = 	−2 log
Lp
LR

 

where LR is the likelihood of the observations under the null model and Lp is the likelihood of the 

observations under the alternative model. We favored the alternative model if LRT was positive 

and the null model if LRT was negative. 
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Probability or Akaike weights. Akaike weights are estimated by normalizing the model likelihood 

such that the relative likelihoods for all models under consideration sum to 1. Hence, these 

weights can be considered as reflecting the probability or “weight of evidence” in favor of a given 

model in a fixed set of alternative models (55). The weight wj of the ist model is computed as: 

wj =
exp −Δj 2
exp −ΔA 2

u
AvD

 

where Δj = AICj − AICwj^ and AICwj^ is the minimum of the AICj values over the R alternative 

models. We favored the model with the highest Akaike weight. 

 
Data and Code Availability. The behavioral data (.mat files) and analysis code are available at 

https://github.com/YauLab/PROPCUT_MSR2018. 
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Figure 1 Bimanual interactions in frequency perception. (n = 8) (A) Average choice probability 
and psychometric curves from the group (thick traces) and individual subjects (thin traces). 
Target stimulus (ST) perception in the presence of distractor stimuli (SD) differed from perception 
without distractors (Baseline) depending on distractor frequency (fD) and distractor hand 
location. (B) Changes in bias (PSE), with respect to baseline, with each distractor frequency 
and location. Markers indicate individual subjects. Error bars indicate s.e.m. (C) Changes in 
discrimination threshold (JND) with respect to baseline. 
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Figure 2 Bimanual interactions in intensity perception (conventions as in Fig. 1). (n = 8) (A) 
Average choice probability and psychometric curves from the group and individual subjects. 
Distractors attenuated the perceived intensity of the target stimulus depending on distractor 
amplitude (AD). Effects were similar across locations. (B) Changes in bias (PSE), with 
respective to baseline, with each distractor amplitude and location. Markers indicate individual 
subjects. Error bars indicate s.e.m. (C) Changes in discrimination threshold (JND) with respect 
to baseline. 
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Figure 3 Model of tactile cue combination in the frequency domain. (A) An estimate of the target 
stimulus frequency (𝜃) is computed as a linear combination of the target (sT) and distractor 
stimulus cues (sD). Two example distractor frequencies, tested separately in the experiment, are 
denoted by i and ii. Cues are modeled by Gaussian probability distributions whose variances 
are initially set according to baseline discrimination thresholds. A model component capturing 
frequency-dependent effects (Frequency-based modulation) determines the modulated 
reliability of each cue according to the frequency disparity (Df) between the cue and the 
attended (target) stimulus frequency. A model component capturing the position-dependent 
effects (Location-based weighting) determines each cue’s initial weight (𝑊zand 𝑊{) according 
to the position disparity (Dp) between the cue and the attended (target) stimulus position (L 
indicates the largest tested separation between the hands). Final target estimates are computed 
by linearly combining the attention-modulated cue representations using normalized weights 
(𝑊z and 𝑊{). (B) Plots depict the probability distributions of the attention-modulated cues (aT 
and aD) and the final target estimate under a subset of example distractor conditions. Probability 
distributions are depicted for different distractor frequencies (columns; corresponding to i and ii 
from panel a) and relative hand positions (rows). (C) Split-half cross-validation was performed 
within each subject separately. Observed and predicted choice probability (CP) values are 
shown for an example subject. (D) Light and dark blue bars indicate single-subject and group-
averaged cross-validated goodness-of-fit. Red bar indicates the average model performance in 
an across-subject cross-validation procedure. Horizontal gray bar indicates the noise ceiling. 
Error bars indicated s.e.m. 
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Figure 4 Model of tactile cue combination in the intensity domain.  (A) An estimate of the target 
stimulus intensity (𝜃) is computed from the target (sT) and distractor stimulus cues (sD). Three 
distractor amplitudes, tested separately in the experiment, are denoted by i, ii, and iii. The target 
cue is normalized by the summed estimates of the cues to yield the final target intensity 
estimate. (B) Plots depict the probability distributions of the target and distractor cues (sT and 
sD) and the final target estimate under variations of distractor intensity (i, ii, and iii from panel a). 
(C) Split-half cross-validation was performed within each subject separately. Observed and 
predicted choice probability (CP) values are shown for an example subject. (D) Light and dark 
blue bars indicate single-subject and group-averaged cross-validated goodness-of-fit. Red bar 
indicates the average model performance in an across-subject cross-validation procedure. 
Horizontal gray bar indicates the noise ceiling. Error bars indicated s.e.m. 
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Supplemental Figure 1. Choice probability (CP) for individual subjects in Experiments 1 and 2. Each plot 
indicates data from a single subject. (a) Heat maps indicate CP for frequency discrimination task in 
Experiment 1. In each plot, columns correspond to comparison frequencies (fc) and rows correspond to 
distractor conditions (distractor frequencies and locations). (b) CP for intensity discrimination task in 
Experiment 2. In each plot, columns correspond to comparison amplitudes (ac) and rows correspond to 
distractor conditions (distractor amplitudes and locations). Subjects who participated in Experiment 2 did 
not necessarily participate in Experiment 1. 
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Supplemental Figure 2. Effect of the distractor hand location on the frequency discrimination using the 
target hand (Experiment 5, n=8). (a) Group-averaged choice probability values and psychometric curves in 
the far, middle and near distractor locations. (b) Bias estimates did not differ significantly across hand 
locations (one-way rmANOVA, F(2,14)=0.33, p=0.73, ηp

2=0.04). (c) Threshold estimates did not differ 
significantly across hand locations (one-way rmANOVA, F(2,14)=0.81, p=0.47, ηp

2=0.1). Markers indicate 
individual subject parameter estimates. Error bars indicate s.e.m.  
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Supplemental Figure 3. Relative probabilities of frequency combination models. Three general model 
classes were tested (also see Supplemental Table 1): Cue combination with weight normalization (red), 
cue combination without weight normalization (blue), and optimal cue integration (green). Models within a 
class varied by their cue reliability modulation and weighting functions. Each model’s relative probability 
was computed with respect to all other model Akaike information criterion values (Supplemental Table 2). 
Across models fit to each subject individually (Experiment 1, n=8), the model comprising frequency-based 
cue reliability modulation, location-based cue weighting, and normalization was the most probable of all. 
Error bars indicate s.e.m.  
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Supplemental Figure 4. Influence of arm crossing on multi-finger interactions in the frequency domain 
(Experiment 3, n=8). (a) Distractors exert frequency-dependent changes to tactile discrimination 
performance in the uncrossed and crossed limb postures. The absolute separation between the hands was 
matched in the two postures. Group-averaged (thick traces) and individual subject psychometric curves 
(thin traces) are shown. (b) Frequency-specific distractor effects on PSE did not differ between the 
uncrossed and crossed postures (two-way rmANOVA, distractor frequency main effect: F(1,7)=265.7, 
p=8e-7, ηp

2=0.97; limb posture main effect: F(1,7)=0.1, p=0.77, ηp
2=0.01; interaction effect: F(1,7)=0.23, 

p=0.65, ηp
2=0.03). (c) Distractor effects on JND did not differ significantly according to distractor frequency 

or limb posture (two-way rmANOVA, distractor frequency main effect: F(1,7)=0.06, p=0.81, ηp
2=0.01; limb 

posture main effect: F(1,7)=1.1, p=0.34, ηp
2=0.13; interaction effect: F(1,7)=3.5, p=0.10, ηp

2=0.33). Markers 
indicate individual subject parameter estimates. Error bars indicate s.e.m. 
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Supplemental Figure 5. Distractors experienced on the forearm influence frequency discrimination 
performance in a frequency- and position-dependent manner (Experiment 4, n=8). (a) Distractors exert 
frequency-dependent influences on tactile discrimination performance in the far and near distractor 
positions. Group-averaged (thick traces) and individual subject psychometric curves (thin traces) are 
shown. b) Frequency-specific distractor effects on PSE depended on the proximity of the contacted sites 
(two-way rmANOVA, distractor frequency main effect: F(1,7)=154.8, p=5e-6, ηp

2=0.96; distance main effect: 
F(1,7)=0.0001, p=0.99, ηp

2=0; interaction effect: F(1,7)=10.1, p=0.02, ηp
2=0.59). (c) Distractor effects on 

JND depended on the proximity of the contacted sites (two-way rmANOVA, distractor frequency main effect: 
F(1,7)=0.09, p=0.77, ηp

2=0.01; distance main effect: F(1,7)=7.2, p=0.03, ηp
2=0.51; interaction effect: 

F(1,7)=0.43, p=0.53, ηp
2=0.06). Markers indicate individual subject parameter estimates. Error bars indicate 

s.e.m. 
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Supplemental Figure 6. Experimental setup. (a) Hand positions (far, middle, and near conditions) tested 
in Experiments 1, 2, and 5. (b) Crossed and uncrossed conditions tested in Experiment 3. (c) Limb postures 
tested for forearm-finger interactions in Experiment 4 (near and far conditions). (d) Stimulated fingers were 
supported by finger-holders to ensure reliable positioning throughout the experiment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a b c d
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Supplemental Table 1. Frequency combination models 
 

Model 𝐌𝐫 𝛔𝐓 𝛔𝐃 𝐌𝐰 𝐖𝐓 𝐖𝐃 

N
orm

alization 

F+P 
MA Δf

= cD exp −
Δf0

c0
 

σ2
MA 0

 
σ6

MA Δf
 

ML Δp

= exp −
Δp
c�

 
ML 0

cO + ML 0 + ML Δp
 

ML Δp
cO + ML 0 + ML Δp

 

FP+FP+N 

MA Δf, Δp =	

cD exp −
Δf0

c0

+
Δp
c�

 

σ2
MA 0,0

 
σ6

MA Δf, Δp
 

ML Δf, Δp =	

exp −
Δf0

cO
+
Δp
c�

 
ML 0,0

c� + ML 0,0 + ML Δf, Δp
 

ML Δf, Δp
c� + ML 0,0 + ML Δf, Δp

 

FP+P+N 

MA Δf, Δp =	

cD exp −
Δf0

c0

+
Δp
c�

 

σ2
MA 0,0

 
σ6

MA Δf, Δp
 

ML Δp

= exp −
Δp
cO

 
ML 0

c� + ML 0 + ML Δp
 

ML Δp
c� + ML 0 + ML Δp

 

FP:P+N 

MA Δf, Δp =	

cD exp −
Δf0

c0

+
Δp
c�

 

σ2
MA 0,0

 
σ6

MA Δf, Δp
 

ML Δp

= exp −
Δp
c�

 
ML 0

c� + ML 0 + ML Δp
 

ML Δp
c� + ML 0 + ML Δp

 

FP:FP+N 

MA Δf, Δp =	

cD exp −
Δf0

c0

+
Δp
c�

 

σ2
MA 0,0

 
σ6

MA Δf, Δp
 ML Δf, Δp

= MA Δf, Δp  
ML 0,0

cO + ML 0,0 + ML Δf, Δp
 

ML Δf, Δp
cO + ML 0,0 + ML Δf, Δp

 

P+N 
ML Δp

= cD exp −
Δp
c0

 
σ2

ML 0
 

σ6
ML Δp

 NA 
ML 0

c� + ML 0 + ML Δp
 

ML Δp
c� + ML 0 + ML Δp

 

F+N 
MA Δf

= cD exp −
Δf0

c0
 

σ2
MA 0

 
σ6

MA Δf
 NA 

MA 0
c� + MA 0 + MA Δf

 
MA Δf

c� + MA 0 + MA Δf
 

P+F+N 
ML Δp

= cD exp −
Δp
c0

 
σ2

ML 0
 

σ6
ML Δp

 
MA Δf

= exp −
Δf0

c�
 

MA 0
cO + MA 0 + MA Δf

 
MA Δf

cO + MA 0 + MA Δf
 

N
o norm

alization 

F+P 
MA Δf

= cD exp −
Δf0

c0
 

σ2
MA 0

 
σ6

MA Δf
 

ML Δp

= c� exp −
Δp
cO

 ML 0  ML Δp  

FP+FP 

MA Δf, Δp =	

cD exp −
Δf0

c0

+
Δp
c�

 

σ2
MA 0,0

 
σ6

MA Δf, Δp
 

ML Δf, Δp =	

cO exp −
Δf0

c�

+
Δp
c�

 

ML 0,0  ML Δf, Δp  

FP+P 

MA Δf, Δp =	

cD exp −
Δf0

c0

+
Δp
c�

 

σ2
MA 0,0

 
σ6

MA Δf, Δp
 

ML Δp

= cO exp −
Δp
c�

 ML 0  ML Δp  

FP:P 

MA Δf, Δp =	

cD exp −
Δf0

c0

+
Δp
c�

 

σ2
MA 0,0

 
σ6

MA Δf, Δp
 

ML Δp

= cO exp −
Δp
c�

 ML 0  ML Δp  

FP:FP 

MA Δf, Δp =	

cD exp −
Δf0

c0

+
Δp
c�

 

σ2
MA 0,0

 
σ6

MA Δf, Δp
 ML Δf, Δp

= MA Δf, Δp  ML 0,0  ML Δf, Δp  

P 
ML Δp

= cD exp −
Δp
c0

 
σ2

ML 0
 

σ6
ML Δp

 NA ML 0  ML Δp  

F 
MA Δf

= cD exp −
Δf0

c0
 

σ2
MA 0

 
σ6

MA Δf
 NA MA 0  MA Δf  

P+F 
ML Δp

= cD exp −
Δp
c0

 
σ2

ML 0
 

σ6
ML Δp

 
MA Δf

= c� exp −
Δf0

cO
 MA 0  MA Δf  
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O
ptim

al 

FP 

MA Δf, Δp =	

cD exp −
Δf0

c0

+
Δp
c�

 

σ2
MA 0,0

 
σ6

MA Δf, Δp
 NA σ60

σ20 + σ60
 

σ20

σ20 + σ60
 

P 
ML Δp

= cD exp −
Δp
c0

 
σ2

ML 0
 

σ6
ML Δp

 NA 
σ60

σ20 + σ60
 

σ20

σ20 + σ60
 

F 
MA Δf

= cD exp −
Δf0

c0
 

σ2
MA 0

 
σ6

MA Δf
 

MA Δf

= cD exp −
Δf0

c0
 

σ60

σ20 + σ60
 

σ20

σ20 + σ60
 

 
MA: Reliability modulation function; ML: Weight modulation function; Δf: Frequency disparity between target 
and distractor; Δp: Position disparity between target and distractor; σ2 and σ6: standard deviation of the 
representations of target and distractor stimuli, respectively, before modulation; σ2 and σ6: standard 
deviation of the representations of target and distractor stimuli, respectively, after modulation; W2 and W6: 
Weights to the target and distractor cue, respectively. c indicates free parameter.  
 
Model abbreviations: 

• F+P, 1D frequency-based reliability modulation function and 1D location-based weighting function. 
• FP+FP, 2D frequency- and location-based reliability modulation function and 2D frequency- and 

location-based weighting function. Two functions are independent. 
• FP+P, 2D frequency- and location-based reliability modulation function and 1D location-based 

weighting function. Two functions are independent. 
• FP:P, 2D frequency- and location-based reliability modulation function and 1D location-based 

weighting function. Location-based term is shared by functions. 
• FP:FP, 2D frequency- and location-based reliability modulation function and 2D frequency- and 

location-based weighting function. Same parameters are used for reliability and weighting 
functions. 

• P:P, 1D location-based reliability modulation function and 1D location-based weighting function. 
Same parameters are used for reliability and weighting functions. 

• F:F, 1D frequency-based reliability modulation function and 1D frequency-based weighting 
function. Same parameters are used for reliability and weighting functions. 

• P+F, 1D location-based reliability modulation function and 1D frequency-based weighting function. 
• FP, 2D frequency- and location-based reliability modulation function. Weights are determined by 

cue reliability. 
• P, 1D location-based reliability modulation function. Weights are determined by cue reliability. 
• F, 1D frequency-based reliability modulation function. Weights are determined by cue reliability. 
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Supplemental Table 2. Comparison of frequency combination models  
 

Models LL LRT AIC BIC Error in 
CP 

Error in 
PSE 

Error in 
JND 

√(PSE2+ 
JND2) BF 

N
orm

alization 

F+P -
580.6±19.1 

0 1169.1±38.1 1177.7±38.1 0.18±0.01 8.0±1.0 8.9±0.9 12.2±1.0 2.67 

FP+FP -
589.0±20.0 

-
0.03±0.01 

1190.0±40.0 1202.8±40.0 0.21±0.02 10.4±1.8 8.8±1.1 13.9±1.9 30.47 

FP+P -
586.1±20.2 

-
0.02±0.01 

1182.2±40.4 1192.9±40.4 0.20±0.01 9.8±1.1 9.7±1.0 14.0±1.2 20.58 

FP:P -
599.2±18.8 

-
0.06±0.01 

1206.4±37.7 1215.0±37.7 0.26±0.01 17.3±1.2 17.3±1.5 24.7±1.6 1728.8 

FP:FP -
583.1±18.6 

-
0.01±0.01 

1174.2±37.2 1182.8±37.2 0.19±0.01 7.4±0.9 10.4±1.3 13.0±1.3 7.84 

P -
593.0±19.3 

-
0.04±0.01 

1192.0±38.6 1198.4±38.6 0.22±0.01 10.6±1.0 14.3±0.9 18.0±0.9 174.19 

F -
584.8±18.3 

-
0.02±0.01 

1175.6±36.6 1182.1±36.6 0.20±0.01 9.9±1.1 9.7±0.8 14.0±1.1 11.43 

P+F -
588.0±17.6 

-
0.03±0.01 

1184.0±35.3 1192.6±35.3 0.21±0.01 9.7±1.1 12.4±1.1 15.9±1.3 72.9 

N
o norm

alization 

F+P -
600.4±17.5 

-
0.07±0.01 

1208.8±35.0 1217.3±35.0 0.26±0.01 16.0±0.9 12.0±1.4 20.2±1.2 1734 

FP+FP -
618.6±18.5 

-
0.13±0.01 

1249.2±37.0 1262.0±37.0 0.31±0.01 19.0±1.2 20.9±3.8 28.9±3.2 1450.2 

FP+P -
638.6±25.5 

-
0.19±0.04 

1287.3±51.0 1298.0±51.0 0.36±0.04 25.1±3.4 33.3±8.8 42.5±8.9 36.02 

FP:P -
604.1±20.1 

-
0.08±0.02 

1216.1±40.2 1224.7±40.2 0.27±0.01 17.5±1.4 21.0±3.8 27.9±3.5 1107.9 

FP:FP -
599.2±17.6 

-
0.06±0.01 

1204.4±35.2 1210.9±35.2 0.25±0.01 14.0±1.3 10.4±1.0 17.9±0.7 3355.5 

P -
604.4±18.2 

-
0.08±0.01 

1212.8±36.3 1217.1±36.3 0.26±0.01 15.4±1.0 10.4±1.0 18.9±0.6 13896 

F -
602.8±17.8 

-
0.08±0.01 

1209.7±35.7 1214.0±35.7 0.26±0.01 15.5±1.5 10.4±1.0 19.2±0.8 12609 

P+F -
2063.9±167 

-
2.44±0.17 

4135.7±340 4144.3±340 0.29±0.01 18.5±1.5 15.6±0.7 24.5±1.1 9.2e16 

O
ptim

al 

FP -
587.8±18.1 

-
0.03±0.01 

1181.7±36.1 1188.1±36.1 0.21±0.01 10.8±1.2 10.4±1.1 15.2±1.3 55.52 

P -
588.2±18.0 

-
0.03±0.01 

1180.5±36.0 1184.8±36.0 0.21±0.01 10.2±1.1 10.7±1.1 15.0±1.3 19.16 

F -
588.7±18.2 

-
0.03±0.01 

1181.4±36.5 1185.7±36.5 0.21±0.01 11.2±1.1 10.0±1.2 15.1±1.5 58.91 

 
Model comparison metrics estimated for models fit to each subject’s data separately. Listed values indicate 
mean ± sem across subjects. Log-likelihood (LL), likelihood ratio test (LRT), Akaike information criteria 
(AIC), Bayesian information criteria (BIC), and prediction errors (SSE) in CP, PSE, and JND, and Bayes 
Factor (BF). The favored model under each criterion is indicated in the shaded cell.  
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Supplemental Table 3. Comparison of intensity combination models  
 

Models LL LRT AIC BIC CP PSE BF 
Normalization -630.6±71.8 0 1263.1±143.5 1265.2±143.5 0.07±0.01 0.002±0.0003 0.43 
Cue averaging -1140.2±89.2 -1.2±0.2 2280.4±178.4 2280.4±178.4 0.52±0.05 0.014±0.000 782.87 

 
Conventions as in Supplemental Table 2.  
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