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Abstract 

 
Lilikoi (Hawaiian word for passion fruit) is a new and comprehensive R package for personalized 

pathway based classification modelling, using metabolomics data. Four basic modules are presented as 

the backbone of the package: 1) Feature mapping module, which standardizes the metabolite names 

provided by users, and map them to pathways. 2) Dimension transformation module, which transforms 

the metabolomic profiles to personalized pathway-based profiles using pathway deregulation scores 

(PDS). 3) Feature selection module which helps to select the significant pathway features related to the 

disease phenotypes, and 4) Classification and prediction module which offers various machine-learning 

classification algorithms. The package is freely available under the GPLv3 license through the github 

repository at: https://github.com/lanagarmire/lilikoi 
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Introduction     
 

Metabolomics has been increasingly employed as a systematic approach to investigate the relationship 

between cellular signals and phenotypes [1]. Non-targeted metabolomics with global measurements, helps 

to discover novel metabolites biomarkers for diseases and conditions [2]. However, due to factors such as 

non-standardized protocols and highly heterogeneous study populations, it is difficult to find robust 

biomarkers that can be translated to clinical applications[3, 4].  

Currently there are multitudes of secondary metabolomics analysis tools, primarily in the form of web 

tools. Very few comprehensive packages exist in R/Bioconductor, the dominant bioinformatics scripting 

language, in order to support metabolomics data analysis. Various modules of metabolomics pipelines 

have been implemented in other programming languages, including preprocessing [5], compound 

mapping [6], pathway networks [7], visualization [8], deep learning [9]  and statistical enrichment 

analysis [10]. In particular, pathway based approaches have been applied widely in the metabolomics 

field. These methods use metabolites as biological entities to summarize to pathway-level statistics, and 

then calculate the overrepresentation of pathways compared to the background. However, none of these 

pathway-based methods entails personalized measurements for specific pathways. Moreover, these 

pathway-based methods are rarely integrated with classification algorithms for the purpose of 

metabolomics biomarker modeling.  

To address the void above, we here introduce a new R package called Lilikoi (Hawaiian name for passion 

fruit), which specializes in personalized pathway measurement and classification prediction models. We 

present this tool in four modules: 1) Feature-pathway mapper, which standardize metabolite ID and map 

them to pathways. 2) Dimension transformation, which derive personalized pathway deregulation scores 

from metabolite profiles. 3) Feature selection, which provide the users with a range of feature selection 

algorithms to select significant features related to phenotypes. 4) Classification and prediction, which list 

a series of classification algorithms to derive machine-learning models and give predictions on testing 

data sets.  
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Methods 
 
Overall design of Lilikoi 

The Lilikoi package can be divided into four functional modules (Figure 1): Feature Mapper, Dimension 

Transformer, Feature Selector and Classification Predictor. In the first module, Lilikoi takes metabolites 

profiles data from the user as the input feature, and standardizes the metabolite names to various IDs in 

databases including KEGG, PubChem, HMDB and METLIN. After the mapping step, the second module 

transforms metabolite profiles to a comprehensive pathway deregulation score (PDS) matrix, based on the 

Pathifier algorithm [11]. The third module employs various feature selection algorithms to select key 

pathway features in the training set that are significantly related to phenotypes. The final classification 

module builds a classification model on the training set, based on various algorithms including random 

forest (RF), support vector machine (SVM), linear discriminate analysis (LDA), logistic regression 

(LOG), prediction analysis for microarray (PAM), generalized boosted model (GBM), recursive 

partitioning and regression analysis (RPART). It then performs prediction and quantitative evaluations on 

testing sets using various metrics. The details of each module are discussed in the following sections. 

Feature mapper 

The feature mapping process consists three steps (Figure 2): In step 1, the input metabolite names are 

mapped to HMDB IDs using exact matching. We include various databases such as HMDB, KEGG, 

PubChem and MetaboAnalyst compound databases, to standardize the metabolite names. In step 2, 

Lilikoi employs the synonym database to standardize the rest of the unmapped metabolites to HMDB IDs. 

The remaining unmapped metabolites go through the third fuzzy matching step. We calculate the 

Levenshtein edit distance as a measurement of string similarity, and map the metabolite to the closest 

related standardized metabolites [12]. Such process allows for maximal mapping of input metabolites to 

standardized HMDB IDs. 
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Dimension transformation 

Lilikoi applies the Pathifier algorithm to perform the metabolites-pathway dimension transformation [11]. 

This algorithm summarizes per-sample information from the metabolite level to the pathway level [11]. 

For each pathway, all samples are mapped to a high dimensional principal component space (as data 

points) and a principal curve is constructed among them (the data cloud). A PDS score is then derived to 

measure the distance from the origin of the principle curve to the specific point on the principle curve, 

projected by the data point that represents a sample. The larger the PDS score is, the further a sample 

deviates from the normal level, in that specific pathway. As the result of the dimension transformation 

step, a new pathway-level metabolomics profile matrix is constructed. The users can then use this matrix 

for downstream analysis. More details of applications of Pathifier on biomarker studies (prognosis or 

diagnosis) can be found in our earlier publications[4, 13] .  

Feature selection  

Lilikoi allows the users to provide training and testing data sets, as well phenotype information for the 

samples. For the training set, Lilikoi provides two major feature selection algorithms: information gain 

(mutual information) and gain ratio, which select the most significant pathway-level features related to 

the phenotype. RWeka package is required for the feature selection module [14]. Information gain statistic 

is provided to evaluate the added information from each feature to help discriminate the phenotype. Gain 

ratio statistic is an alternative metric that solves the problem of overfitting, when there are a large number 

of distinct variables. We recommend the users use the gain ratio instead of the information gain when the 

input dataset has categorical variables besides the metabolomics data.  

Classification and prediction  

Seven widely used machine learning algorithms, including LDA, SVM, RF, RPART, PAM, LOG and 

GBM are supported by Lilikoi, to build classification models. These methods have been widely used in 

the metabolomics community and reported in various research articles [9, 15-17]. Lilikoi uses R package 

caret for automatic parameter tuning of all the algorithms [18]. An n-fold (default n=10; flexible 
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depending on different sample sizes) cross-validation is applied on the training dataset to avoid 

overfitting.  Metrics to measure prediction accuracy, including Area Under the Curve (AUC), F1-statistic, 

balanced accuracy, sensitivity and specificity are reported to the user as barplots, similar to others [19]. 

Receiver operating characteristic (ROC) curves can also be reported as a separate figure.  

Combined model addressing confounding 

Users can add any clinical factors such as age, sex and ethnicity to the model. All these factors are 

normalized between 0 and 1, by scaling between minimum and maximum values, so that they are 

compatible with the PDS score.  

Example dataset 

For demonstration, we present a metabolomics data set from the City of Hope Hospital (COH) that was 

published earlier [4]. This dataset is composed of 207 samples from plasma (126 cases and 81 controls). 

The details of the data are summarized in our previous work [4].   

Package availability 

The package is freely available under the GPLv3 license through the github repository at: 

https://github.com/lanagarmire/lilikoi 

 

Results   

For illustration purposes, we applied Lilikoi to previously published breast cancer vs. normal control 

metabolomics data, which also have clinical information such as age, sex and ethnicity [4].   

Standardization and mapping of metabolomics IDs 

We first used Lilikoi to transform the metabolite names to standard IDs. As different metabolomics 

research laboratories/preprocessing tools generate metabolomics profiles using different naming 

standards, Lilikoi allows the user to input any kind of metabolite IDs, their synonyms, KEGG IDs, 

HMDB IDs or PubChem IDs. Moreover, Lilikoi embeds comprehensive databases including over 18,000 
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metabolites and 100,000 synonyms, in accordance with other types of input IDs. Another major user-

friendly characteristic of Lilikoi is the implementation of a fuzzy matching algorithm, which allows better 

mapping of uncertain metabolites, by calculating the string similarity score of the input metabolite name 

with those in the databases. These features of Lilikoi greatly improve its usability. In this example, 182 

out of 227 metabolites are mapped to standard HMDB IDs. 

Metabolite to pathway level transformation  

After transforming metabolites to standardized IDs, the metabolomics profile of the training set is 

transformed to a pathway-based profile through module 2: dimension transformation, with additional 

phenotype input (cancer/control) also provided by users. We the split the plasma data into 80% training 

and 20% hold-out testing set. In this example, the metabolites are mapped to a total of 93 pathways.  

Metabolomics feature selection  

The next step is the feature selection module, using the PDS matrix and phenotypes of the training set as 

input. Users can choose either information gain or gain ratio to select key pathway attributes. Lilikoi plots 

a barplot of selected features and their relevance to phenotype labels. Lilikoi enables the output of 

information gain, a measure of feature relevance to phenotype for each selected attribute (Figure 3). In 

this example, nine pathways are identified as feature pathways in the plasma training set. Among them 

Alanine, aspartate and glutamate metabolism stands out as the most important pathway, with the highest 

information gain score. 

Model construction and validation 

The last step is classification model construction and prediction. This module builds a model from the 

selected pathway features and allows the users to select among seven different classification algorithms 

with n-fold cross-validation. Users can compare performance measurements and choose the best classifier 

as the model of choice (Figure 4). This module generates two types of figures; a plot of ROC curves 

(Figure 4-A) which presents the overall model performance on the testing data set; and a second barplot 
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(Figure 4-B) which illustrates the values of additional performance metrics (AUC, SEN, SPEC etc) of the 

testing data. In addition, Figure 4-C shows the performance metrics generated from the best-performed 

model, using a user selected the metric. In this example, we use AUC as the metric to select the best 

model, and GBM algorithm yields the best performance (Figure 4-C). 

Model calibration by addressing confounding  

Adjusting the fitted model using the clinical factors (if available) is a critical step in metabolomics based 

biomarker research. In this step, Lilikoi build three models on the training data set and plots the ROC 

curves on the testing set (Figure 5-A). Model 1 (black solid curve) is created using the selected pathways 

from the features selection module; model 2 (red dashed curve) uses the clinical factors selected by the 

user, and model 3 (blue solid curve) is created by combining both selected pathways and selected clinical 

factors. In this example, the clinical fators impose significant confouding in classification, and age is the 

primary contributor in the clinical model (data not shown). To understand the relationships among the 

selected pathways and the clinical factors, a correlation heatmap is plotted in Figure 5-B.   

Discussion 
 

Metabolomics biomarker discoveries have gained increasing amount of attention recently, in a variety of 

applications such as disease diagnosis and progression. Currently most of the biomarker features in 

metabolomics field are represented as individual metabolites, which suffer from inconsistency among 

studies. On the other hand, most pathway-based methods in the metabolomics field are not personalized 

and they are merely used for graphical mapping and enrichment analysis. None of these metabolomics 

pathway-based tools employ pathways as features for downstream biomarker modeling. Lilikoi addresses 

all these issues with personalized pathway deregulation measurements (PDS scores) and offers a 

standardized classification model for biomarker prediction. Compared to the traditional way of 

identifying individual metabolites as biomarkers, pathway-based biomarkers are more tolerant to 
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population heterogeneity. Additional advantages of Lilikoi include the flexibility of its feature selection 

methods, the use of various machine learning classification algorithms, and its automatic tuning of 

parameters to generate the best model for a specific algorithm.  

As an R package that will undergo actively improvements, Lilikoi can potentially benefit from other 

technical tweaking. Currently, a small percentage (20%) of the metabolites still cannot be mapped to the 

standard names in databases; also a fair amount of metabolites (40%) cannot be mapped to pathways, as 

the metabolite-pathway relationship is built upon pre-existing databases. One possible improvement could 

be using natural language processing (NLP) to improve metabolite ID standardization and metabolite-

pathway mapping relationships, using the records in the literatures. Additionally, although the parameters 

in each classification model are automatically optimized, there is no automatic algorithm (AutoML) 

implemented that selects the best overall classification model; rather it depends on the user’s subjective 

preference of a machine learning method. It would be beneficial to automatically provide users references 

for classification algorithm selection, without human supervision [20, 21]. We plan to use AutoML in our 

classification module in the future. 
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Figure legends 
 
Figure 1: The workflow of Lilikoi package. Lilikoi composed of four modules: Feature Mapper; 

Dimension Transformer; Feature Selector; and Classification Predictor.  

Figure. 2 The workflow of Module 1: Feature mapper. User can input any metabolite IDs such as 

chemical name, KEGG, PubChem and HMDB IDs. Fuzzy matching algorithm is implemented to map the 

non-matched names to the 100k synonyms database.   

Figure 3. Plot of selected pathway features measured by Information Gain. The x-axis represents 

information gain score that measures the importance of the pathways, and y-axis displays the names of 

pathways selected from the training data.  
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Figure 4. Model evaluation. (A) ROC curves of the breast cancer diagnosis testing set, obtained from 

seven classification algorithms: recursive partitioning and regression analysis (RPART), linear 

discriminate analysis (LDA), support vector machine (SVM), random forest (RF), generalized boosted 

model (GBM), prediction analysis for microarray (PAM), and logistic regression (LOG).  (B) Metrics 

(AUC, MCC, Sensitivity, Specificity and F-1 Statistic) to measure the performance of classification on 

training or testing data? (C). Metrics of the best-performing model on testing data, based on the criteria 

chosen by user (AUC in this case).  

Figure 5: Calibration of metabolomics model by confounding.  (A) ROC curves of metabolomics only, 

clinical data only, and metabolomics clinical combined model.  (B) Correlation coefficients among 

demographical/physiological factors and the metabolomics data. Blue colors indicates positive 

correlations and red indicated negative correlations 
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Figure2
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Figure3
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Figure4
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