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Abstract 14 

Human populations out of Africa have experienced at least two bouts of introgression from 15 

archaic humans, from Neanderthals and Denisovans. In Papuans there is prior evidence of both 16 

these introgressions. Here we present a new approach to detect segments of individual genomes 17 

of archaic origin without using an archaic reference genome. The approach is based on a hidden 18 

Markov model that identifies genomic regions with a high density of single nucleotide variants 19 

(SNVs) not seen in unadmixed populations. We show using simulations that this provides a 20 

powerful approach to identifying segments of archaic introgression with a small rate of false 21 

detection. Furthermore our approach is able to accurately infer admixture proportions and 22 

divergence time of human and archaic populations.  23 

We apply the model to detect archaic introgression in 89 Papuans and show how the identified 24 

segments can be assigned to likely Neanderthal or Denisovan origin. We report more Denisovan 25 

admixture than previous studies and directly find a shift in size distribution of fragments of 26 

Neanderthal and Denisovan origin that is compatible with a difference in admixture time. 27 

Furthermore, we identify small amounts of Denisova ancestry in West Eurasians, South East Asians 28 

and South Asians.   29 
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Introduction 30 

Archaic introgression into modern humans occurred at least twice (Neanderthals and Denisovans) 31 

(MEYER et al. 2012; PRUFER et al. 2014) and had a phenotypic effect on humans (HUERTA-SANCHEZ et 32 

al. 2014; DANNEMANN et al. 2017; RACIMO et al. 2017). A substantial amount of Neanderthal and 33 

Denisovan genetic material is still present in modern humans and we can learn about archaic 34 

populations from studying their genetic variants in humans. 35 

 36 

To harness this information a number of methods have been developed to infer segments of 37 

archaic ancestry in an individual’s genome. Scanning along the genome, Hidden Markov Models 38 

(HMMs)(PRUFER et al. 2014; SEGUIN-ORLANDO et al. 2014) and Conditional Random Fields 39 

(CRF)(SANKARARAMAN et al. 2016) can identify haplotype segments in non-Africans that are both 40 

closer to the archaic reference genomes than to Africans, and also longer than expected by 41 

incomplete lineage sorting; these are then identified as likely archaic introgressed segments. 42 

Another approach is to identify segments with more variants in high linkage disequilibrium (LD) 43 

that are unique to non-Africans than expected given a certain demographic scenario (PLAGNOL and 44 

WALL 2006). The latest implementations of this method also use an archaic reference genome for 45 

refining the set of putative archaic haplotypes (VERNOT et al. 2016). 46 

 47 

The use of archaic reference genomes for identification of introgressed fragments has drawbacks. 48 

First, since the Neanderthal reference genomes are closer to the introgressing Neanderthal 49 

(80,000-145,000 years divergence)(PRUFER et al. 2017) , than the introgressing Denisova is to the 50 

Denisova genome (276,000-403,000 years divergence)(PRUFER et al. 2014) detecting Denisovan 51 

ancestry will be harder. Second, the reliance on having reference genomes implies that the 52 

introgression maps generated by these methods need updates whenever more archaic reference 53 

genomes are sequenced (PRUFER et al. 2017). Finally, it may be hard to identify introgressing 54 

segments of unknown archaic origin if such exists, as in the case of the putative archaic 55 

introgression into Pygmies (HSIEH et al. 2016) and Andamanese islanders (MONDAL et al. 2016). 56 

 57 

Here we present a new method for the identification of archaic introgression that does not require 58 

a reference genome or prior knowledge of demographic parameters, but uses density of variants 59 
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in individuals private to their population of origin. We demonstrate with Papuans how we can 60 

estimate demographic parameters relevant to introgression and infer more archaic material than 61 

previously. Furthermore we can separate introgression events into Denisovan and Neanderthal 62 

components that display different length distributions in accordance with different admixture 63 

times.  64 

 65 

Method 66 

Model 67 

An archaic genomic segment introgressed into a population is expected to have a high density of 68 

variants not found in populations without the introgression. We use a Hidden Markov Model 69 

(HMM) to classify genomic segments into states with varying density of such variants. We focus on 70 

a scenario where introgression with a deeply divergent archaic population only happened into an 71 

ingroup and not the outgroup, see Figure 1a.  By removing variants found in the outgroup we can 72 

better distinguish introgressed segments from non-introgressed segments based on the density of 73 

remaining variants, see Figure 1a. These remaining variants, which we denote private variants 74 

(because they are private to the ingroup with respect to the outgroup) can either have occurred 75 

on the branch starting from the split of the ingroup and outgroup, or on the introgressing 76 

population’s branch. Because the introgressing segments have had a longer time to accumulate 77 

variants, they should have a higher density of private variants.  78 

Thus, we define a HMM with two states. The hidden states are Ingroup and Archaic, and the 79 

probability for changing state in the Ingroup is p and the probability for changing state in the 80 

Archaic is q, see Figure 1b. The probability of changing state can also be expressed in terms of a 81 

constant recombination rate between windows � · �, the admixture time ������  and admixture 82 

proportion �, see Figure 1b.  83 

For practical purposes we bin the genome into windows of length L (typically � � 1000 
�). The 84 

number of private variants observed in a window is Poisson distributed with a rate ����	
�� and 85 

�	����� , respectively where ����	
�� �  · � · ����	
��  and �	����� �  · � · �	����� ,  is the 86 

mutation rate, ����	
�� is the mean coalescence time for the ingroup and the outgroup and 87 

��	�����  is the mean coalescence time for the archaic population and the outgroup, see Figure 1c.  88 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 23, 2018. ; https://doi.org/10.1101/283606doi: bioRxiv preprint 

https://doi.org/10.1101/283606
http://creativecommons.org/licenses/by/4.0/


 

 

5 

 

We make a correction to the rates to take into account the number of missing bases in a window 89 

and the local mutation rate. For window � we have ����	
��
� � � · �� · ����	
��  and�	�����

� � � ·90 

�� · �	����� , where � is the local mutation rate and �� is the number of called bases in a widow.  91 

The set of transition parameters �, � and the Poisson parameters ����	
�� ,  �	�����  that maximize 92 

the likelihood given the observations are found using the Baum-Welch algorithm for an individual 93 

genome. These parameters are informative of the mean coalescence times between the ingroup 94 

and outgroup and between the archaic and the outgroup, the admixture time and the admixture 95 

proportion if we assume a known mutation rate  and a known recombination rate between 96 

windows ��. Once the set of optimal parameters are found they can be used to decode the 97 

genome, using posterior decoding to identify candidate introgressed segments as consecutive 98 

regions with posterior probability of coming from the archaic state above some threshold.  99 

To avoid problems with phasing we run this model on unphased diploid genomes. Heterozygous 100 

archaic segments will still stand out from homozygous non-introgressed segments. Formally this is 101 

equivalent to assuming that homozygous introgressed segments are sufficiently rare that they can 102 

be ignored for model fitting.  In practice any homozygous archaic segments will have higher 103 

private variant density than heterozygous segments, so in the absence of a homozygous HMM 104 

state they will be classified with the heterozygous state. 105 

Results 106 

Testing the model with simulations 107 

To investigate the ability of our model to identify archaic (Neanderthal and Denisovan) admixture 108 

into Papuans we simulated whole autosome diploid data using a coalescent simulator, with 109 

admixture with an archaic hominin 1,500 generations ago replacing 5% of the population – (a 110 

script with all demographic parameters are shown in Supporting information – Simulation script.py 111 

and a graphic representation of the demography is shown in Supporting figure 1). We simulated 112 

three scenarios to test the effects of missing data and varying recombination rate. The mutation 113 

rate was kept constant across the genome for all simulations.  114 

First, we simulated five individuals where every base in the genome is called equally well and 115 

there is a constant recombination rate of 1.2 · 10�� events per basepair per generation. We call 116 
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this dataset the ideal data. Second, we simulated five individuals and removed all variants that are 117 

in repetitive regions (using the repeatmask track for the human reference genome hg19 (SMIT et 118 

al. 2013)) to test how the model performs with missing data. Third, we simulated five individuals 119 

with missing data and using a varying recombination rate (using HapMap phase II (INTERNATIONAL 120 

HAPMAP et al. 2007) ) to test the effect of missing data and recombination. We binned all genomes 121 

into bins of 1000 bp, and removed all variants found in 500 simulated Africans, 100 simulated 122 

Europeans and 100 simulated Asians. We combine two haplotypes to form genotype data for the 123 

simulated individuals. This will be more similar to situations where phased data is not available. 124 

We found the transition and emission parameters that optimized the likelihood, using the Baum-125 

Welch algorithm and used them to get an estimate for the admixture time ������ , the admixture 126 

proportion � and the mean coalescent times with the outgroup ����	
�� and �	�����  for the 127 

ingroup and archaic segments respectively, see Figure 2b.   128 

Across all scenarios the mean estimated coalescence time between the ingroup and outgroup 129 

(����	
��) is 2,625 generations (max = 2,647, min = 2,595), while the corresponding average 130 

simulated coalescent time was 3,109 generations ago. For the coalescence time between the 131 

outgroup and the archaic (�	�����) the mean estimate is 37,345 generations (max = 37,832, min = 132 

37,028) and the average simulated values was 35,543 generations ago.  133 

We find that the mean estimate of the admixture proportion � when using the transition matrix is 134 

between 4.62 % and 5.34 %, consistent with the 5% simulation value.  135 

We estimated the false negative rate of the model by counting the amount of simulated archaic 136 

segments that have zero overlap with the putative archaic sequence.  This is 7.4 Mb for ideal 137 

simulations, 20.3 Mb for simulations with missing data and 17.5 Mb for simulations with missing 138 

data and a varying recombination rate, see Figure 2a. Most of this is in short segments which the 139 

model has less power to identify, as can be seen in Supporting figure 2. 140 

If we estimate the false positive rate as the amount of inferred archaic segments that have zero 141 

overlap with the simulated archaic segments we find 16.6 Mb for ideal simulations, 13.2 Mb for 142 

simulations with missing data and 17.1 Mb for simulations with missing data and a varying 143 

recombination rate, see Figure 2a. We are therefore controlling for specificity (false positives) 144 

while losing sensitivity (false negatives) as the inference becomes more difficult.  An example of 145 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 23, 2018. ; https://doi.org/10.1101/283606doi: bioRxiv preprint 

https://doi.org/10.1101/283606
http://creativecommons.org/licenses/by/4.0/


 

 

7 

 

how the simulated and putative archaic segments overlap is shown in Figure 2c for a 10 Mb 146 

segment.  147 

We also find that with a posterior decoding threshold at 0.8 (mean posterior probability of being 148 

archaic for all windows in segment), the amount of false positives can be reduced by up to 50%, 149 

while still keeping 90% of the true segments, see Supporting figure 3. When applying a threshold 150 

of 0.8 we recover 246 Mb, 202 Mb and 187 Mb of archaic sequence for Ideal simulations, 151 

simulations with missing data and simulations with missing data and varying recombination rate 152 

respectively. When applying a threshold of 0.8 we recover 246 Mb, 202 Mb and 187 Mb of archaic 153 

sequence for Ideal simulations, simulations with missing data and simulations with missing data 154 

and varying recombination rate respectively.  155 

The mean estimate for the admixture time using the transition matrix is around 1,704 generations 156 

ago when using the ideal data and 1,522 generations ago when adding missing data. When we 157 

vary the recombination rate across the genome the average estimate of the admixture time is 158 

1,146 generations ago if we estimate it using the transition matrix. The underestimate of the 159 

admixture time might be due to fact that the model fail to identify around 80% of the short 160 

segments in such cases. This would make the average segment length longer and make the 161 

admixture time seem more recent.  162 

 163 

Application to Papuan genomes 164 

Having verified the validity of the model, we applied it to 14 Papuan individuals from the Simons 165 

Genome Diversity Project (MALLICK et al. 2016), 40 Papuans from (MALASPINAS et al. 2016) and an 166 

additional 35 Papuans (VERNOT et al. 2016). In addition to this, we also analyzed individuals from 167 

West Eurasia, East Asia and South East Asia. 168 

For each individual we used two different sets of variants as outgroup. We estimate the 169 

background mutation rate in windows of 100 kb, using the variant density of all variants in African 170 

populations from the 1000 Genomes Project.  171 

Our model will not be able to distinguish Neanderthal from Denisova segments in Papuans, 172 

because the Denisovans and Neanderthals share a common ancestor before they do with humans 173 
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and therefore the mean coalescence time with humans will be the same (PRUFER et al. 2014). This 174 

means that the Poisson parameters will be the same as they both depend on �	����� . However, 175 

we should be able to enrich for Denisova and Neanderthal segments by using different outgroups 176 

in our filtering step. 177 

First, we used only variants found in Sub-Saharan African populations as an outgroup. This should 178 

remove variation in the common ancestor of Sub-Saharan Africans and the Papuans, retaining 179 

archaic variants of Neanderthal and Denisova origin as both are present in Papuans, but mainly 180 

absent in Africa (SANKARARAMAN et al. 2016; VERNOT et al. 2016). We also used this filter when 181 

analyzing Eurasian populations. 182 

Second we remove variants found in all non Papuan populations, only retaining variants that are 183 

unique to Papuan populations. This should remove Neanderthal variants that are shared with 184 

other non-African populations (PRUFER et al. 2014) and also to some extent remove variants of 185 

Denisovan origin that are found in Asians and Native Americans (SKOGLUND and JAKOBSSON 2011; QIN 186 

and STONEKING 2015). Thus removing all variants from the 1000 Genomes Project should enrich for 187 

Denisovan segments, while the segments that are found when using Sub-Saharan Africans but not 188 

using all 1000 Genomes Project samples as outgroups should be enriched for Neanderthal 189 

segments.  190 

We found the optimal set of transition and emission parameters for each Papuan individual and 191 

found them to be largely consistent across the different datasets, see Supporting figure 4. The 192 

parameters were converted into estimates of ������ , �, ����	
�� and �	�����  using an average 193 

recombination rate of 1.2 · 10�� events per basepair per generation and an average mutation rate 194 

of 1.25 · 10�� mutations per base pair per generation, see Figure 3a, b. 195 

We find that mean coalescence time between Papuans and non-Papuan individuals happened 196 

more recently (1,395-1,540 generations ago) than the mean coalescence time with Sub-Saharan 197 

Africans (1,953-2,293 generations ago) reflecting that Papuans are more closely related to other 198 

Non-Africans than to Africans. The mean coalescence time between Papuans and other non-199 

Africans also provides an upper limit for Neanderthal introgression because it happened into the 200 

common ancestor of these populations. 201 
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Using only Sub-Saharan individuals as an outgroup we find a mean coalescence time between the 202 

archaic and outgroup to be between 29,404 and 33,944 generations ago. When using non-203 

Papuans as an outgroup the estimate is between 25,268 and 30,352 generations ago. The lower 204 

estimate is likely due to the fact that some of the variants in the common ancestor of Denisovans 205 

and Neanderthals have been removed.  206 

Using Sub-Saharan Africans as an outgroup we estimate the total admixture proportion of archaic 207 

sequence into Papuans to between 4.1-4.4 % and the admixture proportion that is private to 208 

Papuans between 1.5-1.8 %.  This means that approximately 2.6 % is shared with non-Papuans, 209 

see Figure 3a.  210 

From the transition parameters, we estimate that the admixture event with non-Africans 211 

happened 953-1,254 generations while the Papuan specific admixture event happened 888-1,191 212 

generation ago. Both are likely underestimates as it was for the simulated data with missing data 213 

and varying recombination rate. Neanderthal admixture likely occurred closer to 2,000 214 

generations ago after the out of Africa migration (FU et al. 2014; SANKARARAMAN et al. 2016) with 215 

Denisovan admixture occurring after that. 216 

We used a threshold of 0.8 posterior probability as in the case of the simulated data. By 217 

comparing to the Vindija Neanderthal (PRUFER et al. 2017) and Denisova (MEYER et al. 2012) 218 

genomes we find that this cutoff removes around 65% of the segments that don’t share variants 219 

with any archaic reference genome, see Supporting figure 5. These only contain 10.4 % of the total 220 

length of inferred archaic segments, and as well as including less confident segments may include 221 

deeply coalescing modern human haplotypes.  222 

When we use a cutoff of 0.8 we find that 84 % of the segments unique to Papuans (80 % of the 223 

total sequence) shared more variants with the Denisova genome than with the Vindija 224 

Neanderthal, and that 78 % the segments that are shared with other non-Africans (83 % of the 225 

total sequence) shared more variants with the Vindija Neanderthal than the Denisova (Figure 3c). 226 

This is consistent with a majority of the archaic sequence unique to Papuans coming from a 227 

population more closely related to Denisovans, while a majority of the shared archaic sequence 228 

came from Neanderthals.  229 
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However, segments that are unique to Papuans are longer on average (94.2 kb) compared to 230 

those shared with other non-African populations (76.9 kb), See Figure 3d. The difference in length 231 

distributions are not seen as clearly when using Sstar or CRF, see Supporting figure 6. Moreover, 232 

the length distribution of archaic segments that are not unique to Papuans are more similar to 233 

other non-African populations, see Supporting figure 7.  234 

We compared our archaic segments to those previously reported using other methods 235 

(SANKARARAMAN et al. 2016; VERNOT et al. 2016). We find that 67% of the archaic sequence found 236 

using CRF are also recovered using our method, and that 74% of the archaic sequence found using 237 

Sstar are also recovered using our method.  238 

Comparing to the archaic reference genomes our method finds more Denisova in Papuans than it 239 

finds Neanderthal, unlike the CRF. It also finds a significant amount of additional Denisova 240 

segments in East and South East Asians, see Table 1.  241 

 242 

Model Pop  Both Denisova None Vindija Total 

HMM Papuan  4.40 77.00 11.39 71.44 164.23 

 eastasia  1.48 5.69 9.96 61.37 78.49 

 southasia  1.62 5.85 10.12 51.36 68.95 

 westeurasia 1.47 2.39 10.14 43.95 57.94 

        

Sstar Papuan  26.5 43.11  49.21 118.82 

 eastasia  - 0.00 - 65.02 65.02 

 southasia  - 0.00 - 55.18 55.18 

 westeurasia - 0.00 - 51.23 51.23 

        

CRF Papuan  - 58.17 - 84.72 142.89 

 eastasia  - 3.21 - 72.92 76.14 

 southasia  - 2.79 - 61.36 64.15 

 westeurasia - 0.68 - 57.29 57.97 

 243 

Table 1. Amount of sequence of different origins. The amount of sequence (in Mb) that is equally 244 

related to Denisova and Vindija, more closely related to Denisova, doesn’t share any variation with 245 

either and is more closely related to Vindija are shown different populations and different 246 

methods.  247 

 248 
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Discussion 249 

Since emission probabilities are very different between the human and archaic states in our 250 

model, we expect a low rate of false positive archaic inference, and this is also what we see in 251 

simulations. However, since recombination rates are highly variable, we expect many very short 252 

archaic segments and these have a very high false negative rate. Our inability to identify these 253 

causes us to underestimate the admixture time. However, the model does seem to find the 254 

correct size distribution for longer segments (> 50 kb), see Supporting figure 2. The mean 255 

coalescence times of modern and archaic humans are reasonably well estimated in simulations. 256 

One issue of interest is that the potential presence of super-archaic introgression as reported into 257 

the sequenced Denisovan (PRUFER et al. 2014) should cause the mean coalescence time to 258 

Denisovan introgressed segments to be greater than that for Neanderthal segments. We did not 259 

observe this, perhaps because some Denisovan admixture is also present in East Asians who form 260 

part of our contrast population, reducing apparent mean divergence.  261 

Our model reports more Denisova segments than approaches relying on the Denisovan reference. 262 

This is possibly because our method does not rely on putative Denisova segments being more 263 

closely related to the Denisova genome than the Vindija Neanderthal genome. Given that the 264 

introgressing "Denisovan" and the sequenced Denisova individual's lineages split relatively shortly 265 

after the Neanderthals split from Denisovans (PRUFER et al. 2014) many segments may be equally 266 

close to the Vindija Neanderthal and the sequenced Denisova sample. It is also expected that a 267 

fraction of segments introgressed from the Denisovan are more closely related to Vindija and vice 268 

versa due to incomplete lineage sorting. It is therefore also reassuring that we do not find the 269 

same large excess of Neanderthal fragments in Papuans compared to Asian populations as has 270 

been reported previously, see Table 1.  271 

We find no clear evidence for an introgression with a new archaic hominin in Papuans, but we do 272 

find segments that do not share variation with any of the sequenced archaic populations. These 273 

segments could represent variation in Neanderthals and Denisovans that is not captured by the 274 

three high coverage archaic reference genomes, or another source. In the future it will be 275 

interesting to compare these segments to other human populations that might also have archaic 276 

segments of unknown origin (HSIEH et al. 2016; MONDAL et al. 2016). 277 
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Our model is not restricted to being applied to humans.  It works particularly well when it is 278 

possible to remove all the common variation between the ingroup and outgroup. As a larger 279 

number of individuals from different species are being sequenced, this method could be used as 280 

an alternative method for identifying introgression in other species, for example chimp and 281 

bonobo (DE MANUEL et al. 2016), bears (LIU et al. 2014), elephants (PALKOPOULOU et al. 2018) or 282 

gibbons (CARBONE et al. 2014). 283 

  284 
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Materials and methods 285 

Simulations 286 

To simulate data we used Msprime (KELLEHER et al. 2016). We simulated 5 Papuans and as an 287 

outgroup we simulated 500 Africans, 100 Europeans and 100 Asians using demographic 288 

parameters from (MALASPINAS et al. 2016). We simulated data where we varied the recombination 289 

rate according to HapMap recombination maps (INTERNATIONAL HAPMAP et al. 2007) for 5 individuals 290 

and removed variants within non-callable regions and variants that were found in the simulated 291 

outgroup. We grouped all autosomes into bins of 1000 base pairs and counted the number of 292 

variants. For each 1000 bp window we calculated the number of called bases using the repeat 293 

masked segments.  294 

 295 

Train parameters and decode segments 296 

We trained and decoded the segments using our HMM, which is available at: 297 

https://github.com/LauritsSkov/Introgression-detection/ 298 

 299 

Data sets 300 

We used 14 Papuans, 71 WestEurasians, 72 East Asians and 39 South Asians individuals from the 301 

Simons Genome Diversity Project (SGDP) (MALLICK et al. 2016), 40 Papuans from (MALASPINAS et al. 302 

2016) and an additional 35 Papuans (VERNOT et al. 2016).   303 

 304 

Filtering variants in real data 305 

We used two sets of outgroups. One is all Sub-Saharan Africans (populations: YRI, MSL, ESN) from 306 

the 1000 Genomes Project (GENOMES PROJECT et al. 2015) and all Sub-Saharan African populations 307 

from SGDP (MALLICK et al. 2016) except Masai, Somali, Sharawi and Mozabite, which show signs of 308 

out-of-Africa admixture. The other outgroup is all individuals from the 1000 Genomes Project 309 

(GENOMES PROJECT et al. 2015) plus all non-Papuans from SGDP. For all human data sets, we also 310 

removed sites that fell within repeatmasked (SMIT et al. 2013) regions, and sites that were not in 311 

the strict callability mask for the 1000 Genomes Project. 312 

 313 

Repeat mask regions 314 
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hgdownload.cse.ucsc.edu/goldenpath/hg19/bigZips/chromFaMasked.tar.gz 315 

 316 

Strict callability mask for 1000 genomes: 317 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/accessible_genome_mas318 

ks/StrictMask/ 319 

 320 

The background mutation rate was calculated using the variants density of all variants from 321 

populations YRI, LWK, GWD, MSL and ESN in windows of 100 Kb divided by the mean variant 322 

density of the whole genome.  323 

 324 

Comparison to Sstar and Conditional Random Field 325 

We called Neanderthal and Denisova segments in the 14 Papuans and compared them to the 326 

segments called with CRF with more than 50 posterior probability (SANKARARAMAN et al. 2016) 327 

available at: 328 

https://sriramlab.cass.idre.ucla.edu/public/sankararaman.curbio.2016/ 329 

The path to the haplotypes is:  330 

summaries/2/denisova/oceania/summaries/haplotypes/CRHOM.thresh-50.length-0.00.haplotypes  331 

 332 

We called Neanderthal and Denisova segments in the 35 Papuans and compared them to the 333 

segments called with Sstar with more than 99 posterior probability (VERNOT et al. 2016) available 334 

at: 335 

https://drive.google.com/drive/folders/0B9Pc7_zItMCVWUp6bWtXc2xJVkk 336 

The path to the haplotypes is: 337 

introgressed_haplotypes/LL.callsetPNG.mr_0.99.den_calls_by_hap.bed.merged.by_chr.bed 338 

 339 

340 
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 345 

Figure legends 346 

Figure 1. Overview of the model. Illustration on small test dataset. a) An archaic segment 347 

introgresses into the ingroup population at time ������  with admixture proportion �. The 348 

segments in the ingroup have a mean coalescence time with a segment from the outgroup at time 349 

����	
�� and an archaic segment has a mean coalescence time with a segment from the outgroup 350 

at time �	����� . Removing all variants found in the outgroup (light orange points) should remove 351 

all the variants in the common ancestor of ingroup and outgroup, leaving only private variants that 352 

either occurred on the ingroup branch (dark orange) or on the archaic branch (dark blue). This will 353 

make the archaic segment have a higher variant density. The genome is then binned into windows 354 

of L (here 1000 bp) and the number of private variants are counted in each window. These are the 355 

observations and the hidden states are either Ingroup state or Archaic state. When decoding the 356 

sequence the most likely path through the sequence is found. b) The transition matrix between 357 

the archaic state and ingroup state. c) The emission probabilities are modelled as Poisson 358 

distributions with means ����	
�� and �	����� . It is more likely to see more private variants in the 359 

Archaic state than in the Ingroup state.  360 

 361 

Figure 2. Evaluation of the model on simulated data. a) Average amount of sequence per 362 

individual that come from segments that are classified as false archaic (zero percent overlap with 363 

any true archaic segment), found < 50% (segment where there is less than 50 % overlap with true 364 

archaic segments), found > 50 % (segments where more than 50 % overlap with true archaic 365 

segments) and missed archaic which are segments that the model does not identify as archaic. The 366 

bars are colored according to what simulation scenarios they belong to. b) The estimation of the 367 

four parameters ������ , �,  ����	
�� and ��	�����  are shown for the different simulation scenarios. 368 

c) An example of how simulated archaic segments and putative archaic segments overlap in a 10 369 
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Mb window.  The x-axis is the genomic coordinates in Mb and the y-axis is the different simulation 370 

scenarios.  371 

 372 

Figure 3. Application of model to Papuan genomes. a) Relationship between modern and archaic 373 

humans with the outgroup branches (Sub-Saharan Africans) colored in red. The average 374 

coalescence times for ingroup and outgroup ����	
�� and archaic and outgroup �	�����  are 375 

shown. The admixture proportions � and admixture time ������  are shown for segments that are 376 

shared with other non-African populations. b) The outgroup colored in red is now all non-Papuans, 377 

and the new demographic parameters are shown. c) The segments that are shared with other 378 

Non-Africans share more variation with the Vindija Neanderthal than they do with the Altai 379 

Denisova. Segments that are unique to Papuan individuals share more variation with Altai 380 

Denisova than they do with the Vindijaarchaic segments with a mean posterior probability > 0.5 381 

are kept) for segments that are shared with other non-African populations is shorter than 382 

segments that are unique to Papuans.  segments with a mean posterior probability > 0.5 are kept) 383 

for segments that are shared with other non-African populations is shorter than segments that are 384 

unique to Papuans.   385 

 386 

Supporting Figure legends 387 

Supporting figure 1 – Demographic parameters for simulation. The effective population sizes, 388 

split times and bottleneck population sizes are shown for the simulated populations.  389 

Supporting figure 2 - Total segments and sequence called SIM. The first column show the total 390 

number of segments found and the second column show the total amount of sequence that these 391 

segments add up to. The rows are different simulation scenarios and the colors of the stacked bar 392 

plot show the amount/number of segments that are not found using posterior decoding, where 393 

less than half of the segment overlap with the true archaic segments or where more than half of 394 

the segment overlaps with the true archaic segment. 395 

Supporting figure 3 – Effect of adjusting cutoff for when to include a putative archaic segment. 396 

The rows are different simulation scenarios and the columns are different classifications of 397 
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putative archaic segments. False is segments with zero overlap to the true archaic segments, 398 

found<50% are archaic segments that overlap with less than 50% with the true archaic segments 399 

and found>50% are segments that overlap with more than 50% with the true archaic segments.  400 

On the x-axis is the mean posterior probability of an archaic segment and the y-axis is the amount 401 

of sequence left when applying the filter as a fraction of that found with a filter value of 50%.  402 

Supporting figure 4 - Parameter estimation of Papuans. The different subpanels show the 403 

estimates for the parameters t_admix, a,  T_ingroup and T_archaic depending on which outgroup 404 

was used (Sub-Saharan Africans) or the whole world (non-Papuans). There is a separate bar for 405 

each individual, and the bars are colored according to which dataset they came from.  406 

Supporting figure 5 - Segment distributions as a function of posterior probability. Distributions of 407 

the number (left) and total length (right) of segments with mean posterior probability as on the x 408 

axis.  Numbers are given for all 87 Papuans, called with a threshold of 0.5. 409 

Supporting figure 6 - Length distribution of inferred segments for other methods. The length 410 

distribution of all Denisova and Neandertal segments found using conditional random field (CRF), 411 

the hidden Markov model (HMM) and Sstar. For our HMM, Neanderthal are those segments that 412 

are shared with other non-African populations and Denisova are those unique to Papuans. 413 

Supporting figure 7 - Length distribution of Asians, Europeans and Papuans. The length 414 

distributions of segments unique to Papuans (Denisova) and segments shared with other non-415 

African populations (Neanderthal) are shown for segments found using four different population 416 

groups.  417 

  418 
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