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 15 

Abstract  16 

Adipose tissue is comprised of a heterogeneous collection of cell-types which can differentially 17 

impact disease phenotypes. We investigated cell-type heterogeneity in two population-level 18 

subcutaneous adipose tissue RNAseq datasets (TwinsUK, N =766 and GTEx, N=326). We find 19 

that adipose cell-type composition is heritable and confirm the positive association between 20 

macrophage proportion and obesity (BMI), but find a stronger BMI-independent association with 21 

DXA-derived body-fat distribution traits.  Cellular heterogeneity can confound ‘omic analyses, 22 

but is rarely taken into account in analysis of solid-tissue transcriptomes. We benchmark the 23 

impact of adipose tissue cell-composition on a range of standard analyses, including phenotype-24 

gene expression association, co-expression networks and cis-eQTL discovery.  We applied G x 25 

Cell Type Proportion interaction models to identify 26 cell-type specific eQTLs in 20 genes, 26 

including 4 autoimmune disease GWAS loci, demonstrating the potential of in silico 27 

deconvolution of bulk tissue to identify cell-type restricted regulatory variants.   28 

 29 

 30 

Introduction 31 

 32 

Adipose tissue is the largest endocrine organ in the human body and has a role in the development 33 

of insulin resistance, cardiovascular disease, type 2 diabetes and many other cardiometabolic 34 

disorders. Adipose tissue is heterogeneous, it is comprised of an array of cell types including 35 

adipocytes, pre-adipocytes, endothelial cells, and several immune cell subtypes (Rafols 2014). 36 

Adipose tissue cellular composition changes in response to obesity and it is thought that this 37 

change, in particular the marked increase in immune cell infiltration, contributes to some of the 38 

negative health consequences of obesity (Chawla et al., 2011; Cancello et al., 2005; Heilbronn et 39 

al., 2008). It is therefore of interest to understand the cellularity of adipose tissue, its variability 40 

in the population and how this affects health and disease.  41 

 42 

Due to the biomedical importance and relatively easy physical accessibility of subcutaneous 43 

adipose tissue, a large body of adipose transcriptomic datasets has been generated from healthy 44 

volunteers and patients, including several studies with greater than 200 participants (Grundberg 45 

et al., 2012; Buil et al., 2015; Emilsson et al., 2008; Greenawalt et al., 2011; Civelek et al., 2017; 46 

Lonsdale et al., 2013). To our knowledge, these studies have not assessed the cellular composition 47 

of their samples, despite the fact that cellular heterogeneity is a well-established confounder in 48 

transcriptomic analysis of bulk tissues (Titus et al., 2017; Lappalainen et al., 2017; Jaffe et al., 49 

2014).  While extensive investigation and methodological development has centered on 50 

computationally accounting for cell-type composition in whole blood (Jaffe et al., 2014), very 51 

few studies have investigated the extent of cellular heterogeneity in other tissues and how it 52 

impacts –omic level analyses (McCall et al., 2016).  Directly assessing cell composition in 53 

adipose is challenging, methods such as flow sorting face technical difficulties including 54 

adipocyte rupturing and shared cell-type specific surface markers, as well as low-throughput and 55 

high expense when applied to hundreds of samples.  Single-cell analysis could overcome some 56 

of these considerations, however the complex logistics of population level collection of adipose 57 

biopsies and expense of single cell analysis mean that there is considerable utility of in silico 58 

deconvolution of ‘omic profiles generated from bulk adipose tissue.  59 

 60 

Here, we utilize in silico deconvolution to estimate the relative proportions of four distinct cell 61 

types (adipocytes, macrophages, CD4+ t-cells and Micro-Vascular Endothelial Cells (MVEC)) 62 
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in bulk subcutaneous adipose tissue transcriptomes from two independent datasets; 766 63 

individuals from TwinsUK and 326 post-mortem GTEx donors. We conduct extensive 64 

simulations to investigate whether our methods accurately identify the relevant cell types, the 65 

range of cell type detection possible and robustness to varying levels of noise and unknown cell 66 

content (contamination).  We find significant cellular heterogeneity within and between these 67 

datasets.  We recapitulate the well-known cellular hallmark of obesity, finding a positive 68 

association between adipose tissue macrophage abundance and Body Mass Index (BMI), but 69 

identify stronger relationships to DXA-derived body fat distribution traits. We assess the impact 70 

of adipose cellular heterogeneity on standard ‘omic analyses, including cis-eQTL discovery, co-71 

expression networks and differential gene expression studies. Finally, we utilize cell-type 72 

composition in interaction models to identify cell-type specific eQTLs from bulk tissue 73 

transcriptomes that are enriched for GWAS variants and cell type relevant enhancers. 74 

 75 

 76 

Results 77 

 78 

Accurate cell type estimates that are robust against unknown content and noise 79 

We estimated cell-type proportion in bulk adipose tissue RNA-seq profiles with CIBERSORT, a 80 

ν-support vector regression (ν-SVR) method developed to estimate cell proportions using gene 81 

expression obtained from solid tissues (Newman et al. 2015). CIBERSORT identifies cell-type 82 

specific marker genes from purified cell transcriptome profiles to construct a tissue-specific 83 

signature matrix, a set of differentially expressed genes across all cell types and utilizes this 84 

signature matrix to perform the deconvolution step. 85 

 86 

To construct the CIBERSORT adipose tissue signature matrix, we obtained previously published 87 

RNA-seq datasets from purified cells that are known to be present in subcutaneous adipose tissue 88 

including Adipocytes, Macrophages, CD4+ T-cells and microvascular endothelial cells (MVEC) 89 

(Table: S1). Adipose tissue is comprised of many more cell types than the four we focus on here. 90 

Estimation of additional cell types was prevented by either the unavailability of purified RNA-91 

seq datasets for those cell types at the time of study, lack of replicates to ensure stable construction 92 

of the signature matrix or very low frequency in the tissue (such as mast cells). Biological 93 

replicates of each of the four purified cell type were included. Hierarchical clustering of the 94 

purified cell transcriptional profiles recapitulated developmental cellular hierarchy (Figure S1). 95 

The final CIBERSORT adipose signature matrix is comprised of 658 genes including several 96 

well-known cell-type specific markers such as SCD, COL1A1 and ADIPOQ in adipocytes, 97 

SERPINE1, MMP1 and VWF in endothelial cells, SPP1, F13A1 and CTSC in Macrophages and 98 

FOS, TCF7 and CD3 in t-cells.  The full signature matrix is included in Supplementary File 1.  99 

 100 

To test deconvolution ability, accuracy and robustness to noise, we performed several typical 101 

simulations used to benchmark deconvolution accuracy (Newman et al., 2015; Gong & 102 

Szustakowski 2013). First, we tested whether the adipose tissue signature matrix can accurately 103 

identify the four cell types when applied to a set of independent, purified cell type RNA-seq 104 

datasets). All benchmark cell types were estimated with high accuracy, with three out of four cell 105 

types attaining ≥ 99% accuracy in prediction (Table S2. Macrophages (93% accuracy) are 106 

particularly difficult to purify, so it is possible that the 6% CD4+ t-cells we estimate in the 107 

macrophage benchmark sample were present in the original purified macrophage sample. 108 

 109 
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We next assessed ability to estimate the constituent cell proportions of a mixture of known cell 110 

types. We created 1000 in-silico mixtures of known proportions of each of the four cell types 111 

with the independent purified cell type datasets (Table S1), Application of CIBERSORT to the 112 

in silico mixtures yielded highly accurate estimates of cell type proportion, with mean absolute 113 

deviation (mAD) of estimated proportions to ground truth values ranging from 0.019 to 0.068 114 

(Figure 1).  Biopsies can contain contaminant cells from other tissues, which could impact cell-115 

type proportion estimates if contaminant cells share marker genes with any of the four cell types 116 

we are estimating. To test this, we added proportions of smooth muscle cells, dendritic cells and 117 

neutrophils to the in-silico mixtures of the four cell types. These cell types can be present in 118 

adipose tissue and therefore reflect realistic ‘contaminant cells’. Neutrophils in particular could 119 

be troublesome, as neutrophils make up 60-70% of whole blood, and whole blood may be present 120 

in the biopsy at varying levels as a contaminant. Cell type prediction was accurate when up to 121 

10% of a sample was composed of contaminant cell types (Figure S2). As it is likely the content 122 

of unknown cells in the samples is ≤ 5% given previously published cell type estimates from 123 

adipose tissue (Travers et al., 2015; Zimmerlin et al., 2010; Van Harmelen et al., 2003), the 124 

adipose tissue signature matrix is robust in estimating cell types from mixtures with some 125 

unknown content. 126 

 127 

Finally, given technical factors during library preparation and sequencing introduce noise in 128 

RNA-seq experiments, we tested how much noise we could introduce into the simulations and 129 

still accurately predict cell type proportions, similar to analyses performed in Newman et al. 130 

(2015). We added Gaussian noise at 10, 50 and 90% as well as the naturally occurring noise 131 

present in each of the separate experimentally derived purified RNA-seq datasets. The estimates 132 

are robust when up to 10% of the mixture is distorted with noise, and a linear relationship between 133 

ground truth and predicted estimates still holds when large amounts of noise are introduced 134 

(Figure S3). 135 

 136 

In summary, we have adapted CIBERSORT to accurately predict cell-type composition in bulk 137 

RNA-seq data from adipose tissue. Under reasonable limits of contamination and noise our 138 

estimates of adipose tissue cell-types proportion are reliable. 139 

 140 

Estimation of relative cell type proportions in bulk adipose RNAseq datasets 141 

We applied CIBERSORT and the adipose tissue signature matrix to a previously published 142 

dataset of 766 subcutaneous adipose tissue biopsies obtained from female twin participants of 143 

TwinsUK (Grundberg et al., 2012 Buil et al., 2015) All 766 TwinsUK RNA-seq samples were 144 

successfully deconvolved at an FDR 1%. Adipocytes were the most dominant relative cell-type 145 

[0.73-0.99], but also show significant inter-subject variability (Figure 3). Proportions of the other 146 

estimated cell types ranged from [0.004-0.22] for macrophages (M1/M2 combined), [0-0.19] for 147 

MVEC and [0-0.11] for CD4+ t-cells (Figure 3). These estimates agree with previously published 148 

studies performed using flow cytometry (Supplemental Table S3). As the vast majority of 149 

TwinsUK adipose samples had CD4+ t-cell estimates below 1%, we chose to focus on adipocytes, 150 

macrophage and endothelial cell estimates for downstream analysis. 151 

 152 

We next applied CIBERSORT to an independent sample of 326 post-mortem subcutaneous 153 

adipose tissue biopsies from the genotype tissue-expression consortium (GTEx) (Aguet et al., 154 

2017). In contrast to TwinsUK, ~23% of GTEx samples (75/326) failed successful deconvolution 155 

(1% FDR), suggesting substantial differences of cell types present in the tissue from the signature 156 

matrix. The 251 GTEx samples that passed deconvolution had markedly different cell-type 157 
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composition profiles as compared to the TwinsUK samples, with lower adipocyte fraction 158 

(GTExmedian = 0.62, TwinsUKmedian = 0.82), twice as much vasculature (GTEx median MVEC 159 

proportion = 0.30, TwinsUK = 0.15) and 4 times as many macrophages (GTEx median 160 

macrophage = 0.08, TwinsUK = 0.02) (Figure 3). To assess the GTEx estimates, we investigated 161 

whether there were visible histological differences between samples with predicted extreme 162 

macrophage proportion estimates in histology slides of the GTEx biopsies. We observed 163 

concordance between our estimates and visual inspection of the histology slides. We demonstrate 164 

this in Figure 4, where the sample with the lowest macrophage proportion (0%) is composed of 165 

adipocytes with few additional cells present and the sample with the highest macrophage 166 

proportion (49%) has a substantial amount of vasculature/blood cells surrounding the adipocytes. 167 

 168 

To validate the difference in adipocyte proportion between the datasets, we focused on the 169 

expression of ADIPOQ, which encodes the hormone adiponectin. ADIPOQ expression is 170 

expressed highly in adipocytes and pre-adipocytes. ADIPOQ was expressed 4-fold higher in 171 

TwinsUK (median TMM = 3998, expression rank = 19) compared to GTEx (median TMM = 963, 172 

expression rank = 59). The distribution and range of ADIPOQ expression varied between the 173 

datasets, following a normal distribution in TwinsUK (untransformed, TMM data) and Poisson 174 

in GTEx (Supplementary Figure S8). ADIPOQ expression is very low in some GTEx samples 175 

as compared to TwinsUK, which suggests fewer viable adipocytes (GTEx ADIPOQmin = 3.13 176 

TMM; TwinsUK ADIPOQmin = 986 TMM) (Figure S6). The ADIPOQ results strongly support 177 

the CIBERSORT estimates of lower adipocyte proportion in the GTEx samples.  178 

 179 

There are several possible explanations of why cell-type proportions differ between TwinsUK 180 

and GTEx. The function and metabolic activity of adipose tissue is known to vary between fat 181 

depots – markedly between android and gynoid depots.  The gynoid GTEx adipose samples were 182 

obtained via surgical incision from the lower left leg, whilst android TwinsUK samples were 183 

derived from punch biopsies from the abdomen. Fibrosis due to ischemia is likely to alter the 184 

number of viable cells available for sequencing in post-mortem samples; GTEx pathologist notes 185 

frequently recorded the presence of large fibrotic regions (up to 60% of a given histology slide) 186 

in addition to contaminant cells such as nerve tissue, bone ossification or the presence of large 187 

blood vessels.  Given the large disparities in cell composition between the datasets we chose to 188 

focus on the TwinsUK dataset for the following analysis, both for the availability of additional 189 

phenotypes and as their composition reflects in vivo ranges.  190 

 191 

Adipose cell-type proportions are heritable  192 

Several studies have demonstrated that the cell-type composition of whole blood is heritable 193 

(Roederer et al., 2016, Brodin et al. 2015), but the influence of genetics on adipose cell-type 194 

composition has not been explored.  Using classical twin models, we estimate the narrow sense 195 

heritability (h2) of adipocyte, macrophage and endothelial cell proportion to be 17%, 30% and 196 

21% respectively in the TwinsUK data. The heritability of adipose tissue cell composition may 197 

be mediated by genetic drivers of whole-body traits such as BMI that in turn drive changes in 198 

cell-type proportion, or may be mediated by local effects within adipose tissue such as rates of 199 

adipo- or angiogenesis. 200 

 201 

Adipose tissue cell type proportion is associated to whole-body obesity traits but not age 202 

Macrophage infiltration and increased abundance in adipose tissue is known to increase with 203 

obesity and its associated chronic inflammation (Boutens et al., 2016). We recapitulate this 204 

finding, demonstrating a significant correlation between Body Mass Index (BMI) and estimated 205 
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adipose macrophage proportion in TwinsUK (Table: 1) .We explored the relationship between 206 

cell-type composition and body-fat distribution using highly accurate Dual X-ray absorptiometry 207 

(DXA) measures of visceral fat volume (VFAT) and android/gynoid (A/G) ratio in a subset of 208 

twins (N = 652) with concurrently measured DXA scans. Despite the smaller sample size, the 209 

correlation of android/gynoid ratio and visceral fat with relative macrophage estimates were 210 

significantly higher than to BMI (Table: 1). Including BMI as a covariate did not change the 211 

associations to DXA-derived traits, indicating body-fat distribution is associated to adipose tissue 212 

cell composition independent of overall adiposity. This finding confirms both the importance of 213 

macrophage biology in obesity but also suggests inflammation plays a more prominent role in 214 

body-fat distribution than currently appreciated.  215 

 216 

In contrast to the well-documented association between whole blood cell-type composition and 217 

age (Jaffe & Irizarry 2014), there was no association between age and either macrophage or 218 

adipocyte proportion (r = -0.02). This indicates that adipose cell-type composition is not a major 219 

confounder in identification of age-related transcripts (Viñuela et al., 2017) or differentially 220 

methylated regions (Nilsson et al., 2014) in adipose tissue. 221 

 222 

Adjusting for Macrophage heterogeneity accounts for 11% of BMI differentially expressed 223 

genes 224 

BMI has a profound effect on adipose tissue gene expression; the majority of the adipose 225 

transcriptome is associated to BMI in studies conducted with both microarrays and RNA-seq in 226 

independent populations (Emilsson et al. 2008, Glastonbury et al. 2016, Civelek et al., 2017).  It 227 

is unclear how much of BMI-associated changes in gene expression are mediated by the changes 228 

in cell-type composition that accompany increasing BMI. To address this, we identified 229 

associations between gene expression and BMI under two models, adjusting and not adjusting for 230 

macrophage proportion. In the first model, we recapitulate previous results with expression of 231 

6,366/14,897 protein-coding genes significantly associated with BMI (Bonferroni corrected P-232 

value = 3.56 × 10-6). Adjusting for macrophage proportion resulted in 11% of associations no 233 

longer being significant, a loss of 707 gene expression-BMI associations (Figure 2). This 234 

demonstrates that whilst inflammation is an important aspect of obesity etiology, the majority 235 

(89%) of BMI-expression associations are likely to be independent of macrophage proportion, 236 

but could still be dependent on activation state. Of the 707 genes that are no longer significant 237 

after adjusting for macrophage proportion an example is CD209 P-valueoriginal = 7.72 × 10-8, P-238 

valueadj = 0.0019), a gene that encodes for a C-type lectin that is found primarily on the surface 239 

of macrophages and dendritic cells. Additional example genes no longer significant include 240 

LILRA2, MNDA and CMKLR1 that are known to be primarily expressed in macrophage and 241 

immune cell lineages (Lee et al., 2007; Briggs et al., 1994; Zabel et al., 2006). 242 

 243 

Cell-type proportion explains major components of gene expression variance and co-244 

variance 245 

Principle component analysis (PCA) is commonly used to understand the sources of gene 246 

expression variance. We identified principle components in the TwinsUK samples and correlated 247 

them to cell-type proportion estimates. PC1 was correlated with adipocyte and endothelial cell 248 

proportion (R = 0.40, P-value ≤ 2.2 × 10-16; R = 0.41, P-value = 2.2 × 10-16, respectively). PC2 249 

was negatively correlated with macrophage proportion (R = -0.63, P-value ≤ 2.2×10-16 and 250 

positively correlated with endothelial cell proportion (R = 0.21, P-value ≤ 3.7 × 10-9). PC1 and 251 

PC2 cumulatively explained 25% of adipose tissue gene expression variance (Figure S6). This 252 

indicates that cell-type heterogeneity at the population level is a major driver of  gene expression 253 
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variation in adipose tissue, and accounting for principle components in downstream analysis 254 

should account for some of this variability. 255 

 256 

Weighted Gene Co-Expression Network Analysis (WGCNA) is a widely used technique that 257 

uses the correlation structure of global gene expression profiles to construct modules of genes, 258 

some of which have been ascribed distinct functional roles or correspond to gene networks.  11 259 

out of 13 WCGNA modules in TwinsUK correlated with cell-type proportion (Figure S7, P-260 

value  < 0.0038). The most significant macrophage-proportion associated module (Pearson’s R 261 

= 0.67, P-value ≤ 2.2× 10-16) (Figure S7a), recapitulated the Macrophage Enriched Metabolic 262 

Network (MEMN), an adipose gene expression signature associated with increasing BMI 263 

(Emilsson et al. 2008, Chen et al. 2008).  The MEMN-green module’s constituent genes were 264 

enriched for glycoproteins (P-value = 7.1 × 10-63), Immunity (P-value = 1.1 × 10-23) and the 265 

innate immune response (P-value = 4.5 × 10-12). Endothelial cell proportion was positively 266 

correlated to the turquoise module (R = 0.41) which was significantly enriched for GO terms 267 

related to angiogenesis (P-value = 6.4 × 10-12). These findings demonstrate that cell-type 268 

composition is a major driver of co-expression in bulk tissue RNA-seq samples and could 269 

confound analysis if samples are not matched for cell-type proportion. 270 

 271 

 272 

Correction for macrophage heterogeneity in adipose tissue increases cis-eQTL discovery 273 

yield 274 

To determine if adipose cell-type heterogeneity can confound cis-eQTL analysis we investigated 275 

the effect of correcting for cell-type in cis-eQTL analysis. We implemented a naive cis-eQTL 276 

discovery model, not adjusting for any cell-type proportion and a separate, macrophage-277 

corrected eQTL model. Adjusting for macrophage heterogeneity amongst samples led to a 278 

modest increase in cis-eQTL yield (2.3%) (naive model = 5,531, macrophage-adjusted = 5,665 279 

SNP-gene pairs, FDR5%). However, it has become standard practice in cis-eQTL studies to use 280 

gene expression principle components, PEER factors, or other factor-analysis based methods, to 281 

estimate and adjust-out confounding factors from gene expression data. To test whether latent 282 

factors account for cell-type proportion variability, we re-ran the naive and cell-type adjusted 283 

cis-eQTL scans including adjustment for 30 PEER factors. PEER factor adjustment achieved a 284 

similar increase in cis-eQTL yield in the naïve and cell-adjusted models respectively and resulted 285 

in near identical results (naïve-PEER = 7,665, macrophage-adjusted-PEER = 7,664). This 286 

confirms that latent factors capture the cell type composition differences amongst adipose 287 

samples, as well as many other unmeasured latent factors, but if covariates are known, it is better 288 

to adjust using a full specified model rather than estimate latent factors given the known risk of 289 

collider bias (Dahl et al., 2017). 290 

 291 

Identification of cell-type specific eQTLs from bulk tissue 292 

Previous studies have identified cell-type specific eQTLs in bulk whole blood expression profiles 293 

by fitting G x cell type proportion interaction models (Westra et al. 2015). We utilized this 294 

strategy to detect cell-type specific cis-eQTLs in the TwinsUK adipose data. At a strict 295 

Bonferroni-corrected threshold (P-value threshold = 1.01 × 10-9, based on 49,219,795 association 296 

tests in the 1 MB TSS centered window around 14,897 genes) we identified 26 G x cell type 297 

interactions at 20 unique genes (Table 2). Twelve gene-SNP pairs had an interaction with 298 

macrophage proportion, 10 with endothelial proportion and four with adipocyte proportion 299 

(Table 2). Examples include MARCO, a macrophage receptor with collagenous structure, whose 300 

expression depends on macrophage proportion and rs1884841.  TC2N, which is responsible for 301 
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the secretion of VWF from endothelial cells, and DEFB1 both showed a positive interaction with 302 

adipocytes, and a negative interaction effect with endothelial cells. 303 

 304 

Five macrophage-dependent eQTLs were replicated in a context-specific monocyte eQTL dataset 305 

(Fairfax et al. 2014). Four of the five were detected in a IFN-γ or LPS challenged state. Given 306 

macrophage proportion in adipose tissue increases with obesity, which in turn is associated with 307 

a low-level, chronic inflammatory state, macrophages in individuals with higher proportion of 308 

macrophages are also likely to be in a stimuli-responsive state.  Overall, the lead G x Cell type 309 

proportion SNPs were enriched for overlap with HaploReg enhancer annotations in primary 310 

monocytes (P = 0.001) and neutrophils (P = 0.004), consistent with the large number of G x Cell 311 

eQTLs dependent on macrophage proportion (60%).   312 

 313 

We intersected all significant G×Cell interactions with genome-wide significant (GWS) 314 

associations in the NHGRI GWAS catalogue. 9 out of 26 SNPs are GWAS variants or are in 315 

strong LD (r > 0.80, D’ > 0.9) with GWS loci for multiple immune and autoimmune disorders.  316 

7/9 of these SNPs are within the MHC.  The other two SNPs are rs1351111, which regulates 317 

KLRK1 dependent on macrophage proportion and is coincident with GWAS lead SNPs for 318 

Behcets disease (r2 = 1; rs2617170) (Kirino et al., 2013), and rs4728142 which regulates IRF5 319 

dependent on endothelial proportion and is the lead SNP in GWAS’s of a range of auto-immune 320 

diseases including Inflammatory Bowel Disease (Lui et al., 2015), Ulcerative Colitis (Jostins et 321 

al., 2012), and Systemic lupus erythematous. (Han et al, 2009). IRF5 is a transcription factor that 322 

has been implicated in the control of macrophage polarization and tissue remodelling in adipose 323 

tissue (Dalmas et al., 2015). 324 

 325 

Discussion 326 

RNA-seq profiling of bulk tissue biopsies is widely used for biomarker discovery, genetics of 327 

gene expression studies, and differential expression analysis (Ren et al., 2012; Glastonbury et 328 

al., 2016; Civelek et al., 2017; Grundberg et al., 2012). but the cellular complexity of primary 329 

tissue biopsies is often unaccounted for.  In this study we used in-silico methods to characterize 330 

the variability of adipose cell-type composition in two large bulk tissue transcriptomic datasets 331 

and explored the effects of adipose cellular heterogeneity on a range of transcriptomic analyses. 332 

Our results indicate that it is critical to account for cell-type composition when combining 333 

adipose transcriptome datasets, in co-expression analysis and in differential expression analysis 334 

with obesity-related traits.  335 

 336 

Whilst the ability to detect interactions with estimated cell proportions is limited both in terms 337 

of sample size and the accuracy of cell type estimation from a complex tissue such as adipose, 338 

we have demonstrated its possible to detect cell-type proportion-dependent eQTLs in whole 339 

adipose tissues.  We identified 26 macrophage, endothelial or adipocyte specific eQTLs within 340 

our bulk adipose tissue RNAseq datasets, and we note all of these had main-effect eQTLs in 341 

TwinsUK adipose tissue and in several GTEx tissues (Table 2).  The presence of immune and 342 

endothelial specific eQTLs is expected in other tissues with resident immune cells and blood 343 

vessels, however, three of the four adipocyte dependent eQTLs have been found to be eQTLs in 344 

GTEx nerve tissue.  Adipose tissue is spread throughout the body and around organs, and 345 

obtaining adipose-free biopsies of many tissues, including, nerve, thyroid and muscle, is 346 

technically difficult, as is clearly documented in the GTEx pathologist notes and histology slides 347 

that are provided for every biopsy.  We conjecture that the presence of adipocyte-specific eQTLs 348 

in nerve tissue is a result of adipose contamination of the nerve biopsies.  This suggests that 349 
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estimates of tissue-sharing of expression or regulatory effects between adipose and some tissues 350 

are likely to be an over-estimate (Lui et al., 2017; Wheeler et al., 2016). Adipose contamination 351 

will also inflate estimates of tissue-shared effects between unrelated tissues if biopsies from both 352 

tissues contain adipose contamination, as will other broadly distributed ‘contaminant’ cell types 353 

such as immune cells and blood.  It is thus important to consider the cell-type composition of 354 

biopsies prior to utilizing expression or eQTL data to interpret disease loci, and in particular 355 

before prioritizing a tissue or cell type for downstream experiments 356 

 357 

We demonstrate that adipose cell composition is heritable and associated to body-fat distribution. 358 

Whilst some of this heritability may be mediated by overall BMI heritability which in turn drives 359 

changes in cell composition, it is possible that certain genotypes could predispose to or protect 360 

individuals from macrophage infiltration and thereby the consequences of inflammation in 361 

obesity. Heritable variability in adipocyte number could also underlie differential capacity for 362 

adipose tissue expansion and storage, which can drive ectopic fat deposition and subsequent 363 

susceptibility to downstream cardio-metabolic disease.  The role of cellular heterogeneity in 364 

modulating human health and disease is a growing area of interest (Lappalainen & Greally, 365 

2017), and further deconvolution of bulk RNA-seq datasets, aided by the expanding availability 366 

of RNA from purified cell populations and single-cell analysis, should contribute to our 367 

understanding of how genetics influence cell-type heterogeneity and its impact on health and 368 

disease.  369 
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RNA-seq alignment and gene quantification 394 

All (Adipose tissue and purified cell) data were aligned, QC’d and quantified with the same 395 

pipeline to ensure comparability.  Reads were aligned to the hg19 reference genome with STAR 396 
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version 2.4.0.1 (Dobin et al., 2013). All aligned BAMs were then filtered to contain reads with a 397 

mapping quality greater than 10 and only reads that were properly paired and had two or fewer 398 

mismatches were kept. Samples were excluded if the failed to have more than 10 million reads 399 

map to known genes or if the sequence data did not correspond to actual genotype data as assessed 400 

using the ‘mbv’ mode of QTLtools (Delaneau et al., 2017).  GENCODE annotation v19 gene 401 

counts were calculated using only protein coding genes without retained intron transcripts using 402 

featureCounts (Liao et al., 2013). All gene counts were transformed into Trimmed Mean of M-403 

values (TMM) a unit shown to be well suited for an across cell-type study design and that also 404 

accounts for library size differences (Robinson et al., 2010; Gong & Szustakowski 2013). Whilst 405 

all protein-coding genes were used for cell type estimation (20,345 genes) as filtering lowly 406 

expressed genes could bias cell type estimates to highly abundant cells in a given tissue biopsy, 407 

genes with at least 0.5 TMM expressed in 90% of samples within a dataset were retained for 408 

transcription wide association (TWAS) and eQTL analysis. 409 

 410 

TwinsUK dataset 411 

Sub-umbilical subcutaneous adipose tissue punch biopsies were collected from female twins 412 

from the TwinsUK cohort as described in Grundberg et al., 2012 and sequenced as described in 413 

Buil et al., 2015. RNAseq data is available in EGA under accession EGAS00001000805. QC of 414 

the TwinsUK genotypes has been described previously (Buil et al., 2015; Brown et al., 2015; 415 

Glastonbury et al., 2016) After QC 766 TwinsUK samples were available for analysis, of which 416 

720 had available genotypes.  The TwinsUK adipose samples had a median age of 60 [38-84] 417 

and median BMI of 25 [16-47].  418 

 419 

GTEx RNA-seq dataset 420 

RNA-seq fastq data for all GTEx v6p Subcutaneous adipose tissue samples were downloaded 421 

from dbGap. GTEx subcutaneous adipose tissue samples were obtained from the lower leg of 422 

post-mortem donors. GTEx data was re-aligned and quantified using the same pipeline as 423 

TwinsUK to ensure comparability. In addition to this, gene expression PCA outliers were 424 

removed, with outliers being defined by use of k-means clustering (k=2) fit to the first 2 425 

expression PCs. 326 QC’d samples were retained for analysis and are listed with their cell type 426 

proportions in Supplementary File 2. 427 

 428 

 429 

Purified cell type data 430 

To create the adipose signature matrix, we used purified cell type RNA-seq obtained from the 431 

Sequence Read Archive (SRA) as raw fasta files.  All datasets are listed in Table S1. One 432 

independent set of experiments were used to construct the adipose tissue signature matrix, and 433 

another independent set to construct in-silico simulated mixtures to test deconvolution accuracy. 434 

Purified cell type data was aligned and quantified using the same pipeline as bulk tissue to ensure 435 

comparability. 436 

 437 

 438 

 439 

 440 

Construction of CIBERSORT adipose signature matrix 441 

RNA-seq obtained from cell types and their biological replicates were constructed into a purified 442 

cell type matrix with n rows (genes) and m columns (cell type). A class file, as described in 443 

Newman et al. (2015) was also constructed to describe the pairwise comparisons to perform 444 
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between cell types to produce the signature matrix. The signature matrix contains all differentially 445 

expressed genes between each cell type at a specified FDR (q = 0.30, default). CIBERSORT has 446 

the additional benefit that each tissue/mixture is deconvolved with potentially different signature 447 

genes due to the algorithm implementing a ν–Support Vector Regression (ν -SVR) step, in which 448 

only the maximally separating support vectors are retained for the linear regression. SVR also 449 

aides in minimizing co-linearity as measured through the matrix condition number (κ), an ideal 450 

step when estimating cell types that are biologically closely related. 451 

 452 

Estimating cell types from bulk adipose tissue RNA-seq data 453 

CIBERSORT was used to estimate cell type proportions from adipose tissue RNA- seq samples, 454 

both from TwinsUK and GTEx (Newman et al. 2015). For signature matrix construction in 455 

CIBERSORT, we used the default value of q=0.30 for the FDR because CIBERSORTs support 456 

vector regression step maximizes which variables best fit each adipose tissue mixture, so it is 457 

therefore better to have a lower false negative rate when detecting the initial set of signature 458 

genes. CIBERSORT also reports the condition number (κ) of the signature matrix, a measure of 459 

co-linearity and matrix stability. The signature matrix has a low kappa (κ = 3.22), suggesting a 460 

well-conditioned matrix was achieved. CIBERSORT provides a deconvolution P-value per 461 

sample, calculated from 1000 bootstrapped permutations (Newman et al. 2015). We required a 462 

deconvolution P-value < 0.01 corresponding to an FDR of 1%.   463 

 464 

In-Silico mixture simulations 465 

Purified cell types were combined at random proportions to generate 1000 in-silico simulated cell 466 

mixtures, termed “the ground truth” (S). A mixture matrix (M) was generated by drawing 467 

variables (equal to the total number of cells to form a mixture with) from a random uniform 468 

distribution normalized to sum to one and multiplied by the purified cell matrix (C): 469 
 470 
 471 

S = CMT 472 

S = truth (known simulated proportions) 473 

C = Matrix of purified cell expression profiles 474 

M = Mixture matrix specifying amount of each cell type [0-1] 475 

 476 

A natural amount of noise is introduced into this problem because the purified cell types are 477 

obtained from different laboratories, using different sequencing chemistries. This is ideal as the 478 

same problem is present for the deconvolution of the real Adipose t479 

issue mixtures, making the simulated data more realistic. However, to make the problem more 

challenging and to assess the signature matrix’s limit and ability to deal with noise in mixture 

profiles, we added scaled randomly distributed Gaussian noise to each simulated sample from 

10% to 100%: 

y1 = y0 + x + y0 S 

x = is a random normal variable with X ~ N (0, 1) 

y0 = Simulated in-silico mixture 

y1 = Simulated in-silico mixture with added noise 

S = scale factor [0–1] 
 
 
GTEx Histology Images and Pathologist notes 
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Histological images of GTEx biopsies along with accompanying pathologist notes were obtained 

from the GTEx web portal at https://gtexportal.org/home/histologyPage. Whilst the GTEx 

histology slides were prepared from a piece of material adjacent to the piece utilized for RNA-

seq, they are reflective of the overall tissue sample taken.  

  

 

Heritability estimation 

Heritability calculations were performed using OpenMx (Boker et al. 2011). A standard ACE 

model was fitted in which additive genetic, common and unique environment variance 

components were estimated for macrophage and adipocyte proportion between twin pairs. 

 

Association between cell-type composition and whole-body phenotypes 

Association between cell-type proportion and whole-body phenotypes (BMI, body fat distribution 

and age) were conducted in the TwinsUK datasets using linear models (lm) in R. All phenotypes 

were collected at the time of biopsy. Body-fat distribution measurements of android, gynoid and 

visceral fat volume were quantified (n = 652) using dual-energy X-ray absorptiometry (DXA; 

Hologic QDR 4500 plus) with the standard manufacturer’s protocol.    

 

BMI Transcriptome Wide Association Study 

Each gene expression measurement (TMM) was tested as a dependent variable in a linear mixed 

effects model accounted for family structure as previously described in detail (Glastonbury et al. 

2016). Independent variables in addition to BMI and macrophage proportion included technical 

covariates that are well known to have strong effects on RNA-seq gene expression studies (Fixed 

effects: Insert size mode, mean GC content, Primer index) (Random effects: date of sequencing). 

We compared the model fit adjusted for macrophage proportion with the null model, not adjusted 

for macrophages, using a single degree of freedom ANOVA. 

 

 

Weighted gene co-expression network analysis (WGCNA) 

Signed weighted gene co-expression network analysis was carried out using WCGNA version 

1.62 (Langfelder & Horvath, 2008) in R as previously described (Langfelder & Horvath, 2008). 

Gene networks have been shown to follow a scale-free topology. WGCNA finds modules/clusters 

of highly correlated co-expressed genes using soft thresholding. The overall process has been 

described previously.  

 

 

 

Cis-eQTL analysis 

For global cis-eQTL analysis, we defined each cis -window as a 1MB region around the TSS of 

each gene. SNPs with a MAF ≥ 5% were analysed.  eigenMT was used to determine significant 

associations (Davis et al. 2016). EigenMT calculates the number of effective tests per cis-window 

by performing eigenvalue decomposition and taking the effective number of tests as equal to the 

eigenvalues that explain 99% of the variance. This procedure has been shown empirically to 

control the FDR similarly to permutations. All analysis was performed using inverse-rank 

normalized gene expression residuals corrected for experimental covariates similar to the analysis 

presented in Glastonbury et al., 2016. All analysis was conducted using the MatrixeQTL package 
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(Shabalin 2012). PEER corrected residuals were obtained by correcting for 30 PEER factors 

(Stegle et al., 2012). 

 

 

Gene-by-environment interaction modelling 

Interaction models were fitted using the ’modellinear cross’ function in MatrixQTL (Shabalin et 

al., 2012). To maximize the power to detect cis -eQTLs that are dependent on cell type proportion, 

we inferred 30 PEER factors using inverse-rank normalized gene expression residuals corrected 

for sequencing date, Zygosity and family structure. Interaction models for relative macrophage 

proportion were adjusted for the following covariates: 30 PEER factors, mean GC content, insert 

size, BMI and age. Macrophage proportion was also inverse normalized to ensure normally 

distributed errors. 

 

Data Availability 

TwinsUK RNAseq data is available from EGA (Accession number: EGAS00001000805). 

TwinsUK genotypes are available upon application to the TwinsUK cohort. GTEx data are 

available in dbGAP (phs000424.v7.p2). All SRA accession numbers for RNA-seq purified cell 

datasets for the construction of the adipose signature matrix can be found in Table S1. 
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Figure 1: Cell-type proportion is accurately estimated in in silico mixture simulations.  

Each panel displays cell-type estimation in 1000 in silico mixtures.  Each point represents one 

simulation.  
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Figure 2: Adjusting for macrophage proportion accounts for 11% of gene-BMI 

associations. Each point represents one gene and is coloured as follows:  Red – significant in 

macrophage adjusted TWAS only, dark blue significant in unadjusted TWAS only, light blue 

– significant in both TWAS and green - not-significant in both TWAS. 
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Figure 3: Distribution of relative cell type estimates in TwinsUK and GTEx adipose 

samples.  TwinsUK samples are shown on the left, GTEx on right.   
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Figure 4: Estimated cell-type composition of GTEx samples corresponds to image data.  

Histology images from the GTEx adipose samples with highest (49%) (top) and lowest (0%) 

(bottom) macrophage estimates are shown. Both whole biopsy (left) and zoomed in images 

(right) are presented.  Estimated cell type composition of all GTEx samples are provided in 

Supplementary File 2. 

 

 

 

Trait r2  P-value 

BMI 0.22 2.2 x 10-8 

Visceral Fat 0.29 4.9 x 10-15 

Visceral Fat (BMI adjusted) 0.28 1.9 x 10-9 

Android /Gynoid ratio 0.36 1.2 x 10-16 

Android /Gynoid ratio (BMI adjusted) 0.35 1.8 x 10-12 

Age -0.02 0.67 

 

Table 1: TwinsUK macrophage proportion in adipose tissue is associated to obesity-

related traits but not age. Body mass index (BMI) 
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Table 2: G x Cell-proportion interactions identify cell-type specific eQTLs from bulk 

adipose tissue gene expression profiles. First column cell-type lists the cell-type proportion 

estimate included in the G x Cell-proportion interaction model.  Macrophage proportion 

interactions replicated in Fairfax et al., 2015 have proxy SNPs and stimuli condition 

annotated. Top three eQTL tissues in GTEx are listed based on effect size. Regulatory regions 

column lists HaploRegv4 annotations at the lead SNP. All promoters, enhancer and other 

regulatory annotation enrichments are derived from HaploRegv4.  
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