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Abstract 

Cognitive control proactively configures information processing to suit expected task 

demands. Predictions of forthcoming demand can be driven by explicit external cues or 

be generated internally, based on past experience (cognitive history). However, it is not 

known whether and how the brain reconciles these two sources of information to guide 

control. Pairing a probabilistic task-switching paradigm with computational modeling, we 

found that external and internally generated predictions jointly guide task preparation, 

with a bias for internal predictions. Using model-based neuroimaging, we then show that 

the two sources of task prediction are integrated in dorsolateral prefrontal cortex, and 

jointly inform a representation of the likelihood of a change in task demand, encoded in 

frontoparietal cortex. Upon task-stimulus onset, dorsomedial prefrontal cortex encoded 

the need for reactive task-set adjustment. These data reveal, for the first time, how the 

human brain integrates external cues and cognitive history to prepare for an upcoming 

task.   

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 18, 2018. ; https://doi.org/10.1101/284059doi: bioRxiv preprint 

https://doi.org/10.1101/284059


3 

 

Introduction 

“Cognitive control” describes a collection of neurocognitive mechanisms that allow us to 

use internal goals and ongoing context to strategically bias the manner in which we 

process information (Miller and Cohen, 2001; Egner, 2017). For instance, depending on 

current goals, humans can flexibly switch or update “task-sets” that allow them to shift 

between different aspects of a stimulus to which they attend and respond (Monsell, 

2003). Cognitive control thus grants the organism considerable behavioral flexibility, but 

it also incurs costs, in that controlled processing is slow and effortful (Norman and 

Shallice, 1986): to wit, it takes longer to update a task-set than to stay with the same set 

(i.e., task-set updating contributes to “switch costs”) (Rogers and Monsell, 1995; Badre 

and Wagner, 2006).  

A central question about cognitive control concerns its regulation –– that is, how 

does the brain determine when and how much control should be applied (Botvinick et al., 

2001)? The broad answer is that people predict forthcoming task demands and adjust 

processing accordingly (e.g., (Shenhav et al., 2013; Egner, 2014; Jiang et al., 2014; 

Abrahamse et al., 2016; Waskom et al., 2017)). Importantly, such expectations about 

task demands can be driven by two sources: explicit predictions provided by external 

cues (Rogers and Monsell, 1995; Dreisbach et al., 2002; Badre and Wagner, 2006) and 

internally generated, trial history-based predictions, which are typically implicit 

(Dreisbach and Haider, 2006; Mayr, 2006; Bugg and Crump, 2012; Egner, 2014; Chiu 

and Egner, 2017).  
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Surprisingly, even though these two types of predictions appear to drive control 

simultaneously (e.g., (Alpay et al., 2009; Correa et al., 2009; Kemper et al., 2016)), it is 

not presently known whether and how the brain reconciles them. Here, we sought to 

characterize, for the first time, the computational and neural mechanisms that mediate 

the joint influence of external, cued-based, and internal, cognitive history-based 

predictions about future task demands that drive the engagement of cognitive control. 

Specifically, we sought to determine how internal and external predictions jointly affect 

proactive task-set updating. Note that while we make the assumption that expectations 

regarding forthcoming task demand can mitigate the costs of switching tasks, we here 

do not aim to distinguish between reduced switch costs due to improved task-set 

reconfiguration (Rogers & Monsell, 1995) versus improved resolution of mnemonic 

interference, or “task-set inertia” (Allport et al., 1994; Badre and Wagner, 2006). Rather, 

we consider both of these processes integral components of successful task-set 

updating (Qiao et al., 2017).  

We combined computational modeling of behavior on a probabilistic variant of  

the classic cued task switching paradigm (Dreisbach et al., 2002) with functional 

magnetic resonance imaging (fMRI) in healthy humans. On each trial, participants 

performed one of two perceptual decision tasks on an array of moving, colored dots 

(Fig. 1). Crucially, prior to the presentation of the trial’s task cue and stimulus, an 

explicit probabilistic pre-cue informed participants of the likelihood that the forthcoming 

trial would require performing one task (color categorization) or the other (motion 

categorization) (Fig. 1). This pre-cue provided an explicit cue-induced task prediction 
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that could be used to guide preparatory task-set updating, and be contrasted with trial 

history-based, internally generated predictions about the forthcoming task.  

While the benefit of the explicit cue was represented by its predictive value, we 

fixed the benefit of trial history-based predictions at zero: trial history was uninformative 

about the probability of task switching, as the task sequence was randomized. Based on 

prior studies, we nevertheless anticipated that participants would form implicit 

expectations for forthcoming trials (e.g., (Huettel et al., 2002)), and this design ensured 

that trial-history and cue-based predictions were independent of each other. This 

allowed us to quantify the influence of each type of prediction in order to adjudicate 

between different possible models of control guidance, including a “rational” model that 

is driven purely by the informative explicit cue.  

We then leveraged the concurrently acquired fMRI data to trace neural 

representations of task and control demand predictions. Here, the first major question is 

whether externally and internally driven task predictions drive behavior in parallel or are 

integrated in a joint neural representation of task prediction. Second, based on the 

proposal that control processes, like the switching of a task-set, are guided by 

predictions of control demand (Shenhav et al., 2013; Egner, 2014; Jiang et al., 2014; 

Abrahamse et al., 2016; Waskom et al., 2017), we sought to characterize neural 

representations of proactive switch demand (the likelihood of having to switch tasks), 

which is determined by the relationship between the predicted forthcoming task and the 

task that was performed on the previous trial. Finally, our protocol also allowed us to 

assess the neural substrates of reactive cognitive control (specifically, reactive switch 
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demand), based on the mismatch between task predictions and actual requirements at 

the time of task-stimulus onset. 

To preview the results, task-switching behavior was jointly driven by internally 

generated and cue-induced task predictions and, strikingly, the impact of the former was 

stronger than that of the latter. Moreover, at the time of pre-cue onset, the fMRI data 

revealed an integrated representation of the joint external and internal predictions in left 

dorsolateral prefrontal cortex (dlPFC). This prediction informed a representation of 

proactive switch demand in the frontoparietal control network, and, at the time of task 

stimulus presentation, the prediction error associated with these joint predictions (i.e., 

reactive switch demand) was encoded in the dorsomedial prefrontal cortex (dmPFC), 

including the anterior cingulate cortex (ACC). Collectively, these data suggest that 

experientially acquired and explicitly cued expectations of control demand are 

reconciled in a dlPFC-dmPFC network to jointly guide the implementation of cognitive 

control.    

Results 

Behavioral data – Effects of external cues and cognitive history. Participants (N = 22) 

performed a cued task switching protocol involving two perceptual decision-making 

tasks (Fig. 1) that required reporting either the predominant color or motion direction of 

a noisy dot cloud stimulus. Which task to perform was indicated by the color of a 

simultaneously presented frame that surrounded the dot cloud. Crucially, the task 

stimulus was preceded by a predictive pie chart cue (i.e., the pre-cue) that accurately 

indicated the probability that the forthcoming task would be the color (or motion) task 
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(five probability levels: 0.2, 0.4, 0.5, 0.6 and 0.8), and thus, whether the forthcoming trial 

would likely involve the same task as the previous trial (i.e., a task-repeat trial) or the 

other task (i.e., a task-switch trial). The task sequence itself was pseudo-random, with 

an equal number of switch and repeat trials occurring within each run. 

 The varying benefits of cue-induced and internal predictions in our design 

allowed us to adjudicate between two competing hypotheses. Based on prior behavioral 

literature (Alpay et al., 2009; Correa et al., 2009; Kemper et al., 2016), cue-based and 

trial history-based predictions could jointly contribute to behavior (the “joint-guidance 

hypothesis”).  Alternatively, a rival model assumes that control strategy is driven by a 

“rational” arbitration between internally generated and external predictions that is based 

on the expected benefit of each prediction, as represented by their respective predictive 

value (or certainty, cf. (Daw et al., 2005)). Rational is in quotations here because this 

model does not take into account the potential (and unknown) costs of employing these 

two types of control predictions, which may be another important factor in driving the 

application of control (Kool et al., 2010; Shenhav et al., 2013). Given that the predictive 

value of trial-history was zero, this alternative model in effect corresponds to control 

being guided exclusively by the external cue, which we here refer to as the “max-benefit 

hypothesis”. 

These hypotheses differ in terms of how the pre-cue and trial history should drive 

task-set updating. Therefore, we started by analyzing how behavior was influenced by 

three factors: the relationship between the previous and current trial task (i.e., the task 

switch effect), the pre-cue probabilistic task prediction, and possible internally generated 

task predictions based on trial-history up to 3 trials back. We subsequently present 
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formal modeling and model comparisons to quantify more precisely what type(s) of task 

prediction best accounted for the behavior.  

 

Figure 1. Example trial in the experimental task. Each trial started with a pie chart, whose 
proportions of black/white area predicted the probability of encountering a black vs. white 
frame surrounding the forthcoming cloud of moving, colored dots. The frame color cued 
the task to be performed (color vs. motion categorization).  

 

Participants performed with high accuracy (color task: 0.87±0.02 [mean±SEM]; 

motion task: 0.88±0.02), which did not differ between tasks (t21 = 0.30, P = 0.75). To test 

whether the previous-trial’s task (i.e., trial i-1) influenced behavior on the current trial, 

we conducted repeated-measures ANOVAs (previous task × current task) on accuracy 

and response time (RT) data. Replicating the classic task switch cost, there was a 

significant interaction between previous- and current-trial tasks in both accuracy 

(F1,21=47.0, P < 0.001; Fig. 2A) and RT (F1,21=95.5, P < 0.001; Fig. 2B), driven by more 

accurate (task-repeat accuracy: 0.90 ± 0.01; task-switch accuracy: 0.85 ± 0.02) and 

faster responses (task-repeat RT: 0.87 ± 0.01s; task-switch RT: 0.94 ± 0.02s) when the 

task repeated than when it switched. Additionally, motion trials were faster than color 

trials (F1,21=21.3, P < 0.001; Fig. 2B; motion RT: 0.84 ± 0.02s; color RT: 0.97 ± 0.02s), 

which is consistent with previous studies using similar color/motion discrimination tasks 
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and dot cloud stimuli (Jiang et al., 2016; Waskom et al., 2017). No other effects reached 

statistical significance. 

To examine the effect of the probabilistic pre-cue on behavior, we performed 

repeated-measures ANOVAs (5 task prediction levels × current task) on accuracy and 

RT data (Fig. 2C, D, see Supplementary Table 1 for summary statistics). No 

significant effects were detected for accuracy. Responses were again faster for motion 

judgments than color judgments (F1,21=24.3, P < 0.001; Fig. 2D). Most importantly, 

there was a significant effect of the explicit pre-cue, as reflected by a main effect of task 

prediction on RT (F4,84=4.3, P < 0.005; Fig. 2D), with response speed scaling with 

predictive pre-cue information. No interaction between pre-cue information and current 

task was observed (F4,84 < 1), indicating that the effects of predictive cues on RT were 

similar in the motion and color tasks. 

To assess trial-history effects beyond the immediately preceding trial, we tested 

whether performance was influenced by task-sets that had occurred in recent prior trials 

(e.g., trials i-2 and i-3) by conducting repeated measures ANOVAs (task at prior trial × 

current task) on accuracy and RT for both i-2 and i-3 trials. The interaction between the 

prior trial task-sets and the current task was significant in both accuracy (F1,21=6.2, P = 

0.02; Fig. 2E) and RT (F1,21=73.2, P < 0.001; Fig. 2F) for trial i-2. For trial i-3, the 

interaction was not significant in accuracy (F1,21<1, n.s.; Fig. 2G), but was significant in 

RT (F1,21=8.4, P = 0.008; Fig. 2H). These results provide strong evidence that trial-

history based task predictions –– stemming from learning over (at least) the last three 

trials –– impact behavior, biasing participants towards expecting task repetitions.  
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Figure 2. Behavioral results. (A, B) Group mean (± MSE) of accuracy (A) and RT (B), 
plotted as a function of task on the previous trial (i-1) and current trial. Results for trials i-2 
and i-3 are plotted similarly in (E, F) and (G, H), respectively. (C, D) Group mean (± MSE) 
of accuracy (C) and RT (D), plotted as a function of (i) the pre-cue’s prediction of 
encountering the actual task and (ii) the task on the current trial. 

 

Behavioral data – Model comparison. To formally compare how well the joint-guidance 

and max-benefit hypotheses explain the behavioral data, we constructed a quantitative 

model for each hypothesis and compared the two using trial-wise RTs. We first defined 

three variables to represent task switching, cue-induced predictions, and internally 

generated predictions, respectively, with the latter two being continuous variables, 

ranging from 0 to 1, that represent task-set weighting (i.e., the relative activation of color 

vs. motion task-sets). Without loss of generality, motion and color tasks were 

represented by 0 and 1, respectively.  

To capture the task switch effect, we define Tprev  as the task required on the 

previous trial. A task switch/repetition can thus be defined by comparing the current task 

to Tprev.  We then denote Pcue as the probability of encountering a color trial based on the 
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pre-cue. To formally model the internally generated, trial-history based task prediction, 

we employed a reinforcement learning model: 

Pint(i) = (1 - α)Pint(i-1) + αTprev   (Equation 1) 

Where Pint(i) encodes the internally generated prediction of the task on trial i; α 

represents the learning rate (Fig. 3A), which is a free parameter ranging from 0 to 1 and 

denotes how much this prediction relies on the previous trial (Pprev) in relation to older 

trials (integrated in Pint(i-1)).  

To link these variables to RTs, the unsigned prediction error (discrepancy 

between the task-set weighting and actual task, denoted as PE) was calculated for each 

trial and each variable (e.g., PEprev, PEcue, and PEint; Fig. 3B), where a larger PE 

indicates a greater need to adjust one’s task-set to the actual task demand. Then, 

based on the observation that trials with larger PE of the forthcoming task have slower 

RTs (Waskom et al., 2017), we assumed that RTs scale positively with PE. The two 

rival hypotheses were then modeled as general linear models (GLMs) consisting of the 

variables defined above. The max-benefit model consisted of PEprev and PEcue to 

account for the task switch effect and the cue-induced prediction, respectively. The 

joint-guidance model consisted of PEcue and PEint to represent the modulations of cue-

induced and trial history-based task predictions, respectively. Our model comparison 

explored the full model space by also including an alternative model with all three 

variables (PEprev, PEint, and PEcue), as well as three control GLMs representing each of 

the three variables by themselves. Note that the model with only PEprev represents the 

classic task switch effect. All models also included a constant regressor, in order to 

model the portion of RT data that does not vary as a function of the present 
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experimental manipulations. To account for mean RT differences in color and motion 

trials, RTs from the two tasks were fit separately.  

Model comparison was conducted using cross-validation to prevent over-fitting 

and to control for different numbers of free parameters used in candidate models (Chiu 

et al., 2017) (see Methods: Modeling and model comparison). The performance of the 

different models was then submitted to Bayesian model comparison (Stephan et al., 

2009), which calculated protected model exceedance probabilities (i.e., the likelihood of 

a given model providing the best explanation of the behavioral data) for each candidate 

model. The joint-guidance model clearly outperformed all other models, with a protected 

exceedance probability of 0.997, indicating that behavior was best explained by a 

collective contribution to proactive task-set updating from cue-induced and internally 

generated task predictions. The joint-guidance model was hence used for all 

subsequent behavioral and neuroimaging analyses. 

Behavioral data – Quantifying respective contributions of cue-based and trial history-

based task predictions. We next sought to more closely characterize how participants 

combined internally generated and external contributions to task predictions. We began 

by asking to what degree individual participants relied on an extended trial-history in 

generating a task prediction, as captured by the RL model’s learning rate. The learning 

rates estimated from individual participants displayed substantial inter-subject variance 

(range: 0.02-0.93, Fig. 3C). The mean learning rate was 0.52, indicating that, on 

average, participants weighted the i-1 trial about as much as the prior trial history in 

determining the internally generated task prediction. Note that this result is at odds with 
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the max-benefit hypothesis, which would predict a learning rate of 1 (i.e., no reliance on 

older trials). 

To quantify participants’ relative weighting of trial history-based versus explicit 

cue-based predictions, we calculated the relative reliance on the pre-cue (denoted as β, 

range: 0 to 1) for each participant by 
����

���������

, where ���� and ���� are the coefficients of 

PEcue and PEint, respectively, after fitting the joint-guidance model to RTs. Thus, a higher 

β indicates stronger reliance on the pre-cue and hence weaker dependence on 

internally generated task prediction; a β of 0.5 indicates equal reliance on Pcue and Pint.  

Strikingly, we found that even though trial history was not predictive of the forthcoming 

task, its effect on behavior was on average 3 times as strong as that of the cue-induced 

task prediction (group mean β: 0.26; range: 0-0.61; one sample t-test against 0.5: t21 = 

5.42, P < 0.001; Fig. 3D). Notably, five participants showed either no (β = 0, four 

subjects) or very little (β = 0.02, one subject) reliance on cue-induced task prediction. 

Even after excluding these participants (to rule out the possibility that the differential 

reliance on trial history was due to a failure to understand the associations between the 

pictorial pre-cue and the task-set prediction), the mean β of the remaining 17 

participants remained significantly lower than 0.5 (t16=3.96, P = 0.001), again indicating 

stronger reliance on the internally generated task prediction. 

We have cast the joint-guidance approach to control predictions as sub-optimal, 

due to the fact that trial-history was not predictive of task transitions. To corroborate this 

assumption, we quantitatively assessed whether relying more on the internally 

generated, trial-history based predictions than on explicit, cue-induced task predictions 

incurs a performance cost. We first estimated the acceleration in responding due to 
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utilizing the pre-cue for each participant and each task. Specifically, the 0.5 

(uninformative) prediction level condition was used as a baseline. Then, for each pre-

cue/task (motion task vs. color task) combination, we calculated the respective 

probabilistic expectation of acceleration in RT relative to the 0.5 prediction level (i.e., the 

probability of encountering this pre-cue/task combination x the RT difference between 

this combination and the baseline). Across participants, the mean estimated gain of RT 

was positively correlated with β estimates in both the motion (r = 0.74, P < 0.001; Fig., 

3E) and color (r = 0.46, P = 0.03; Fig. 3F) tasks, indicating a clear behavioral benefit for 

relying on the external cue. This analysis underlines the sub-optimal nature of relying on 

internally generated, trial history-based task prediction in the present context. We 

speculate that this seemingly irrational reliance on internally generated task prediction 

may be attributable to a relatively lower cost (e.g., due to high automaticity) of using 

internally generated control predictions compared to using cue-based predictions (cf. 

Shenhav et al., 2013; 2017; see Discussion).     
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Figure 3. Model-based behavioral results. (A) Weights of older trials on determining Pint, 
plotted as a function of different learning rates. (B) Illustration of model comparison. 
Given a trial sequence of tasks and the time course of a model variable (depicted as a 
string of nodes, with the height and brightness of the nodes coding the task-set), its 
corresponding time course of (unsigned) PE (with the height and the color of the nodes 
coding the magnitude of the PE) was calculated. The max-benefit model consisted of 
PEprev and PEcue; and the joint-guidance model consisted of PEint and PEcue. (C) 
Distribution of individual learning rates. (D) Distribution of the reliance on pre-cue relative 
to the self-generated task prediction. (E, F) Gain in RT when the pre-cue was informative 
relative to when the pre-cue was non-informative, plotted as a function of the reliance on 
pre-cue. (E) and (F) show results for motion and color trials, respectively. 

 

In sum, the behavioral and modeling results clearly demonstrate that task 

demand predictions were jointly informed by internally generated and externally 

provided information. Moreover, in spite of being sub-optimal in terms of potential 

performance benefits, task performance depended more on trial history-based task 

predictions than on the explicit informative pre-cues. To determine the brain 
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mechanisms by which internally generated and cue-induced task predictions guide 

cognitive control, we next turned to interrogating the concurrently acquired fMRI data. 

 

fMRI data – Analysis strategy. The joint guidance model holds that cognitive control is 

guided both by internally generated and externally cued task prediction (i.e., (1-β)Pint 

+βPcue, denoted as Pjoint). We here sought to determine how this joint influence is 

instantiated at the neural level. The initial major question we sought to answer was 

whether cue-based and history-based expectations influence control in parallel or 

whether these predictions are in fact integrated in a single brain region. Moreover, we 

sought to characterize two additional key computations that are required for translating 

Pjoint into successful task-set updating (Fig. 4A): first, after the onset of the pre-cue, the 

task-set needs to be proactively shifted from Tprev to Pjoint in anticipation of the predicted 

task demand. The demand for preparatory task-set updating (proactive switch demand) 

can thus be quantified as |Tprev - Pjoint|. Second, following the presentation of the actual 

task cue and stimulus, the task-set weighting (if not perfectly corresponding with the 

cued task) needs to be updated reactively from Pjoint to the actual task demand.  The 

reactive switch demand can thus be quantified as the prediction error of Pjoint, or PEjoint. 

Hence, we conducted fMRI analyses to locate brain regions carrying significant 

information about trial-by-trial variations in these three key variables: the joint task 

prediction (Pjoint), the proactive switch demand (|Tprev - Pjoint|), and the reactive switch 

demand (PEjoint).  

Given that the motion and color task-sets contain multiple dimensions of task 

information (e.g., goal-relevant feature, response mapping, frame color, etc.), their 
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neural representations may differ with respect to both mean activity levels and 

multivariate activity patterns in local voxel clusters. Therefore, in examining the neural 

representations of the key variables above, we employed searchlight multivoxel pattern 

analysis (MVPA; see Methods: MVPA procedure) that relies on both multi-voxel activity 

patterns and univariate activity levels. As a validation, we replicated the classic task-

switch effect using this approach (Fig. S1A). 

 

fMRI data – Encoding of joint task predictions at pre-cue onset. We started by probing 

for a possible integrated neural representation of the joint externally and internally 

guided task prediction. Because Pjoint is a weighted sum of Pint and Pcue, it is inherently 

correlated with both variables. To ensure that we identify regions that are specifically 

representing the integrated prediction only, we filtered out searchlights that showed 

significant encoding of either cue-induced or internally generated predictions (Fig. S1B, 

C). This analysis produced a map of the spatial distribution of the representation 

strength of Pjoint, exclusively revealing a left dorsolateral prefrontal cortex (dlPFC) region 

centered on the middle frontal gyrus (MFG) (Fig. 4B). To corroborate that this region is 

specifically involved in representing a weighted combination of the internally generated 

and externally cued task predictions, we probed how well the fMRI signal in this region 

accounted for the variance in the behavioral model-derived joint task prediction, cue-

induced prediction and trial history-based prediction, respectively (see Methods: fMRI 

model comparison). The fMRI signal in this dlPFC cluster best explained the variance in 

the joint task prediction (protected exceedance probability > 0.999, Fig. 4C).  
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By definition, Pjoint is also inherently correlated with any linear combination of Pint 

and Pcue. Therefore, the left dlPFC region identified above may in principle encode a 

different mixture of Pint and Pcue than Pjoint. To rule out this possibility, we compared the 

encoding strength of Pjoint to the encoding strength of arbitrarily mixed values of Pcue and 

Pint. To this end, we randomly sampled βs for each subject (denoted as ��), generated a 

pseudo-Pjoint distribution using ��s, and assessed the encoding strength of pseudo- Pjoint 

using fMRI data from the dlPFC cluster. This procedure was repeated 100,000 times in 

order to ensure a robust estimation of the underlying null distribution. The group mean 

encoding strength (i.e., how well the fMRI data in the searchlights fit the model variable 

in a cross-validation procedure) of Pjoint was significantly stronger than the chance level 

derived from this random sampling procedure (P = 0.02, Fig. 4D). Moreover, we 

examined whether the behaviorally derived βs represent a local maximum state in the 

space of all possible βs. A maximum state implies that, given a set of ��, the encoding 

strength of its corresponding pseudo-Pjoint should steadily decay as �� becomes more 

distinct from β (measured by the Euclidean distance across subjects in the present 

analysis). On the contrary, if there exist other maxima, this decay would not be present, 

because distant ��� would also achieve high encoding strength if they lie close to other 

maxima. Supporting the idea of β representing a local maximum, we observed a 

significant negative correlation between ���’ distance from β and its encoding strength of 

how well the fMRI data fit the pseudo-Pjoint (r = -0.37, P < 0.001; Fig. 4E). Thus, these 

results offer strong evidence for a specific role of this dlPFC region in integrating joint 

predictions of forthcoming task demand, and against the alternative possibility that 

explicit and implicit predictions might drive task-set updating independently, without 
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being integrated. We also probed for the neural encoding of the relative strength, or 

confidence, of task prediction (inverse of prediction uncertainty, |Pjoint – 0.5|), which was 

represented in frontal and parietal regions (Fig. S2). 

 

Figure 4. Neural representation of the joint task prediction. (A) Illustration of how Pjoint is 
translated into proactive and reactive switch demand in relation to previous and 
forthcoming task demand. (B) Left: An MFG region showing significantly above-chance 
encoding of the joint task prediction. Right: Individual ROI-mean encoding strength (in z-
score). (C) Model evidence (lower is stronger), plotted as a function of different types of 
task predictions. Each line represents a single participant. (D) Histogram showing the 
encoding strength of pseudo-Pjoint based on randomly sampled β parameters using fMRI 
data in (B). (E) Encoding strength shown in (D), plotted as a function of the distance from 
Pjoint.  

 

fMRI data – Encoding of proactive switch demand at pre-cue onset. While Pjoint provides 

predictions about the forthcoming task, the degree to which accommodating this 

prediction requires proactive task-set updating depends on its relationship to the 

previous trial (|Tprev - Pjoint|). We here searched for brain regions that encoded this 
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distance between the expected and prior task-set, and thus, the relative need to engage 

in preparatory task-set updating, or proactive switch demand. Regions encoding this 

demand are likely responsible for the actual reconfiguration of the task-set. We found 

encoding of proactive switch demand to be supported by a wide network of regions 

centered in frontal and parietal cortex (Fig. 5A). Areas encoding switch demand 

included right frontopolar cortex (FPC, BA 10), left inferior frontal gyrus (IFG, pars 

opercularis), left precentral gyrus, bilateral supplementary motor area (SMA), left inferior 

parietal lobule/intraparietal sulcus (IPL/IPS), bilateral superior parietal lobule (SPL), 

precuneus, bilateral lingual gyrus, bilateral middle occipital gyrus, bilateral insula and 

the bilateral putamen of the dorsal striatum.  

 A core set of these regions (lateral PFC, SMA, and lateral posterior parietal 

cortex, Fig. 5B) are responsive to multiple and changing task demands (Cole et al., 

2013; Ruge et al., 2013), are functionally connected to each other (Yeo et al., 2011), 

and have been conceptualized as a frontoparietal cognitive control network (e.g., 

(Duncan, 2013)), while the dorsal striatum has long been proposed to contribute to 

updating of working memory content (Frank et al., 2001). A subset of these regions was 

also found to represent the confidence of task predictions (Fig. S2). The current results 

suggest that the frontoparietal control network is not only involved in exerting control 

during task execution but also in the anticipatory updating of task-set representations 

driven by joint internally and externally generated predictions about forthcoming tasks. 
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Figure 5. Neural encoding of proactive task switch demand. (A) T-statistics maps of brain 
regions showing significantly above-chance encoding of proactive task switch demand at 
the onset of the pre-cue. (B) Individual ROI-mean encoding strength of proactive task 
switch demand. 

 

fMRI data – Encoding reactive switch demand at task stimulus onset. We next sought to 

determine the neural substrates of reactive switch demand, that is, the need for 

additional task-set reweighting once the task cue and stimulus are presented, as 

represented by the prediction error of the joint task prediction (PEjoint). To control for the 

influence of the actual task demand, PEjoint encoding strength was computed separately 

for motion and color trials, and the statistical analysis was then performed on data 

collapsed across the two tasks. This analysis revealed encoding of PEjoint in a set of 

regions consisting of left dmPFC (including the ACC), bilateral precentral and 

postcentral gyrus, precuneus, right SPL, left inferior occipital gyrus, and IFG (Fig. 6A). 
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 We also tested the encoding strength of Pjoint on both color and motion trials at 

the time of task-stimulus onset and did not find any brain areas passing the correction 

for multiple comparisons. In conjunction with the encoding of Pjoint at the onset of the 

pre-cue, this result corroborates the expectation that the representation of Pjoint and 

PEjoint should be temporally separated. We next tested whether these regions 

represented PEjoint selectively based on behaviorally derived βs. Compared to randomly 

sampled βs, the dmPFC (Fig. 6B), right precentral and postcentral gyrus, and 

precuneus showed significantly above-chance encoding strength for PEjoint, with the 

dmPFC exhibiting the strongest effect.  The effects remained above-chance in the 

dmPFC when tested separately using motion (P < 0.001; Fig. 6C) and color trials (P = 

0.03; Fig. 6D). Furthermore, for a given set of ��s, the encoding strength of its 

corresponding pseudo-PEjoint decreased as a function of its Euclidean distance from βs 

for both motion (r = -0.51, P < 0.001; Fig. 6E) and color trials (r = -0.29, P < 0.001; Fig. 

6F). Thus, we obtained strong evidence for an involvement of the dmPFC/ACC in the 

reactive updating of task demand predictions based on the joint-guidance of internally 

generated and externally provided cue information.  

 Finally, we sought to relate the current data set to findings from a recent study 

that traced neural substrates of (unsigned) PE of internally generated task predictions in 

a similar task-switching paradigm, but where internal predictions were driven by varying 

the likelihood of each task being cued over blocks of trials (Waskom et al., 2017). The 

corresponding analysis in the current data set is to search for regions that encode PEint 

at task-stimulus onset. In close correspondence to the results of Waskom et al (2017), 

we observed robust encoding of PEint in the frontoparietal control network and the 
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adjacent parietal portion of the dorsal attention network (Figure S3) (Yeo et al., 2011). 

These data show that the updating of internally generated task predictions derived from 

a non-predictive trial sequence (in the current study) recruits the same neural substrates 

as updating of task predictions in response to predictive trial sequences (Waskom et al., 

2017).     

 

 

Figure 6. Neural representation of the joint task prediction error (PEjoint). (A) T-statistics 
maps of brain regions showing significantly above-chance encoding of PEjoint. (B) 
Encoding strength (z-score) of PEjoint in the dmPFC/ACC cluster, plotted as a function of 
task. Each line represents one subject. (C,D) Histogram showing the encoding strength 
of pseudo-PEjoint based on randomly sampled β parameters and fMRI data in the 
dmPFC/ACC cluster in motion (C) and color (D) trials. (E) Encoding strength shown in (C), 
plotted as a function of the distance from PEjoint. (F) Encoding strength shown in (D), 
plotted as a function of the distance from PEjoint. 

 

 

Discussion 
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The human brain is capable of anticipating forthcoming task demand and 

exerting proactive control to reconfigure information processing in line with those 

prediction (Shenhav et al., 2013; Egner, 2014; Jiang et al., 2014; Abrahamse et al., 

2016; Waskom et al., 2017). In the present study, we sought to characterize how this 

regulation of anticipatory control is implemented in the context of concurrent external, 

cue-based, and internally generated, cognitive history-based predictions of forthcoming 

control demand in the form of task-set updating. By directly manipulating and formally 

modeling cue-based and cognitive history-based task predictions, we demonstrated that 

behavior was driven by joint predictions from external and internal sources, and that 

these predictions were integrated in (left) dlPFC prior to task stimulus onset. The 

discrepancy between the joint prediction and the previous-trial task, which signals the 

demand of proactively shifting task-set, was represented in frontoparietal regions 

belonging to the frontoparietal control or multiple-demand network, along with the insula, 

putamen and visual areas. Moreover, upon task stimulus presentation, reactive 

updating of task-set based on the joint task-demand prediction error was found to be 

encoded most prominently in the dmPFC.    

We conducted a rigorous test of the reliance on internally generated predictions 

by making them non-informative. Despite of the lack of validity in predicting the 

forthcoming task, trial history-based, internally generated task prediction exhibited a 

strong modulation on RTs. This modulation was non-trivial, being about 3 times as 

strong as the modulation of the informative cue-induced task prediction at the group 

level. Notably, the finding that behavioral modulation by previous trials could be traced 

up to (at least) three trials back (Fig. 2E-H) indicates that the modulation of internally 
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generated prediction extends well beyond the scope of the classic task switch effect, 

which typically concerns only the immediately preceding trial. Formal model comparison 

also confirmed that the reliance on internally generated task prediction cannot be 

explained by the classic task switch effect alone.  

While these results are consistent with some prior behavioral studies that 

documented effects of internal, trial history-based predictions even in the presence of 

100% informative external cues (Alpay et al., 2009; Correa et al., 2009; Kemper et al., 

2016), they are nevertheless surprising, because the strong reliance on the non-

informative internally generated task prediction seems to contradict the premise of using 

such predictions – that is, to optimize the engagement of cognitive control. However, we 

argue that these results indicate that the process of applying proactive cognitive control 

based on concurrent internal and cue-based control demand predictions is itself a result 

of optimization based on a cost/benefit analysis, as proposed by an influential recent 

model of control regulation, the expected value of control (EVC) model (Shenhav et al., 

2013; Shenhav et al., 2017). This model considers not only the potential benefits of 

applying top-down control but also the assumed inherent costs (or effort) of doing so (cf., 

(Kool et al., 2010)), proposing that the engagement of cognitive control is driven by a 

cost/benefit analysis that optimizes the predicted gain of applying control relative to its 

cost. When applied to the conundrum of the apparent overreliance on internal, trial-

history based versus, external, cue-based control predictions, the EVC model would 

predict that this situation could come about if applying internal control predictions was 

more ‘automatic’, incurring a smaller cognitive effort cost than employing external 

control predictions. 
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The implied lower costs for internally generated prediction than cue-induced 

prediction may originate from two, not mutually exclusive sources. First, the cue-

induced prediction requires learning and retrieving the associations between an external 

graphical pre-cue and its corresponding task-set prediction, which may incur a higher 

cost than internally generated prediction. Second, it is reasonable to assume that 

internally generated predictions that anticipate the near future to resemble the recent 

past represent a default cognitive strategy grounded in evolutionary adaptation to an 

environment of high temporal auto-correlation of sensory inputs (Dong and Atick, 1995). 

Accordingly, it has been shown that ongoing perception (Fischer and Whitney, 2014) 

and decision-making (Cheadle et al., 2014) are strongly reliant on recent experience. 

The present results suggest that the same is true for cognitive control processes: the 

recent past is (implicitly) employed as a powerful predictor of the immediate future (see 

(Egner, 2014; Jiang et al., 2015a; Waskom et al., 2017)). If such self-generated 

predictions of task demand represent an automatic, or default mode of control 

regulation, their generation is likely cheap and, importantly, it may require substantial 

cognitive effort to override such predictions, which would be another means of rendering 

the use of the explicit external cue more costly. 

The fMRI data shed light on how the two types of task predictions jointly guide 

cognitive control in the brain. First, rather than distinct anatomical sources exerting 

parallel influences on behavior, we detected an integrated representation of task 

predictions at the onset of the pre-cue in left dlPFC. This is in line with this region’s well-

established role in representing task rules and strategies (for review, see (Sakai, 2008); 

c.f., (Waskom et al., 2014; Waskom et al., 2017)). Additionally, based on this joint 
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prediction, the anticipated switch demand or amount of required task-set updating was 

represented in the frontoparietal control network, insula, and dorsal striatum. These 

regions have long been implicated in task-set regulation, as revealed initially by studies 

comparing neural activity on task-switch with task-repeat cues or trials (reviewed in 

(Ruge et al., 2013)), and more recently by studies using multivariate pattern analysis to 

decode the currently active task set from frontoparietal cortex (Woolgar et al., 2011; 

Waskom et al., 2014; Loose et al., 2017; Qiao et al., 2017). The present results move 

beyond these findings by showing that more than just encoding a currently active task 

rule, the frontoparietal control network is engaged in predicting control demands, in the 

shape of representing the degree to which a current set has to be updated to suit the 

forthcoming task (or switch likelihood).   

After the onset of the task cue and task stimulus, encoding of the prediction error 

associated with that joint prediction was found in the dmPFC/ACC, which is consistent 

with a large literature demonstrating ACC and dmPFC encoding of prediction error in a 

variety of different contexts (Holroyd and Coles, 2002; Ito et al., 2003; Matsumoto et al., 

2007; Alexander and Brown, 2011; Ullsperger et al., 2014). The representation of joint 

prediction error also reflects the degree to which the task-set has to be updated 

reactively; thus, this finding is also consistent with the theory that the ACC monitors 

performance and signals the need for adjustments in cognitive control (Botvinick et al., 

2001; Ridderinkhof et al., 2004). Finally, we also documented that the neural substrates 

of prediction error from internally generated predictions in the present study matched 

those of a recent study where those self-generated predictions were related to 

probabilistically predictable task sequences (Waskom et al., 2017). This finding 
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indicates that internal predictions derived from a non-predictive trial sequence are 

encoded in much the same fashion as those derived from a predictable sequence.   

Our findings also exhibit a clear temporal segregation between the frontoparietal 

encoding of the proactive switch demand at the onset of pre-cue (Fig. 5A) and the 

dmPFC/ACC encoding of reactive switch demand when the cue and task stimulus were 

presented (Fig. 6A). This temporal and functional differentiation maps closely onto the 

“dual mechanisms of cognitive control” framework (Braver, 2012), which distinguishes 

between proactive, anticipatory, and reactive, compensatory application of control. The 

present results strongly suggest that the lateral frontoparietal control network guides 

proactive control implementation, whereas the dmPFC/ACC detects the prediction error 

of control demand prediction, and signals the need of (or perhaps implements) reactive 

control to match the actual (rather than anticipated) cognitive control demand. In 

support of this contention, in a recent study that explicitly distinguished between 

proactive and reactive control in a conflict task, a left IFG area overlapping the IFG area 

in Fig. 5 was also implicated in using proactive control demand predictions (Jiang et al., 

2015b). Furthermore, disrupting function in this area using transcranial magnetic 

stimulation selectively diminishes the effects of learned control predictions on behavior 

(Muhle-Karbe et al., 2018).  

Finally, the current findings suggest a novel extension of the EVC theory, which 

originally addressed a cost/benefit analysis of engaging control after prediction of 

control demands are formed (Shenhav et al., 2013). The present results suggest that a 

cost/benefit optimization process is also applicable to the preceding stage, where 

different inputs to the control demand prediction process are reconciled. This demand 
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prediction reconciliation process would not only precede the putative EVC calculation, 

but should also directly influence it, and do so in a unidirectional, hierarchical fashion. 

More generally, in light of recent theoretic proposals of the hierarchical architecture of 

cognitive control (Koechlin and Summerfield, 2007; Badre and Nee, 2017), an 

overarching optimization procedure may simultaneously consider the costs and benefits 

of multiple cognitive control processes across different levels in the hierarchy, in order 

to guide goal-directed behavior while taking into account both the benefit and the cost of 

engaging cognitive control.  

In conclusion, we combined a probabilistic cued task switching with 

computational modeling and neuroimaging to show that concurrent externally and 

internally derived predictions of cognitive control demand are reconciled to form a joint 

prediction. Behavior was dominated by internal, trial-history based predictions, likely 

due to the lower cost of generating or higher cost of overriding these predictions. The 

integrated prediction was encoded in dlPFC and guided proactive cognitive control over 

task-set updating, which was represented in the frontoparietal control network. 

Subsequently, if actual control demand deviates from predicted demand, the 

dmPFC/ACC is engaged to compensate the prediction error of the joint prediction, and 

guide reactive updating. In this manner, the present findings reveal that flexible human 

behavior depends on multiple regulatory processes that govern cognitive control.  

 

Methods 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 18, 2018. ; https://doi.org/10.1101/284059doi: bioRxiv preprint 

https://doi.org/10.1101/284059


30 

 

Subjects. Twenty-eight volunteers gave informed written consent, in accordance with 

institutional guidelines. All subjects had normal or corrected-to-normal vision. Data from 

six subjects were excluded from further analysis due to low (< 50%) accuracy in at least 

one of the cells in the experimental design (see below). The final sample consisted of 

22 subjects (15 females; 22-35 yrs old, mean age = 27 yrs). This study was approved 

by the Duke University Health System Institutional Review Board. 

Experimental procedures. Visual stimuli were presented on a back projection screen 

viewed via a mirror attached to the scanner head coil. Tasks and response collection 

were programmed using Psychtoolbox 3 (Brainard, 1997). All visual stimuli were 

presented in the center of the screen over a grey background. Each trial started with a 

presentation of a pie chart (radius ≈ 2.2º of visual angle) for 0.5s. The relative areas of 

black vs. white regions indicated the probability of a black vs. white frame surrounding 

the imperative dot cloud later in the trial (see below). Five probability levels were used in 

this study: 20%, 40%, 50%, 60% and 80% (applied to both black and white colors). The 

probability of seeing a black vs. white frame always summed up to 1, as the black and 

white area always occupied the whole pie chart. To make the perceptual appearance of 

the predictive cue different across trials, the pie chart rotated by a random degree on 

each trial. Following the pie chart, a fixation crosshair was presented for an 

exponentially jittered duration between 1.75 and 2.5s (step size = 0.25s). The fixation 

crosshair was followed by a cloud of 60 colored (either purple or green, radius ≈ 0.15º) 

moving (speed randomly drawn from a uniform distribution from 13º/s to 15º/s) dots. 

The dot cloud spanned approximately 6º of visual angle both vertically and horizontally 

and lasted for 1.5s. For each trial, the colors and motion directions of the dots were 
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defined by their respective noise levels (ranged from 0.1 to 0.9, determined by a stair-

case procedure described below), a dominant motion direction (left or right) and a 

dominant color (green or purple). For example, a combination of color noise level of 0.8 

and motion noise level of 0.4 means that: (1) 20% (i.e., 1 – 0.8) of all dots were 

randomly selected to have the dominant color; (2) the remaining 80% of dots were 

randomly colored in green or purple with equal probability; (3) 60% (i.e., 1 - 0.4) of all 

dots were randomly chosen to move in the dominant direction; (4) the remaining 40% of 

dots had random motion directions; and (5) the dots with the dominant color were 

selected independently from the dots with the dominant motion direction.  

The dot cloud was surrounded by a frame, whose color (either black or white) 

was predicted by the preceding pie chart. Depending on the color of the frame, 

participants had to judge the dominant color (green vs. purple) or motion direction (left 

vs. right) of the dot cloud via two MR-compatible button boxes (one for each hand). The 

association between frame color and task and the response mappings (e.g., left hand: 

middle/index finger = green/purple; and right hand: index/middle finger = left/right) were 

counterbalanced across subjects. If no response was detected upon the offset of the dot 

cloud, a warning message (“Please respond faster!”) was shown on the screen for 2s. 

Finally, a second fixation cross (representing the inter-trial interval) was presented for 

an exponentially jittered duration between 3.5 and 5s (step size = 0.5s). If applicable, 

the duration of the warning message was deducted from this duration. The main task 

consisted of 9 runs of 50 trials each. Other factors were counterbalanced in a within-run 

manner, including (a) that each of the five probabilities appeared in 10 trials and (b) that 

each frame color, dominant color, and consistent motion direction were appeared in 25 
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trials. Importantly, the sequences of tasks were pseudo-randomly produced so previous 

tasks had no predictive power on the task to be performed on the current trial. 

Prior to fMRI scanning, participants performed a practice session of 20 trials (ITI 

= 2s for all trials) to ensure that they comprehended the task instructions. The practice 

session was followed by a stair-case procedure (4 runs of 50 trials each) that adaptively 

and separately adjusted the noise levels for color and motion to achieve accuracy of 

~87.5% for both color and motion trials (cf. (Waskom et al., 2017)). The trial structure 

and counterbalancing were identical to the main task. The noise levels for color and 

motion both started at 0.5 and were re-evaluated respectively at every 5th color and 

motion trial (check points) based on two rules: (1) If at most one error was made since 

the last check point, the noise level for the check point’s corresponding target feature 

increased by 0.025; and (2) if the noise level for a feature did not change at any of the 

past 4 check points, its corresponding noise level decreased by 0.1. 

Behavioral analysis. Error trials and outlier trials (RTs outside subject mean ± 3SDs) 

were removed from further analyses. Two repeated measures ANOVAs were conducted 

on both accuracy and RT data. The first ANOVA concerned the effect of the task at the 

previous trial (previous task: color or motion × current task: color or motion). The second 

ANOVA focused on the effect of predictive cues (task prediction: 20%, 40%, 50%, 60% 

or 80% × current task: color or motion). Similar repeated measure ANOVAs were also 

conducted by replacing the previous trial with trials i-2 and i-3, in order to test the 

modulation of older trials on behavior. Note that a 3-way ANOVA (previous task × task 

prediction × current task) was not performed due to low trial counts for unexpected task 
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conditions (e.g., only 9 trials for the condition of a motion trial following a color trial and 

having wrong prediction of 80% chance of encountering a color trial). 

Modeling and model comparison. Rival models in model comparison were GLMs with a 

subset of trial-wise estimates of PEprev, PEcue, and PEint. Based on the observation that 

larger PE slows down response (Waskom et al., 2017), a nonnegative constraint was 

applied to the coefficients (Chiu et al., 2017). Each model also included a constant 

regressor. To compare models, behavioral data were divided into 3 folds, each of which 

consisted of data from 3 runs. Two folds were used as training data to fit GLMs to RTs. 

To account for the main effect of task in RT, fitting was performed separately for trials 

with color and motion tasks. The resulting fitting coefficients were then applied to the 

same GLMs to predict trial-wise RTs in the remaining fold (test data). This procedure 

was repeated until each fold served as test data once. Model performance was 

measured by the product of trial number and the logged average squared trial-wise PE 

of RTs from all 3 test folds and was calculated for each model and each subject.  

MRI acquisition and preprocessing. Images were acquired parallel to the AC–PC line on 

a 3T GE scanner. Structural images were scanned using a T1-weighted SPGR axial 

scan sequence (146 slices, slice thickness = 1 mm, TR = 8.124 ms, FoV = 256 mm * 

256 mm, in-plane resolution = 1 mm * 1 mm). Functional images were scanned using a 

T2*-weighted single-shot gradient EPI sequence of 42 contiguous axial slices (slice 

thickness = 3 mm, TR = 2 s, TE = 28 ms, flip angle = 90°, FoV = 192 mm * 192 mm, in-

plane resolution = 3 mm * 3 mm). Preprocessing was done using SPM8 

http://www.fil.ion.ucl.ac.uk/spm/. After discarding the first five scans of each run, the 

remaining images underwent spatial realignment, slice-time correction, and spatial 
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normalization, resulting in normalized functional images in their native resolution. 

Normalized images were then smoothed using a Gaussian kernel with 5mm full-width-

half-maximum to increase signal (Xue et al., 2010). Single trial fMRI activity levels at the 

onset of the pre-cue were estimated separately following Mumford et al. (2012) by 

regressing the fMRI signals against a GLM consisting of HRF–convolved onsets of the 

pre-cue at the trial, the onsets of all other pre-cues, and the onsets of all task stimuli. 

Other regressors of no-interest, such as the estimated motion parameters, mean white 

matter (WM) BOLD signal, mean cerebrospinal fluid BOLD signal were also included in 

the GLM. Single trial fMRI activity levels at the onset of the task stimulus were 

calculated similarly. For each trial, the resulting t-maps were subtracted by their 

respective mean in the WM mask, in order to reduce non-neural noise in t estimates 

across individual t-maps. The adjusted t-maps were then used in further MVPA. 

MVPA procedures.  We conducted searchlight-based (r = 2 voxels) MVPAs to quantify 

the representation strength of a variable (e.g., Pcue). MVPAs were conducted on a grey 

matter (GM) mask that was generated by dilating GM voxels (GM value > 0.01) in the 

segmented T1 template by 1 voxel (Jiang et al., 2015b). For each searchlight, data from 

the 9 runs and the trial-wise variable time course were chronologically divided into 3 

folds (3 runs per fold), based on which a 3-fold cross-validation was performed. For the 

training folds, trial-wise fMRI activity levels from all masked GM voxels were fit to the 

variable time course, resulting in one weight for each voxel. The fitting took the form of a 

ridge regression (Xue et al., 2010) to control for over-fitting. These weights were then 

applied to the fMRI data in the test fold to produce a predicted variable time course (Fig. 

7). High linear correlation between predicted and actual variable time courses indicated 
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that the variable was represented from the data. No correlation (i.e., a correlation 

coefficient of 0) would indicate no representation of the variable of interest. Since each 

fold was used as test data once, three correlation coefficients were obtained. We 

Fisher-transformed these 3 correlation coefficients and used their mean as a 

quantification of representation strength for the searchlight. After searchlight analyses 

were performed across the whole brain (using each GM voxel as searchlight center 

once), a representation strength map was generated, with the center voxel of each 

searchlight encoding the degree to which each searchlight represents the variable in 

question.  

 

Figure 7. Illustration of the MVPA procedure. Training data were used to estimate the 
weights that fit (either linear-fitting or logistic regression) voxel-wise estimated fMRI 
activity (A1) to model estimates (y1) in a trial-by-trial manner. The weights were then 
applied to test fMRI data (A2) to predict the hypothetical BOLD signal in test data (y2). 
The goodness of prediction, or presentation strength, is measured by the correlation 
between predicted BOLD signal (Simy2) and y2. 

  

For group-level analyses, a one-sample t-test against 0 was then conducted on each 

searchlight’s center voxel of the individual representational strength maps using AFNI’s 
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3dttest++ program. To correct for multiple comparisons, group-level results were 

corrected using a non-parametric approach 

(https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dClustSim.html) that randomly 

permutated the data for 10,000 times, in order to generate a robust null distribution of 

the statistical map. When voxelwise threshold was set at p < 0.001 and family-wise error 

rate was set at 0.05, this approach yielded cluster size thresholds ranging from 16 to 23 

searchlights, depending on the specific analysis. 

fMRI model comparison. Each type of prediction (joint, cue-induced and internally 

generated) was considered a single model. For each model and each searchlight, the 

fMRI signal in the searchlight was fit to the prediction using the aforementioned cross-

validated ridge regression approach. Model evidence was defined as n × log(SPE/n), 

where n was the number of trials and SPE was squared prediction error. Model 

evidence for each prediction type was averaged across all searchlights in the ROI and 

was then submitted to the model comparison procedure as described in the model 

comparison using behavioral data. 
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Supplementary Materials 

Task 
prediction 

0.2 0.4 0.5 0.6 0.8 

Color trial 
accuracy 

0.88±0.02 0.87±0.02 0.87±0.02 0.88±0.02 0.90±0.03 

Color trial 
RT (s) 

1.00±0.02 0.97±0.02 0.98±0.02 0.97±0.02 0.96±0.02 

Motion trial 
accuracy 

0.86±0.03 0.86±0.03 0.88±0.02 0.88±0.02 0.88±0.02 

Motion trial 
RT (s) 

0.85±0.03 0.85±0.02 0.86±0.02 0.84±0.02 0.84±0.02 

Supplementary Table 1. Descriptive statistics (group mean ± MSE) of behavioral data. 
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Neural encoding of task switch state, cue-induced task prediction and internally 

generated task prediction 

To validate the MVPA approach, we first leveraged the classic task switching effect 

observed in the behavioral data, and tested whether task transitions (task-repeat trials 

vs. task-switch trials) could be decoded from fMRI data time-locked to the onset of the 

task cue and stimulus, as shown in previous studies (Jimura et al., 2014; Qiao et al., 

2017). This analysis revealed significant decoding of task transition (P < 0.05, corrected) 

in bilateral dmPFC, caudal right inferior frontal gyrus, and right anterior insula (Fig. 

S1A). These regions have been consistently implicated in task switching in previous 

fMRI studies (for reviews, see Monsell (2003) and Ruge et al. (2013)).  

We next sought to identify brain regions that encoded cue-induced and internally 

generated task predictions at the time of the pre-cue onset. MVPA revealed reliable 

encoding (P < 0.05, corrected) of Pcue in frontal and visual cortex. Specifically, task 

predictions based on the explicit cue were represented left superior frontal gyrus (BA 9), 

as well as in bilateral anterior calcarine fissure and lingual gyrus (LG, Fig. S1B). By 

contrast, encoding of the internally generated task predictions (Pint) was found in a wider 

set of regions, including bilateral superior parietal cortex, precuneus and middle 

cingulate cortex (Fig. S1C), the left caudate head, left middle frontal gyrus (MFG, BA 46, 

Fig. S1C), and motor/somatosensory cortex. These regions were spatially distinct from 

the regions representing explicit cue-induced task prediction.  
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Supplementary Figure 1. MVPA results showing neural representation of task switch 
state (A), cue-induced task prediction (B) and internally generated task prediction (C). 
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Encoding of expected reactive switch demand at pre-cue onset.  

In addition to the expected task-set, Pjoint can also be thought of as indicating the 

confidence of the prediction, with the lowest degree of confidence reflected by Pjoint =0.5 

(i.e., no preference for either task). We can therefore quantify task prediction confidence 

as |Pjoint – 0.5|. Searchlight activity patterns at the onset of the pre-cue displayed above-

chance encoding of the confidence of task prediction in left IPL/IPS, left lingual gyrus, 

right superior frontal gyrus and right FPC (Fig. S2).  

 

Supplementary Figure 2. MVPA results showing neural representation of prediction 
confidence at the onset of the task stimulus. 
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Supplementary Figure 3. MVPA results showing neural representation of prediction 
error of internal task prediction at the onset of the task stimulus. 
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