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Abstract 

G-protein-coupled receptor (GPCR) is an important target class of proteins for drug 

discovery, with over 27% of FDA-approved drugs targeting GPCRs. However, being a 

membrane protein, it is difficult to obtain the 3D crystal structures of GPCRs for virtual 

screening of ligands by molecular docking. Thus, we evaluated the virtual screening 

performance of homology models of human GPCRs with respect to the corresponding 

crystal structures. Among the 19 GPCRs involved in this study, we observed that 10 

GPCRs have homology models that have better or comparable performance with respect to 

the corresponding X-ray structures, making homology models a viable choice for virtual 

screening. For a small subset of GPCRs, we also explored how certain methods like 

consensus enrichment and sidechain perturbation affect the utility of homology models in 

virtual screening, as well as the selectivity between agonists and antagonists. Most notably, 

consensus enrichment across multiple homology models often yields results comparable to 

the best performing model, suggesting that ligand candidates predicted with consensus 

scores from multiple models can be the optimal option in practical applications where the 

performance of each model cannot be estimated.  

Introduction  

GPCRs, also commonly known as seven-transmembrane domain receptors, are responsible 

for many of our physiological responses and activities, including responses to hormone, 

neurotransmitter and even environmental stimulants such as taste, smell and vision1. 

GPCRs represent the largest and most successful class of druggable targets in the human 

genome, with over 27% of FDA-approved drugs targeting approximately 60 out of the total 

over 800 GPCRs2-3. However, majority of human GPCRs have not yet been explored in 
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drug discovery. Thus, tremendous efforts are now being made to exploit the remaining 

receptors.   

Virtual screening against GPCR structures, is a computational approach to identify ligands 

and is often a rewarding effort4–7. However, the utility of this approach depends on the 

availability of GPCR structures determined by X-ray crystallography. Despite the recent 

bloom in the number of GPCR structures8–11, the number of human GPCRs with X-ray 

structures is only 25 out of a total of 84212, 3% of the entire human GPCR proteome. This 

limitation highly restricts the potential of protein structure-based approach such as virtual 

screening in drug discovery of GPCRs.  

One way to overcome this limitation is through 3D structure prediction of GPCRs using the 

homology modelling technique, based on known structures of closely related proteins 

(templates). As seen from other classes of proteins, homology models used for virtual 

screening can be successful13. With homology modelling, it is possible to model up to 30% 

of all human GPCRs at the minimum of 20% sequence identity, and up to 10% of human 

GPCRs at the minimum of 30% sequence identity. This is a great increase compared to the 

current 3% of known human GPCR structures. 

It has been shown that it is possible for homology models of GPCRs to identify potential 

ligands14. There have been a number of studies aiming to evaluate the performance of 

homology models of GPCRs for in-silico drug screening14–21. For example, Tang et al. 

studied beta-2 adrenoreceptor (ADRB2) and showed that some homology models could 

exceed crystal structures in ligand virtual screening22. However, all of them only focus on 

one or a few GPCRs and their homology models, which do not provide a complete picture 

about the capability of homology model based methods for virtual screening of GPCR 
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ligands. Thus, we aim to do a large-scale evaluation on the performance of homology 

models of human GPCRs with respect to that of the corresponding X-ray structures. For 

each GPCR target, we selected templates from three ranges of sequence identity, to 

investigate how target-template sequence identity affects the performance of homology 

models of GPCRs in terms of ligand prediction. 

Furthermore, to gain further insights on virtual ligand screening of GPCRs, we are 

interested in the following questions. First, since there are usually multiple homology 

models present for a receptor, we wanted to know if the consensus of ligand enrichment 

across multiple models can have an impact on the performance of virtual screening. 

Second, since protein sidechains are flexible, we intended to explore that flexibility with 

respect to different ligands and see how they affect the virtual screening. Third, we 

investigated if virtual screening methods have any inclination to select for higher affinity 

ligands over lower affinity ligands, given the fact that higher affinity ligands are more 

likely potential drug leads or chemical probes than lower affinity ligands. Lastly, we were 

interested to know if the modelled structures have selectivity for agonists or antagonists. 

Agonists and antagonists have different biological and pharmacological implications on the 

cell signalling, disease processes and therapeutic actions. Therefore, it is essential to 

differentiate them during virtual screening.  

Materials & Methods 

GPCR targets and template selection 

We started from the ligand-bound (holo) crystal structures and ligands of 24 GPCRs that 

were used in a benchmarking study of GPCR crystal structures23. Among these 24 GPCRs, 

ACM3, ADRB1, OPRM and OPRD were not included in this study because X-ray 
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structures were not available for human proteins, neither were the majority of ligands in the 

database. 20 human GPCR sequences were obtained from UniProt24 database. To find 

templates for each GPCR, their protein sequences were BLAST25 aligned to the sequences 

of the entries of the PDB database. Up to 3 templates were selected for each protein for 

homology modelling in the following range of sequence identity to the target: 20-30%, 30-

50% and 50-80%. The range of sequence identity were selected to correspond to low, 

medium where the accuracy is equivalent to a low resolution X-ray structure and high 

where there is little need for manual adjustment to alignment for a reliable model26. The 

template would only be considered if it has an X-ray resolution of at least 3.4 Å. 

Furthermore, within each sequence identity range, we selected the template that has the 

closest distance to the target in the GPCR phylogenetic tree27, so that the templates more 

likely have similar structures as the targets and result in homology models of the latter of as 

high quality as possible. Out of the 20 GPCRs, SMO do not have template available under 

our criteria and were dropped. The list of target-template pairs is shown in Table 1, a total 

of 38 target-template pairs for 19 GPCRs.  

Homology modelling  

For each of the target-template pairs in Table 1, the sequence alignment for homology 

modelling was obtained using the profile-profile method28. The profiles of the target and 

template were obtained by performing BLAST sequence alignment to the non-redundant 

database and the top 500 sequences were used as the profile. The profiles of the target and 

template were aligned using MUSCLE v3.829. Homology models of each target were 

generated using MODELLERv9.1330, 500 models were generated for each target-template 
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pair. DOPE31 scoring function was then used to score the models and the best scoring 

model was used for virtual ligand screening. 

Virtual ligand screening  

The ligands of the 19 GPCRs were obtained from Weiss et al.23, as mentioned above. 

Property-matching decoys were generated for each GPCR using the Database of Useful 

Decoys, Enhanced (DUD-E)32 approach  based on the compounds from the ZINC33 

database. The ligands and decoys were then docked to the X-ray structure of each target 

and corresponding homology models using DOCK v3.634.The sampling space during 

docking was determined by the ligand binding site in the holo X-ray structures, and 

homology models were superposed on the corresponding X-ray structures. The docked 

compounds were ranked by the docking energy function that is the sum of van der Waals, 

Poisson-Boltzmann electrostatic, and ligand desolvation penalty terms. 

Evaluation of virtual screening results 

The accuracy of the virtual screening was evaluated using enrichment factor (EF) and 

logAUC as described by Fan et al.35 and Mysinger et al.32. The EF measures the ratio of 

known ligands that was found among the top scoring compounds as compared to random 

selection and is defined as follows: 

EF𝑠𝑢𝑏𝑠𝑒𝑡 =
(𝑙𝑖𝑔𝑎𝑛𝑑𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑/𝑁𝑠𝑢𝑏𝑠𝑒𝑡)

(𝑙𝑖𝑔𝑎𝑛𝑑𝑡𝑜𝑡𝑎𝑙/𝑁𝑡𝑜𝑡𝑎𝑙)
 

where ligandtotal is the total number of ligand in the database of Ntotal compound and 

ligandselected is the number of ligands found in the subset of Nsubset top scoring compounds.  
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However, EF only accounts for a fixed subset of all docked compound (eg. 1% or 5%). 

Therefore, another measure that incorporates information considering all the different 

subsets was introduced. An enrichment curve is a plot of the percentage of actual ligand 

found (y-axis) within the top ranked subsets of the database against the entire ranked 

database (x-axis on logarithm scale). LogAUC (logarithmic Area Under Curve) represents 

the area under the enrichment curve with more emphasis given to early enrichment by using 

logarithmic scale for the x-axis. LogAUC is defined as follow: 

𝑙𝑜𝑔𝐴𝑈𝐶 =  
1

𝑙𝑜𝑔 10100/0.1
∑

𝑙𝑖𝑔𝑎𝑛𝑑𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑(𝑥)

𝑙𝑖𝑔𝑎𝑛𝑑𝑡𝑜𝑡𝑎𝑙
∆𝑥 

100

0.1

and 𝑥 = log10

𝑁𝑠𝑢𝑏𝑠𝑒𝑡

𝑁𝑡𝑜𝑡𝑎𝑙
 

where ∆𝑥 is 0.1. A random selection of ligands from the database will yield a logAUC 

value of 14.5 while a mediocre selection picking twice as many ligands than random yields 

a logAUC of 24.5. When comparing two structures/models, it is considered that their 

individual enrichment to be of significant difference from each other if there is a difference 

of at least 3 logAUC unit, otherwise, the enrichment values are comparable.  

Consensus over multiple homology models  

For a subset of receptors from the 19 GPCRs, namely AA2AR and ADRB2 that have 

multiple crystal structures determined in complex with both agonists and antagonists, 

further investigation was done by looking at multiple X-ray structures and homology 

models that each of these models is based on a different template. These structures/models 

were selected to have different ligands and a balance ratio of agonist-bound to antagonist-

bound X-ray structures and templates. This is to ensure that our target and template 

structures cover a larger range of conformations available for the active sites for protein-
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ligand complementarity. The additional target and template X-ray structures are shown in 

the supporting information (Table S1).  

For each target structure or homology model, its individual enrichment score was 

computed, as well as a consensus enrichment score for each target protein. The consensus 

score was calculated by taking the best docking energy for each compound across all 

structures/models and then used in ranking35. 

Alternative sidechain conformations 

For the same subset of 2 GPCRs (AA2AR and ADRB2), sidechains in the X-ray structures 

and homology models listed in Table 1 were rebuilt by sidechain prediction methods. The 

two prediction programs Protein Local Optimization Program (PLOP)36 and SCWRL437 

were used. For X-ray structures of each target, sidechains were predicted in the presence of 

the cognate ligand in the active site. For each homology model, multiple ligands of that 

receptor were docked to that homology model and then sidechains were predicted with each 

docked ligand, yielding multiple models. After sidechain reconstruction, the resulted 

structures/models were subjected to another round of virtual screening, followed by ligand 

enrichment calculations. For homology models, since there are multiple predicted models 

from different docked ligands, we calculated the consensus enrichment using the same 

method described in “Consensus over multiple homology models”. 

High affinity ligands 

Ligands for AA2AR and ADRB2 were filtered by a Ki or Kd cut-off value of 10nM. The 

cut-off was selected so that a good number of high affinity ligands can be found in our 

ligand set. Then the enrichment score was calculated by considering only ligands with 

better Ki or Kd values as true ligands while the rest in the database as decoys. For AA2AR, 
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70 out of 208 original ligands have Ki/Kd values lesser than 10nM, and for ADRB2, 27 out 

of 207. The ChEMBL IDs of these high affinity ligands are in the supporting information 

(Table S2). The high affinity ligands and the rest compounds were then docked to the X-ray 

structures and homology models described in “Consensus over multiple homology 

models”. 

Agonist/Antagonist selectivity  

For AA2AR and ADRB2, their agonists and antagonists were manually curated from 

ChEMBL38 database. For AA2AR, there are 9 annotated agonists and 9 antagonists and for 

ADRB2, 11 agonists and 11 antagonists. The agonists and antagonists were then docked to 

the X-ray structures and homology models described in “Consensus over multiple 

homology models”. T-scores were calculated based on the docking energies of the agonists 

and antagonists to see if there was significant difference between them. The ChEMBL IDs 

of the agonists and antagonists for AA2AR and ADRB2 are in the supporting information 

(Table S3).  

Results and Discussions 

Cognate docking and geometry assessment 

To examine if the docking method is robust enough to be used for this benchmarking study, 

we docked the cognate ligand back into the X-ray structure of each target, and calculated 

the root mean-square deviation (RMSD) between the ligand docking pose and the ligand 

crystal structure. This examines whether docking method used can reproduce the crystal 

conformation accurately (RMSD value < 3 Å, near-native) The RMSD values are shown in 

Table 2. 
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In 14 out of the 19 GPCR X-ray structures, the ligand crystal structures were accurately 

reproduced by the best scoring docking pose, as seen in Figure 1A and 1B. For the rest of 

the 5 GPCRs, higher RMSD values can be attributed to two possible reasons: imperfect 

scoring and insufficient sampling. In the cases of AA2AR, DRD3, and OX2R, the best 

RMSD value among all the docking poses sampled is below 3 Å while the docking pose 

with the best energy is not. For example, the docking energy function was not able to rank 

the near-native conformation the best for DRD3 (Figure 1C), which is likely attributed to 

the under-estimation of hydrophobic interactions between the crystal ligand and the inner-

faces of the binding pocket. While for OPRK and P2Y12, the lowest RMSD is above 3 Å. 

This indicates that the sampling is insufficient to approach the ligand crystal structure. For 

P2Y12 (Figure 1D), the insufficient sampling could be partially caused by a higher number 

(8) of rotatable bonds in the crystal ligand in P2Y12 with respect to that in the crystal 

ligand in PAR1 (Figure 1A) and in ADRB2 (Figure 1B) containing 6 rotatable bonds. 

Another possible reason could be that two crystal water molecules that form hydrogen 

bonds with the sulfone group of the crystal ligand, were removed during the docking 

process of P2Y12.  

Virtual screening and ligand enrichment  

After docking all the ligands and decoys to the X-ray structures and homology models, we 

plotted their enrichment curves and calculated their logAUC and EF1 values. The results 

are shown in Figure 2 and Table 3. Out of the 38 homology models of the 19 GPCRs, 23 

(60.5%), 9 (23.7%), and 6 (15.8%) of them showed worse, comparable, and better virtual 

screening performance, respectively, with respect to that from corresponding X-ray 

structures. The results are expected as homology models are predicted and should contain 
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structural errors. Nonetheless, our study clearly showed that it is still possible for homology 

models to be useful in ligand recognition. This is indicated by the fact that among the 19 

GPCRs, 10 of them (5HT2B, ADRB2, CXCR4, HRH1, MGLUR1, MGLUR5, OPRK, 

OX2R, P2Y12, S1PR1) have at least one homology model performing better than or 

comparable to their X-ray structures. 

Although it is not surprising that over 50% of homology models tested do not perform as 

well as the X-ray structures, there is still a need to evaluate the general utility of the models 

for virtual screening, as many GPCRs have no X-ray structure. An analysis of the 

percentage of models that perform 3 logAUC unit better than random selection (logAUC > 

(14.5+3)) and value-add to ligand screening was performed (Table 4). As seen from Table 

4, homology models built with sequence identity 50-80% to targets have the highest chance 

(84%) to value-add to virtual screening, which is comparable to that of X-ray structures 

(83%). This is likely a consequence that higher sequence identity templates are more 

similar in structures to the targets and thus the models generated are likely closer to the true 

structures. Noticeably, models with sequence identity 20-30% and 30-50% to targets are 

still useful, having significant probability (75% and 60%) to value-add to virtual screening, 

therefore homology models can be used when there are no alternatives. It should also be 

noted that X-ray structures have the highest probability (47%) of having a good enrichment 

- selecting more than twice the number of ligands than random (logAUC > 24.5+3).  

We note that there is an over representation of class A GPCRs. This is because at the time 

this paper is written, class A GPCRs were more intensively studied, with more structures 

available. Out of the 19 GPCRs benchmarked, 16 of them belongs to class A, 1 class B 

(CRFR1) and 2 class C (MGLUR1 and MGLUR2). However, it is observed that the 
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GPCRs in class B and C shows similar performance to class A GPCRs, thus it is unlikely 

that this poses a problem in the generalisability of the results to other classes of GPCRs. 

Also, for MGLUR1 and MGLUR5, their X-ray structures were solved with their negative 

allosteric modulator instead of orthosteric agonist or antagonist. However, the allosteric site 

overlaps with the orthosteric site of class A receptors39 and it is noted that antagonist for 

MGLUR1 are mainly designed for its allosteric site within the 7 transmembrane domain as 

the targeting the orthosteric site shows poor selectivity and antagonist40. This is 

demonstrated in our results that both X-ray structures and homology models of the two 

MGLUR receptors show reasonable enrichment of database ligands (logAUC > 17.5). 

Therefore, docking to the allosteric site of both MGLUR receptors is justifiable for our 

study.  

Consensus over multiple homology models  

For the subset of 2 GPCRs, AA2AR and ADRB2, their individual and consensus logAUC 

were calculated (Table 5). The results shown are consistent with the conclusion above that 

homology models based on higher sequence identity templates can have a higher chance to 

value-add (logAUC > 14.5+3) to virtual screening. For this subset, homology models based 

on 20-30% and 30-50% sequence identity templates have 62% and 75% chance of value-

add to ligand screening, while both X-ray structures and homology models based on 50-

80% sequence identity templates have 100% chance to value-add.  

More importantly, for the consensus results over multiple structures/models, the majority 

(57%) of all the consensus logAUC values are comparable to the best performing 

structures/models, and the rest are comparable to the second best. This is consistent with 

the observation by Kelemen et al. that consensus scoring over multiple crystal structures 
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works well for ligands selections in class A aminergic GPCRs41. This is very promising, as 

simply by taking the consensus score for each compound over multiple homology models, 

it is possible to approach the ligand recognition ability of the best performing model that 

would often be difficult to select when crystal structure has not been solved. This could be 

because there is always certain conformation of the binding site complementing the ligands 

but not the decoys regardless of the sidechains conformation. This may lead to an 

advantage for the ligands to be better recognized using consensus scoring than decoys.  

Alternative sidechain conformations 

Sidechains in each X-ray structure were predicted together with the cognate ligand and the 

modified structure was evaluated in virtual screening. For X-ray structures of AA2AR and 

ADRB2, there is not significant changes in the ligand enrichment (logAUC), as shown in 

the supporting information (Table S4). Although preliminary, it seems there is no drawback 

to regenerate sidechain conformations in GPCR X-ray structures for virtual screening. A 

likely explanation is that X-ray crystallography only capture one snapshot of the 

conformational ensemble of a protein. Thus, an alternative conformation generated by 

rebuilding the sidechains could also offer similar complementarity for ligands in the 

database. 

The performance of the homology models after sidechain reconstruction with docked 

ligands is evaluated (Table 6).  First, we evaluate the results by checking for significant 

difference (3 logAUC unit difference) between the consensus logAUC of the modified 

models and that of the original model. Using SCWRL4, 4 out of 5 sets of modified models 

showed significantly improved consensus logAUC values while using PLOP, only 1 sets of 

the models showed significant improvement. The difference in performance is likely due to 
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different parameters used to run the programs. For SCWRL4, all sidechains were 

regenerated while for PLOP, only the binding site residues were predicted. This might 

restrict certain conformation of the protein due to steric hindrance from some residues and 

thus limit the performance of PLOP. Regarding the best logAUC, it is improved in all cases 

using SCWRL4 while 4 out of 5 cases (80%) using PLOP. This is promising because if 

there is knowledge on known ligands of the target protein, it is possible to perform 

sidechain sampling to generate multiple models that will be selected for virtual screening.  

High affinity ligands 

For high affinity ligands, we compared the logAUC of their enrichments with those of all 

ligands (Table 7). For AA2AR, no structures and models show significantly selectivity for 

high affinity ligands compared to all the ligands. The ligand docking energy distribution 

from one AA2AR structure (PDBID 4EIY) is shown as an example (Figure S1) where high 

affinity ligands and low affinity ligands have similar distribution in terms of docking 

energies. For ADRB2, there are structures (2 out of 4) and models (5 out of 11) that seem 

to be more selective for high affinity ligands. This is likely due to the small number (27) of 

high affinity ligands for ADRB2, thus the observation may not be statistically significant. 

For the X-ray structures of the 2 GPCRs, the chemical similarity measured by the Tanimoto 

coefficient (Tc)42 calculated using ECPF4 between the cognate ligands and database 

ligands were calculated, showing no significant similarity (Tc>0.4) between the cognate 

ligands and the database ligands (neither the high affinity ligands nor the low affinity 

ligands). This likely explains why there is no better selectivity over high affinity ligands. 

Another possible reason for the lack of selectivity for high affinity ligands is that the 

scoring function is not accurate enough to properly measure the ligand binding affinity. As 
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seen from cognate ligand docking, there are certain interactions such as hydrophobic 

interaction between ligand and protein that is underestimated with the current docking 

energy.  

Agonist-antagonist selectivity  

To understand if an agonist-bound or antagonist-bounded X-ray structure or a homology 

model based on such a template confers any selectivity for either agonist or antagonist, a t-

test was performed to check for any significant difference between the docking energies for 

agonists and antagonists (Table 8). This is because the difference in the average energy 

may seem significant, however it may still be a consequence of a few outliers and thus the 

data would be better represented through a statistical analysis. 

For AA2AR, there is almost no selectivity for either agonist or antagonist. This is expected 

as both agonists and antagonists have reasonable affinity to the protein and the docking 

energy function only considers the protein-ligand interaction energies. For ADRB2, all 

antagonist-bounded X-ray structures have significant tendency to select for antagonists 

over agonists while agonist-bounded X-ray structures do not show any selectivity. This is 

consistent with previous observations 43,44. 5 out of the 12 homology models for ADRB2 

shows selectivity for antagonists, among which almost equal number of them were built 

based on agonist-bound and antagonist-bound templates (3 and 2 respectively). One 

possible reason for this selectivity could be due to the fact that most X-ray structures of 

GPCRs were solved in their inactive states that prefer antagonists over agonists, no matter 

agonists or antagonists were used in the crystallization process. Another possible reason for 

this selectivity could be the chemical similarity between cognate ligands and the database 

agonists/antagonists. For ADRB2 X-ray structures, both cognate antagonists are similar to 
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the database antagonists (average Tanimoto similarity > 0.4) and dissimilar to the database 

agonists. On the contrary, both cognate agonists show no significant similarity with either 

database agonists or antagonists. This likely contributed to the significant preference for 

antagonists by ADRB2 antagonist-bounded structures. It might also be possible that the 

observed selectivity by ADRB2 is a result of antagonists having higher affinity than 

agonists. Currently, there are insufficient information on the affinities of the agonists and 

antagonists to determine if that is the case For AA2AR, only 1 agonist have affinity value 

(Ki/Kd) thus making affinity comparison not feasible. For ADRB2, out of the 4 antagonists 

with affinity value (Ki/Kd), all of them are below 10nM while out of the 7 agonists with 

affinity value, only 2 of them are below 10nM. However, the difference are not statistically 

significant (p-value > 0.05) to make any conclusion. 

Conclusions 

Overview  

While the majority of the homology models were outperformed by the X-ray structures in 

virtual screening, noticeably 15 out of the 38 homology models performed better than or 

comparable to the corresponding X-ray structures, and 30 out of the 38 models are value-

add to virtual screening, indicating the usefulness homology models for virtual screening. 

There is no clear correlation between the ligand enrichment (logAUC) from homology 

models and their sequence identity to templates. However, it was noted that homology 

models with 50-80% sequence identity have similar chance to value-add to virtual 

screening as the X-ray structures, exhibiting the influence of sequence identity level on the 

virtual screening performance of homology models. 
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Consensus over multiple homology models 

Consensus enrichment scores over multiple homology models based on different templates, 

calculated by selecting the best docking score for each compound, can perform consistently 

close to the top performing homology model. Thus, when the quality of homology models 

in ligand recognition is unclear, consensus models are recommended over multiple models.  

Alternative sidechain conformations 

For X-ray structures, sidechain conformation optimization has no significant improvement 

to virtual screening, which needs to be further evaluated before a conclusion can be made. 

For homology models, there is clear indication that the ligand recognition ability of one 

model can be significantly improved by sidechain reconstruction in the presence of a 

known ligand. 

High affinity ligands  

Homology models had no significant tendency to select high affinity ligands over lower 

affinity ligands in virtual screening, indicating that the structure-based docking approach 

may not be able to accurately differentiate ligands of different affinities. 

Agonist-antagonist selectivity 

There is some indication that for certain receptor such as ADRB2, that their antagonist-

bound or inverse agonist-bound X-ray structures have higher selectivity for antagonists 

over agonists; while for homology models, the preference for antagonists can be observed 

from models based on both agonist-bound and antagonist-bound templates. 

In conclusion, our studies suggest the following strategies for exploiting homology models 

of GPCRs in virtual screening: 1) when multiple templates are available, homology models 

of GPCRs are best used via consensus ligand selection including multiple models based on 
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different templates; 2) when there is only one template available, the resulted model can be 

further improved for ligand recognition by local conformational sampling in the presence 

of known ligands. 
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Abbreviation list 

5HT1B: 5-Hydroxytryptamine Receptor 1B 

5HT2B: 5-Hydroxytryptamine Receptor 2B 

AA2AR: Adenosine A2a Receptor 

ACM2: Muscarinic Acetylcholine Receptor M2 

ACM3: Muscarinic Acetylcholine Receptor M3 

ADRB1:  Beta-1 Adrenergic Receptor  

ADRB2:  Beta-2 Adrenergic Receptor  

CCR5: C-C Chemokine Receptor Type 5 

CRFR1: Corticotropin-releasing factor receptor 1 

CXCR4: C-X-C Chemokine Receptor Type 4 

DRD3: Dopamine Receptor D3 

GCCR: Glucagon Receptor 

GPR40: G-protein-coupled Receptor 40/ Free Fatty Acid Receptor 1 

HRH1: Histamine Receptor H1 

MGLUR1: Metabotropic Glutamate Receptor 1 

MGLUR5: Metabotropic Glutamate Receptor 1 

OPRD: Opioid Receptor Delta 1 
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OPRK: Opioid Receptor Kappa 1 

OPRM: Opioid Receptor Mu 1  

OPRX: N/OFQ Opioid Receptor 

OX2R: Orexin Receptor Type 2  

P2Y12: Purinergic Receptor P2Y12 

PAR1: Protease-activated Receptor 1 

S1PR1: Sphingosine-1-phosphate Receptor 1 

AT1R: Angiotensin Type 1 Receptor 

NTSR1: Neurotensin Receptor 1 

LPAR1: Lysophosphatidic Acid Receptor 1 

RHO: Rhodopsin 

Figure legend 

Figure 1. Docking poses (colored in magenta) of cognate ligands compared to the 

corresponding crystal structures (colored in white). (A) Top left, PAR1, PDBID 3VW7. (B) 

Top right, ADRB2, PDBID 2RH1. (C) Bottom left, DRD3, PDBID 3PBL. (D) Bottom 

right, P2Y12, PDBID 4NTJ.  

 

Figure 2. Enrichment plots for the 19 GPCRs, including the X-ray structures (red), 

homology models of 20-30% sequence identity (blue), homology models of 30-50% 

sequence identity (purple), homology models of 50-80% sequence identity (green), and 

random selection (dotted line). 
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Tables 

Table 1. GPCR targets and their templates for homology modelling 

Receptor PDBID 
Resolution 

(Å) 

Sequence identity 

range % 

Sequence 

identity (%)  

Template 

PDBID 

Template 

protein 

Resolution 

(Å) 

5HT1B 4IAR 2.7 
20-30 27 4IB4 5HT2B 2.7 

30-50 36 3PBL DRD3 2.9 

5HT2B 4IB4 2.7 
20-30 27 4IAR 5HT1B 2.7 

30-50 36 5DSG ACM4 2.6 

AA2AR 4EIY 1.8 
20-30 25 3UON ACM2 3.0 

30-50 36 2VT4 ADRB1 2.7 

ACM2 3UON 3.0 

20-30 25 3PBL DRD3 2.9 

30-50 44 5CXV ACM1 2.7 

50-80 56 5DSG ACM4 2.6 

ADRB2 2RH1 2.4 

20-30 27 4IB4 5HT2V 2.7 

30-50 36 3PBL DRD3 2.9 

50-80 58 2Y00 ADRB1 2.5 

CCR5 4MBS 2.7 
20-30 27 5C1M OPRM 2.1 

30-50 34 3ODU CXCR4 2.5 

CRFR1 4K5Y 3.0 30-50 37 5EE7 GCCR 2.5 

CXCR4 3ODU 2.5 
20-30 28 4MBS CCR5 2.7 

30-50 36 4ZUD AT1R 2.8 

DRD3 3PBL 2.9 
20-30 25 4EIY AA2AR 1.8 

30-50 41 3V2W S1PR1 3.4 

GPR40 4PHU 2.3 20-30 27 3VW7 PAR1 2.2 

HRH1 3RZE 3.1 
20-30 27 2RH1 ADRB2 2.4 

30-50 33 4IAR 5HT1B 2.7 

MGLUR1 4OR2 2.8 50-80 75 4OO9 MGLUR5 2.6 

MGLUR5 4OO9 2.6 50-80 79 4OR2 MGLUR1 2.8 

OPRK 4DJH 2.9 

20-30 27 4MBS CCR5 2.7 

30-50 34 4ZUD AT1R 2.8 

50-80 69 5C1M OPRM 2.1 

OPRX 4EA3 3.0 

20-30 24 4MBS CCR5 2.7 

30-50 32 3ODU CXCR4 2.5 

50-80 61 5C1M OPRM 2.1 

OX2R 4S0V 2.5 

20-30 25 4XEE NTSR1 2.9 

30-50 30 2YDO AA2AR 3.0 

50-80 75 4ZJ8 OX1R 2.8 

P2Y12 4NTJ 2.6 
20-30 25 2VT4 ADRB1 2.7 

30-50 30 4EJ4 OPRD 3.4 

PAR1 3VW7 2.2 20-30 25 4N6H OPRD 1.8 

S1PR1 3V2Y 2.8 
20-30 25 3OAX RHO 2.6 

30-50 36 4Z34 LPAR1 3.0 
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Table 2. Structural deviations of docking poses from crystal structures of cognate 

ligands  

Receptor PDBID RMSD (best energy) (Å) Lowest RMSD (Å) 
5HT1B 4IAR 0.56 0.56 

5HT2B 4IB4 0.53 0.53 

AA2AR 4EIY 3.73 1.67 

ACM2 3UON 0.81 0.78 

ADRB2 2RH1 0.75 0.75 

CCR5 4MBS 1.07 1.07 

CRFR1 4K5Y 0.50 0.50 

CXCR4 3ODU 1.13 1.13 

DRD3 3PBL 9.66 1.64 

GPR40 4PHU 2.06 1.39 

HRH1 3RZE 1.25 0.98 

MGLUR1 4OR2 1.23 1.23 

MGLUR5 4OO9 2.40 2.30 

OPRK 4DJH 5.55 5.55 

OPRX 4EA3 2.89 0.87 

OX2R 4S0V 6.35 2.11 

P2Y12 4NTJ 11.18 4.57 

PAR1 3VW7 0.40 0.40 

S1PR1 3V2Y 2.22 1.59 

RMSD (best energy), the RMSD value of the ligand docking pose with the best docking 

energy. Lowest RMSD, the best RMSD value among all the docking poses sampled. 

RMSD value in Bold indicates that we reproduce the crystal conformation accurately 

(RMSD <3 Å) by docking. 
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Table 3.  Ligand enrichment of X-ray structures and homology models 

Receptor X-ray structure Model (20-30%) Model (30-50%) Model (50-80%) 

PDBID logAUC EF1 Template 

PDBID 

logAUC EF1 Template 

PDBID 

logAUC EF1 Template 

PDBID 

logAUC EF1 

5HT1B 4IAR 36.37 4.55 4IB4 31.35 6.06 3PBL 28.84 5.05       

5HT2B 4IB4 28.82 3.04 4IAR 28.23 4.56 5DSG 25.64 3.04       

AA2AR 4EIY 27.37 4.93 3UON 19.12 1.48 2VT4 19.34 4.44       

ACM2 3UON 20.97 7.18 3PBL 9.48 0.00 5CXV 11.68 2.62 5DSG 14.56 3.59 

ADRB2 2RH1 24.76 6.98 4IB4 18.85 2.00 3PBL 29.11 5.49 2Y00 17.94 2.00 

CCR5 4MBS 34.84 7.34 5C1M 27.13 3.67 3ODU 31.02 13.62       

CRFR1 4K5Y 34.09 15.84    5EE7 5.53 0    

CXCR4 3ODU 44.59 6.65 4MBS 45.13 22.18 4ZUD 44.24 15.53       

DRD3 3PBL 31.41 4.09 4EIY 25.55 0.00 3V2W 13.89 0.51       

GPR40 4PHU 58.47 49.40 3VW7 19.48 0.55             

HRH1 3RZE 15.63 0.51 2RH1 28.06 2.57 4IAR 28.01 4.55       

MGLUR1 4OR2 28.17 9.81             4OO9 25.49 4.57 

MGLUR5 4OO9 26.37 9.22             4OR2 23.45 4.10 

OPRK 4DJH 17.40 0.51 4MBS 18.37 1.02 4ZUD 22.39 1.52 5C1M 21.94 0.51 

OPRX 4EA3 32.85 9.69 4MBS 22.04 0.00 3ODU 21.40 1.53 5C1M 19.97 2.04 

OX2R 4S0V 27.04 3.57 4XEE 25.20 6.12 2YDO 11.08 0.52 4ZJ8 24.00 2.55 

P2Y12 4NTJ 18.45 3.61 2VT4 12.58 0.00 4EJ4 17.46 1.55       

PAR1 3VW7 26.45 10.22 4N6H 15.38 3.65             

S1PR1 3V2Y 9.29 1.04 3OAX 11.00 0.00 4Z34 12.35 0.51       

Homology models (20-30%), models based on templates with target-template sequence identity between 20 and 30%. LogAUC in 

bold indicates that the performance is better than medicore (>24.5+3 logAUC). LogAUC in italic indicates the performance is better 

than random selection (>14.5+3 logAUC).  
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Table 4. Value added to virtual ligand screening by homology models  

Structure 

type 

Sequence 

Identity 

Mediocre 

ligand 

enrichmen

t 

Good 

ligand 

enrichmen

t 

Value 

added 

models/ 

structures 

Total 

number of 

models/ 

structures 

Percent (%) of 

value added 

models/ 

structures 

17.5-27.5 

logAUC 

>27.5 

logAUC 

>17.5 

logAUC 

Homology 

model 

20-30% 8 4 12 16 75 

30-50% 5 4 9 15 60 

50-80% 6 0 6 7 86 

Total 19 8 27 37 73 

X-ray 

structure  

  7 9 16 19 84 

Mediocre ligand enrichment, perform better than random selection but does not select more 

than twice as many ligands in any given subset (14.5+3 < logAUC < 24.5+3). Good ligand 

enrichment, select for more than twice as ligands in any given subset (logAUC > 24.5+3) 
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Table 5. Ligand enrichment of multiple X-ray structures and homology models for AA2AR and ADRB2 

Receptor  
Ligand 

Type 

X-ray structure Model (20-30%) Model (30-50%) Model (50-80%) 

PDBID logAUC 
Consensus 

logAUC 
Template  logAUC 

Consensus 

logAUC 
Template logAUC 

Consensus 

logAUC 
Template logAUC 

Consensus 

logAUC 

AA2AR 

Antagonist

/ Inverse 

Agonist 

4EIY 27.37 

26.58 

3UON 19.12 

25.69 

2VT4 19.34 

22.26   
3REY 23.00 5DSG 20.11 3PBL 17.14 

Agonist/ 

Partial 

Agonist 

2YDV 25.08 2X72 25.09 2Y00 22.62 

4UHR 28.23 4IB4 25.70 4LDE 27.27 

ADRB2 

Antagonist

/ Inverse 

Agonist 

2RH1 24.76 

26.75 

5CXV 12.20 

15.20 

3PBL 29.11 

25.09 

2VT4 22.06 

22.71 
3NYA 22.88 2Z73 9.27 4U15 15.73 4BVN 19.27 

Agonist/ 

Partial 

Agonist 

4LDL 23.27 4IB4 18.85 4IAR 17.76 5A8E 23.88 

4LDE 22.18 2X72 13.31 2YDO 22.75 2Y00 17.94 

Consensus logAUC in bold indicates that the consensus enrichment performs as well as the best performing structure or model. Consensus logAUC that is underlined 

indicates that the consensus enrichment performs comparable to the second-best performing structure or model. 
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Table 6. Ligand enrichment of homology models with predicted sidechains 

Receptor 

Sequence 

Identity 

(%) 

Template 

PDBID 

Model 

logAUC 

Prediction 

program 

Consensus 

logAUC 

Best 

logAUC 

AA2AR 

25 3UON 19.12 
SCWRL 23.83 29.88 

PLOP 19.91 26.98 

36 2VT4 19.34 
SCWRL 20.30 25.32 

PLOP 19.21 23.10 

ADRB2 

27 4IB4 18.85 
SCWRL 23.34 29.84 

PLOP 23.87 26.39 

36 3PBL 29.11 
SCWRL 34.16 40.30 

PLOP 18.48 23.29 

58 2Y00 17.94 
SCWRL 28.97 29.01 

PLOP 19.35 26.18 

Best logAUC, refers to the highest logAUC attained by the models with sidechains 

reconstructed. Consensus logAUC in bold indicates that the consensus logAUC from 

multiple modified models is significantly better than that of the original model 

(ΔlogAUC>3).  
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Table 7. Ligand enrichment of X-ray structures and homology models for high affinity 

ligands  

Receptor X-ray structure Homology model 

PDBID LogAUC 

for all 

the 

ligands 

LogAUC 

for high 

affinity 

ligands 

Target-

template 

sequence 

identity 

Template 

PDBID 

LogAUC 

for all the 

ligands 

LogAUC 

for high 

affinity 

ligands 

AA2AR 4EIY 27.37 30.08 20-30% 3UON 19.12 18.15 

3REY 23.00 23.48 5DSG 20.11 20.16 

2YDV 25.08 25.67 2X72 25.09 24.31 

4UHR 28.23 30.65 4IB4 25.70 25.06 

  30-50% 2VT4 19.34 18.94 

3PBL 17.14 18.26 

2Y00 22.62 22.22 

4LDE 27.27 30.11 

ADRB2 2RH1 24.76 28.55 20-30% 5CXV 12.20 19.32 

3NYA 22.88 34.61 2Z73 9.27 12.80 

4LDL 23.27 24.63 4IB4 18.85 10.36 

4LDE 22.18 21.85 2X72 13.31 17.74 

  30-50% 3PBL 29.11 24.17 

4U15 15.73 18.79 

4IAR 17.76 17.37 

2YDO 22.75 18.72 

50-80% 2VT4 22.06 21.63 

4BVN 19.27 25.58 

5A8E 23.88 26.49 

2Y00 17.94 11.58 

LogAUC values of high affinity ligands are marked in bold to indicate significant improvement 

(ΔlogAUC > 3), and in italic to indicate comparable performance (|ΔlogAUC| < 3) 
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Table 8. Average docking energy from agonist-bound and antagonist-bound X-ray structures 

and homology models 

Receptor PDBID 
Cognate 

Ligand type 

Agonist 

average 

docking energy 

Antagonist 

average docking 

energy 

t test     

P-

value 

Favour 

AA2AR 

4EIY Antagonist -37.85 -35.47 0.53 - 

3REY Antagonist -35.13 -28.07 0.00 Agonist 

2YDV Agonist -40.77 -27.82 0.22 - 

4UHR Agonist -38.85 -34.33 0.31 - 

Template 

sequence 

identity 

20-30% 

3UON Antagonist -28.25 -27.38 0.72 - 

5DSG Antagonist -6.25 -12.47 0.71 - 

2X72 Agonist -15.41 -14.98 0.98 - 

4IB4 Agonist -31.84 -27.63 0.11 - 

Template 

sequence 

identity 

30-50% 

2VT4 Antagonist -32.45 -28.11 0.11 - 

3PBL Antagonist -37.85 -32.78 0.21 - 

2Y00 Agonist -27.77 -25.44 0.33 - 

4LDE Agonist -35.97 -34.85 0.75 - 

3D4S Inverse agonist -37.46 -41.72 0.17 - 

3SN6 Agonist -42.40 -48.56 0.02 Antagonist 

ADRB2 

2RH1 Inverse agonist -42.49 -53.76 0.01 Antagonist 

3NYA Antagonist -41.10 -52.21 0.02 Antagonist 

4LDL Agonist -47.30 -49.27 0.63 - 

4LDE Agonist -49.27 -47.46 0.66 - 

Template 

sequence 

identity 

20-30% 

5CXV Antagonist -37.58 -40.40 0.62 - 

2Z73 Inverse agonist -18.92 -13.21 0.11 - 

4IB4 Agonist -33.31 -41.33 0.00 Antagonist 

2X72 Agonist -51.26 -57.79 0.12 - 

Template 

sequence 

identity 

30-50% 

3PBL Antagonist -45.39 -49.58 0.14 - 

4U15 Antagonist -44.74 -50.81 0.19 - 

4IAR Agonist -35.08 -49.16 0.00 Antagonist 

2YDO Agonist -43.30 -51.56 0.00 Antagonist 

Template 

sequence 

identity 

50-80% 

2VT4 Antagonist -46.17 -53.45 0.04 Antagonist 

4BVN Antagonist -38.00 -48.14 0.03 Antagonist 

5A8E Inverse agonist -42.75 -49.45 0.08 - 

2Y00 Partial agonist -38.86 -34.50 0.23 - 
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Figures 

 
Figure 1. Docking poses (colored in magenta) of cognate ligands compared to the 

corresponding crystal structures (colored in white). (A) Top left, PAR1, PDBID 3VW7. (B) 

Top right, ADRB2, PDBID 2RH1. (C) Bottom left, DRD3, PDBID 3PBL. (D) Bottom 

right, P2Y12, PDBID 4NTJ.  
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Figure 2. Enrichment plots for the 19 GPCRs, including the X-ray structures (red), homology models of 20-30% sequence identity 

(blue), homology models of 30-50% sequence identity (purple), homology models of 50-80% sequence identity (green), and random 

selection (dotted line). 
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