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Abstract. In the past few decades, probabilistic interpretations of brain
functions have become widespread in cognitive science and neuroscience.
The Bayesian brain hypothesis, predictive coding, the free energy prin-
ciple and active inference are increasingly popular theories of cognitive
functions that claim to unify understandings of life and cognition within
general mathematical frameworks derived from information and con-
trol theory, statistical physics and machine learning. The connections
between information and control theory have been discussed since the
1950’s by scientists like Shannon and Kalman and have recently risen to
prominence in modern stochastic optimal control theory. However, the
implications of the confluence of these two theoretical frameworks for
the biological sciences have been slow to emerge. Here we argue that if
the active inference proposal is to be taken as a general process theory
for biological systems, we need to consider how existing control theoret-
ical approaches to biological systems relate to it. In this work we will
focus on PID (Proportional-Integral-Derivative) controllers, one of the
most common types of regulators employed in engineering and more re-
cently used to explain behaviour in biological systems, e.g. chemotaxis
in bacteria and amoebae or robust adaptation in biochemical networks.
Using active inference, we derive a probabilistic interpretation of PID
controllers, showing how they can fit a more general theory of life and
cognition under the principle of (variational) free energy minimisation
under simple linear generative models.

1 Introduction

Probabilistic approaches to the study of living systems and cognition are be-
coming increasingly popular in the natural sciences. In particular for the brain
sciences, theories inspired the Bayesian brain hypothesis such as predictive cod-
ing, the free energy principle and active inference have been used to explain
brain processes including perception, action and higher order functions [15, 33,
31, 22, 12, 28? , 9].

According to these theories, brains, and biological systems in general, should
be thought of as Bayesian inference machines, gathering and representing infor-
mation from the environment into generative models [22, 12, 28]. Such systems
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in fact appear to estimate the latent causes of their sensory input in a process
consistent with a Bayesian inference scheme. In particular it has been suggested
that perceptual process can be accounted for in terms of predictive coding mod-
els whereby feedforward prediction errors and feedback predictions are combined
under a generative model to infer the hidden causes of sensory data [33]. More
recent theories have extended this proposal to account also for motor control
and behaviour [26, 19]. On this view, behaviour is cast as a process of acting
on the world to make sensory data better fit existing predictions. This latter
process usually falls under the name of active inference.

Modelling approaches inspired by control theory are nowadays established
methodologies for instance in psychology [32, 10], and are increasingly popular
in fields such as biology [41, 40, 1]. Typically inspired by classical control the-
ory and dynamical system theory, they emphasise regulation and concepts such
as set-point control and negative feedback for the study of different aspects of
living systems, an approach first introduced with cybernetics [4, 38]. In partic-
ular, methods such as PID (Proportional-Integral-Derivative) control have been
widely used as they represent a very simple methodology with properties that
guarantee robustness to perturbations and noise [41, 40, 1, 34].

The relationship between information/probability theory and control theory
has long been recognised, with the first intuitions (as far as the authors are
aware) emerging from work by Shannon [36] and Kalman [30]. A unifying view of
these two theoretical frameworks is nowadays proposed for instance in stochastic
optimal control [37] and active inference [20, 35]. How these ideas can be used to
combine traditional concepts of control more commonly applied in biology with
frameworks like active inference is still however unclear. Here, to address this,
we develop an information theoretic interpretation of PID controllers, a very
popular control strategy that works with little prior knowledge of the process to
regulate. Starting from ideas proposed by the free energy principle, we will show
that simple linear generative models approximating the true dynamics of the
environment implicitly implement PID control as a process of active inference.

2 The free energy principle

The free energy principle (FEP) was initially introduced by Karl Friston [22]
and later elaborated in a series of papers [18, 19, 24]. The FEP is proposed as a
unifying theory for biological sciences with roots in information theory, thermo-
dynamics and statistical mechanics. Work on the FEP has so far covered com-
putational neuroscience [16, 17], and behavioural/cognitive neuroscience studies
[26, 23]. Furthermore, connections have been implied with theories of biological
self-organisation, information theory (e.g. infomax principle), optimal control,
cybernetics and economics (e.g. utility theory) among others [19, 20, 21, 35].
According to the FEP, a living system exists only in a limited set of states over
time, e.g. a fish can’t survive for long out of water. Biological creatures can thus
be seen as systems that minimise the surprisal (or surprise/self-information) of
their sensory observations to maintain their existence, e.g. a fish’ observations

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2018. ; https://doi.org/10.1101/284562doi: bioRxiv preprint 

https://doi.org/10.1101/284562
http://creativecommons.org/licenses/by/4.0/


should be limited to states in the water. Since this surprisal is not directly ac-
cessible by an agent [22], variational free energy is proposed as a proxy that can
be minimised in its place, acting as an upper bound for such quantity.

In this study we focus on hypotheses and theories linked to the FEP regard-
ing perception and action in agents, in particular predictive coding and active
inference. Predictive coding [33] models of information processing in the brain
prescribe a way in which top-down and bottom-up information flows could be
combined in the cortex under deep generative models and are, on this view, often
described a special case of the FEP [19]. Top-down processes provide predictions
about sensory input while bottom-up activity carries prediction errors represent-
ing the difference between real and predicted sensations. These errors are then
used to train a generative model to produce better predictions. The minimisa-
tion of prediction errors achieved by updating the predictions of this model to
better represent an agent’s sensations corresponds, on this view, to perception.
However, one of the main contributions of the FEP is the extension of predic-
tive coding models to include an account of action, known as active inference
[25, 26], and thus unify perception and action in a single cohesive mathematical
framework where differences between the two processes almost vanish.

2.1 Active inference and control

Active inference provides a second way in which prediction errors, or free energy,
can be minimised. While perceptual inference suppresses prediction errors only
by updating predictions of a generative model of the incoming sensations [18, 26],
active inference minimises errors also by directly acting on the environment to
change sensory input to better accord with existing predictions. If a generative
model encodes information about favourable states for an agent, then this process
constitutes a way by which an agent can change its environment to better meet
its needs. Thus, under the FEP, these two processes of error suppression allow
an agent to both perceive and control the surrounding environment.

Most agent-based models implementing the FEP and active inference assume
that agents have a deep understanding of their environment and its dynamics in
the form of an accurate and detailed generative model. For instance, in [25, 26]
the generative model of the agent explicitly mirrors the generative process of the
environment, i.e. the dynamics of the world the agent interacts with. In recent
work we have argued that this needs not be the case [7], especially if we con-
sider simple living systems with limited resources. We intuitively don’t expect
an ant to model the entire environment where it forages, performing complex
simulations of the world in its brain (cf. the concept of Umwelt [11]). This idea
is however common in other work [25, 26, 23, 28], where cognition and percep-
tion are presented as processes of inference to the best explanation, encoding an
accurate set of parameters and variables of the environment with agents seen as
mainly building sophisticated models of their worlds then used for action and
behaviour. One often implicit assumption is that all the information available to
an agent should be encoded (e.g. an ant modelling the entire environment). This
is however not reasonable in dynamic and complex environments: when variables
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and parameters in the world change too rapidly, accurate online inference and
learning are implausible [3]. A possible alternative introduces action-oriented
models entailing a more parsimonious approach where only task-relevant in-
formation is encoded [13, 14]. On this view, agents only model environmental
properties that are necessary for their behaviour and their goals.

In this work we present an example of such parsimonious, action-oriented
model described in [13, 14], connecting them to methods from classic control
theory. We focus in particular on Proportional-Integral-Derivative (PID) control,
both extensively used in industry [6] and more recently emerging as a model of
robust feedback mechanisms in biology, implemented for instance by bacteria
[41], amoeba [40] and gene networks [1], and in psychology [34]. PID controllers
are ubiquitous in engineering mostly due to the fact that one needs only little
knowledge of the process to regulate. In active inference terms, we will show that
this corresponds to linear generative models that only approximate properties
of the world dynamics. Specifically, our model will describe linear dynamics for
a single hidden state and a linear mapping from the hidden state to an observed
variable, representing knowledge of the world that is potentially far removed
from the real complexity behind observations and their hidden causes.

3 PID control

Proportional-Integral-Derivative (PID) control is one of the simplest set-point
controllers, whereby a desired state (i.e. set-point, reference) represents the final
goal of the regulation process, e.g. to maintain a room temperature of 23◦ C.
PID controllers are based on closed-loop strategies with a negative feedback
mechanism that tracks the real state of the environment. The difference between
such state and the target value (e.g. 23◦ C temperature) produces a prediction
error whose minimisation drives the controller, e.g. if the temperature is too
high, it is decreased and if too low, it is raised. In mathematical terms:

e(t) = yr − y(t) (1)

where e(t) is the error, yr is the reference or set-point (e.g. desired temperature)
and y(t) is the observed variable (e.g. the actual room temperature).

This mechanism is however unstable in very common conditions, in particular
when a steady-state offset is added (e.g. a sudden and unpredictable change in
external conditions affecting the room temperature which are not under our
control), or when fluctuations need to be repressed (e.g. too many oscillations in
the temperature on the trajectory to the desired state may be undesirable). PID
controllers deal with both of these problems by augmenting the standard negative
feedback architecture, here called proportional or P term, with an integral or
I and a derivative or D term, see Fig. 1. The integral term accumulates the
prediction error over time in order to cancel out errors due to steady-state input,
while minimising the derivative of the prediction error leads to a decrease in the
amplitude of fluctuations. The general form of the control signal u(t) generated
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by a PID controller is usually described by:

u(t) = kpe(t) + ki

∫ t

0

e(τ)dτ + kd
de(t)

dt
(2)

where e(t) is again the prediction error and kp, ki, kd are the so called propor-
tional, integral and derivative gains respectively, a set of parameters used to tune
the relative strength of the P, I and D terms of the controller.

Fig. 1. A PID controller [2]. The prediction error e(t) is given by the difference
between a reference signal r(t), yr in our formulation, and the output y(t) of a process.
The different terms, one proportional to the error (P term), one integrating the error
over time (I term) and one differentiating it (D term), drive the control signal u(t).

The popularity of PID controllers is largely due to: 1) their robustness in the
presence of uncertainty, i.e. step disturbances and more in general noise, given
by the filtering properties of the I term, and 2) an only approximate model
of the dynamics of the process to regulate, based on a linearisation around the
target state. This might look incompatible with standard work in active inference
formulations suggesting a link to optimal control strategies with perfect models
of process/environment, however, we argued previously that this needs not be
the case [7]. Indeed one of the main strengths of active inference lies, according
to us, in its general formulation and in generative models that do not have to
mirror the dynamics of the entire environment.

4 PID control as active inference

In this work we will not provide a complete derivation of the active inference
scheme, referring to previous treatments [27, 17, 9] for more details. We will
begin from the Laplace encoded variational free energy for a univariate case:

F = − lnP (ρ, x) + constants (3)

where ρ represents the observed sensory input of an agent and x encodes the
expectation of hidden states in the environment. The remaining constants will
not be discussed since they play no role in the minimisation scheme we present.
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As previously shown [17, 9], to minimise equation (3) we need to specify the
agent’s generative density P (ρ, x) = P (ρ|x)P (x) introducing a likelihood P (ρ|x)
and a prior P (x) in terms of an agent’s expectations x. These probabilities can be
specified by a generative model in the form of a state space model. In particular,
to get the integral, proportional and derivative terms of a PID controller, we will
use a generalised linear state space model of order 2 [17, 9]:

ρ = x+ z

ρ′ = x′ + z′

ρ′′ = x′′ + z′′

ẋ = x′ = −α(x+ η + w)

ẋ′ = x′′ = −α(x′ + η′ + w′)

ẋ′′ = x′′′ = −α(x′′ + η′′ + w′′)

(4)

where ρ is the observation of the proprioceptive signal and x is the estimated
hidden state, α encodes the decay of x (α is here assumed to be very large, mean-
ing that the generative model represents a belief in an environment that quickly
relaxes to equilibrium), η encodes a desired state (e.g. desired temperature) rep-
resented mathematically as an exogenous input (or as a prior from higher layers
in hierarchical models [17]) and z, w are zero-mean Gaussian random variables.
As we shall see later, η is equivalent to yr in equation (1). However, unlike
standard PID schemes, η is here specified as a function of time using gener-
alised coordinates of motion (explained below). Ultimately, this derivation will
collapse to a more standard set-point scheme when η = yr and η′ = η′′ = 0.
The prime (e.g. ρ′, ρ′′) indicates the order of generalised coordinate of motion
[17, 9], which are introduced to represent non-Markovian continuous stochastic
processes [29], in our case z, w. One could think of them as quantities convey-
ing information about “velocity” (e.g. ρ′), “acceleration” (e.g. ρ′′), etc. for each
variable. Following [17, 9], we then define:

ρ̃ = x̃+ z̃ ˙̃x = −α(x̃+ η̃ + w̃) (5)

where the tilde sign (e.g. ρ̃) summarises the generalised state, a variable and its
higher orders of motion, into a more compact description (e.g. ρ̃ = {ρ, ρ′, ρ′′, . . . }).

With the assumption that random variables z̃, w̃ are normally distributed
(making the likelihood P (ρ̃|x̃) and the prior P (x̃) of Gaussian form), the varia-
tional free energy reduces to:

F =
1

2

[
πz

(
ρ− µx

)2
+ πz′

(
ρ′ − µ′x

)2
+ πz′′

(
ρ′′ − µ′′x

)2
+ πw

(
µ′x + α(µx − η)

)2
+πw′

(
µ′′x + α(µ′x − η′)

)2
+ πw′′

(
µ′′′x + α(µ′′x − η′′)

)2
− ln

(
πzπwπz′πw′πz′′πw′′

)](6)

where we used the means µ̃x of the estimated hidden states rather than the
states x̃ themselves since µ̃x are the only sufficient statistics required for the
minimisation of free energy under the assumption of optimal (co)variances of
the recognition density (see [17, 9]). πz̃, πw̃ are the precision parameters (inverse
variances) of z̃, w̃ respectively. Following [27, 17], the optimisation of the Laplace
encoded free energy can be performed via a standard gradient descent procedure:

˙̃µx = Dµ̃x −
∂F

∂µ̃x
ȧ = −∂F

∂a
= −∂F

∂ρ̃

∂ρ̃

∂a
(7)
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where the two equations prescribe perception and action processes respectively.
The first equation includes an extra term Dµ̃x that represents the “mean of the
motion” in the minimisation of variables in generalised coordinates of motion
[17, 9], with D as a differential operator with respect to time, i.e. Dµ̃x = µ̃′x.
More intuitively, since we are now minimising the components of a generalised
state representing a trajectory rather than a static variable, variables are in a
moving framework of reference where the minimisation is achieved for ˙̃µx = µ̃′x
rather than ˙̃µx = 0. At this point, the mean of the motion becomes the motion
of the mean, thereby satisfying Hamilton’s principle of least action [17]. In the
second equation, an assumption of active inference is that actions a only affect
sensory input ρ̃ and furthermore that this mapping is known to the agent and
enacted as a reflex mechanism, see [26] for discussion. By applying the gradient
descent described in equation (7) to our free energy function in equation (6), we
then obtain the following update equations for perception:

µ̇x =µ′x −
[
− πz

(
ρ− µx

)
+ πwα

(
µ′x + α(µx − η)

)]
µ̇′x =µ′′x −

[
− πz′

(
ρ′ − µ′x

)
+ πw′α

(
µ′′x + α(µ′x − η′)

)
+ πw

(
µ′x + α(µx − η)

)]
µ̇′′x =µ′′′x −

[
− πz′′

(
ρ′′ − µ′′x

)
+ πw′′α

(
µ′′′x + α(µ′′x − η′′)

)
+ πw′

(
µ′′x + α(µ′x − η′)

)](8)

and for action:

ȧ = −
[
πz

(
ρ− µx

)∂ρ
∂a

+ πz′

(
ρ′ − µ′x

)∂ρ′
∂a

+ πz′′

(
ρ′′ − µ′′x

)∂ρ′′
∂a

]
(9)

The mapping of these equations to a PID control scheme becomes more clear un-
der a few simplifying assumptions, starting from an agent that will have strong
priors (desires) on the causes of its proprioceptive observations. Intuitively, these
priors will be used to define actions that change the observations to better fit the
agent’s desires. This is implemented in the weighting mechanism of prediction
errors by precision parameters in equation (6); see also [26, 8, 7] for similar dis-
cussions on precisions and behaviour. Here we want to weight prediction errors
on the expected causes, πw̃(µ̃′x + µ̃x − η̃), more than the ones on observations,
πz̃(ρ̃ − µ̃x). To achieve this, we decrease precisions πz̃ on proprioceptive obser-
vations, effectively biasing the gradient descent procedure towards minimising
errors on the priors [8]. We then set the decay parameter α to a large value, mean-
ing that the agent encodes beliefs in a world that quickly settles to an equilibrium
state, with higher orders of generalised motion in each line of equation (8) not
considered during the minimisation. Perception is then approximated as:

µ̇x ≈µ′x − πwα
(
µ′x + α(µx − η)

)
µ̇′x ≈µ′′x − πw′α

(
µ′′x + α(µ′x − η′)

)
µ̇′′x ≈µ′′′x − πw′′α

(
µ′′′x + α(µ′′x − η′′)

) (10)
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where µ′′′x = 0 since we truncated our generalised state-space model to order 2
(i.e. anything beyond that is zero-mean Gaussian noise). This system of equa-
tions sets, at steady state, the expected hidden states µ̃x to the priors η̃, µ̃x = η̃.

To minimise free energy in presence of strong priors, the agent will necessarily
have to modify its sensory input ρ̃ to better match expectations µ̃x which in turn
will be shaped by the priors (i.e. desires) η̃. Effectively, the agent “imposes” its
desires on the world, driving actions that will minimise the prediction errors
arising at the proprioceptive sensory layers. In essence, an active inference agent
implements set-point regulation by acting to make its sensations accord with its
strong priors/desires. After these assumptions, action can be written as:

ȧ ≈ −
[
πz

(
ρ− η

)∂ρ
∂a

+ πz′

(
ρ′ − η′

)∂ρ′
∂a

+ πz′′

(
ρ′′ − η′′

)∂ρ′′
∂a

]
(11)

where we assumed µ̃x = η̃, but still need to specify partial derivatives ∂ρ̃/∂a. As
discussed previously [26], this step also highlights the fundamental differences
between the FEP and the more traditional forward/inverse models formulation
of control problems [39]. While these derivatives define a form of inverse model,
unlike more traditional approaches this does not involve a mapping between
actions and hidden states x̃ but is cast in terms of sensory data ρ̃ directly. It is
claimed that this provides an easier implementation for such an inverse model
[20], one that is grounded in an extrinsic frame of reference (i.e. the real world,
ρ̃) rather than in a intrinsic one in terms of hidden states x̃. To achieve PID-
like control, we finally assume that the agent adopts the simplest (i.e. linear)
relationship between its actions (controls) and their effects on sensory input
across all generalised coordinates of motion:

∂ρ

∂a
=
∂ρ′

∂a
=
∂ρ′′

∂a
= 1 (12)

This reflects a very simple reflex-arc-like mechanism that is triggered any time a
proprioceptive prediction is made. Intuitively, positive actions increase the values
of the sensed variables ρ̃, while negative actions decrease them. There is how-
ever an apparent inconsistency here that we need to dissolve: the proprioceptive
input ρ and its higher order states ρ′, ρ′′ are all linearly dependent on actions
a as represented in equation (12). While an action may not change position,
velocity and acceleration of a variable in the same way, the goal of an agent is
not to perfectly represent its physical reality but just to encode sensorimotor
properties that allow it to achieve its goals. In the same way, PID controllers
are, in most cases, effective but only approximate solutions for control [5]. This
allows us to understand the encoding of an inverse model from the perspective
of an agent rather than assuming a perfect, objective mapping from sensations
to actions that reflects exactly how actions affect sensory input [26]. This also
points at possible investigations of generative/inverse models in simpler living
systems where accurate internal models are not needed, and where strategies
like PID control are implemented [41, 40, 1]. By combining equation (11) and
equation (12), action can then be simplified to:

ȧ ≈ πz
(
η − ρ

)
+ πz′

(
η′ − ρ′

)
+ πz′′

(
η′′ − ρ′′

)
(13)
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consistent with the “velocity form” or algorithm of a PID controller [5]:

u̇ = ki
(
yr − y

)
+ kp

d

dt

(
yr − y

)
+ kd

d2

dt2
(
yr − y

)
(14)

where we removed the explicit dependence on time t. Velocity forms are used
in control problems where, for instance, integration is provided by an external
mechanism outside the controller [5, 6]. This algorithm is often described using
discrete systems to avoid the definition of the derivative of random variables,
often assumed to be white noise (i.e. Markov processes). In the continuous case,
if the variable y is a Markov process, its time derivative is in fact not well
defined. For this form to exist in continuous systems, y must be a smooth process.
This effectively drops the Markov assumption of white noise and implements
the same definition of analytic (i.e. differentiable) noise and related generalised
coordinates of motion we described earlier. The presence of extra prediction
errors beyond the traditional negative feedback (proportional term) can in this
light be seen as a natural consequence of considering non-Markov processes.
To ensure that the active inference implementation approximates the velocity
form of PID control we then need to clarify the relationship between generalised
coordinates of motion in equation (13) and the differential operators d/dt, d2/dt2

in equation (14). As pointed out in previous work [27, 9], the two of them are
equal at the minimum of the free energy landscape, when the gradient descent has
reached its steady state. To simplify our formulation and show this more directly,
we could consider the case for η′ = η′′ = 0, defining the more standard set-point
control where the desired trajectory collapses to a single point, equivalent in the
velocity form to the case where yr is a constant and dyr/dt = d2yr/dt

2 = 0.

5 Conclusion

PID controllers are robust controllers used as a model of regulation for noisy
and non-stationary processes in different disciplines, from engineering to biology
and psychology. They however do not guarantee optimality, so a straightforward
interpretation of this control strategy in terms of optimal control is missing. Ac-
tive inference is often described as an extension of optimal control theory with
deep connections to Bayesian inference [20]. While active inference has been pro-
posed as a general mathematical theory of life and cognition according to the
minimisation of variational free energy [19], methods such as PID control are
still widely adopted as models of biological systems [41, 40, 1]. In this work we
proposed a way to connect these two perspectives showing how PID controllers
can be seen as a special case of active inference once simplified (i.e. linear) gen-
erative models are introduced. The ubiquitous efficacy of PID control may thus
reflect the fact that the simplest models of controlled dynamics are first-order
approximations to generalised motion. This simplicity is mandated because the
minimisation of free energy is equivalent to the maximisation of model evidence,
which can be expressed as accuracy minus complexity [19, 14]. On this view, PID
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control emerges via the implementation of parsimonious (minimum complexity)
generative models that are the most effective (maximum accuracy) for a task.

Following our previous work [7], we defined a generative model that only
approximates the agent’s environment and showed how under a set of assump-
tions including analytic (i.e. non-Markovian, differentiable) Gaussian noise and
linear dynamics, this model recapitulates PID control. A crucial component of
our formulation is the presence of low precision parameters on proprioceptive
prediction errors of our free energy function or equivalently, beliefs about high
variance of proprioceptive signals. These low precisions play two roles during the
minimisation of free energy: (1) they implement control signals as predictions
of proprioceptive input influenced by strong priors (i.e. desires) rather than by
observations, see equation (11) and [26, 7], and (2) they reflect a belief into
the presence of large exogenous fluctuations (low precision = high variance) as
part of the observed proprioceptive input. This last point can be seen as the
well known property of the Integral term [6] of PID controllers, dealing with
unexpected external input (i.e. large exogenous fluctuations). The model rep-
resented by derivatives ∂ρ̃/∂a encodes then how actions a approximately affect
observed proprioceptive sensations ρ̃, with an agent implementing a sensorimo-
tor mapping that does not match the real dynamics of actions applied to the
environment. The generative model we proposed can in general be applied to dif-
ferent tasks, in the same way PID control is used in different problems without
specific knowledge of the system to regulate.

In future work we will explore the implications of PID control as active infer-
ence for the study of biological systems. In particular we suggest that given our
formalisation it is trivial to generalise the set-point definition of PID controllers,
based on point attractors, to trajectories (e.g. a reference temperature changing
during the day with pre-specified properties such as the rate of change, etc.)
using generalised coordinates of motion [27, 9]. We may also be able to provide
a Bayes-optimal algorithm for the optimisation of the gains of a PID controller,
ki, kp, kd (i.e. precision parameters in our free energy formulation, πw, πw′ , πw′′),
for which only heuristic methods exist at the moment [5].
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