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Abstract We present a novel framework to parameterise a mathematical model of
cell invasion that describes how a population of melanoma cells invades into human
skin tissue. Using simple experimental data extracted from complex experimental im-
ages, we estimate three model parameters: (i) the melanoma cell proliferation rate, λ ;
(ii) the melanoma cell diffusivity, D; and (iii) δ , a constant that determines the rate
that melanoma cells degrade the skin tissue. The Bayesian sequential learning frame-
work involves a sequence of increasingly-sophisticated experimental data from: (i)
a spatially uniform cell proliferation assay; (ii) a two-dimensional circular barrier
assay; and, (iii) a three-dimensional invasion assay. The Bayesian sequential learn-
ing approach leads to well-defined parameter estimates. In contrast, taking a naive
approach that attempts to estimate all parameters from a single set of images from
the same experiment fails to produce meaningful results. Overall our approach to in-
ference is simple-to-implement, computationally efficient, and well-suited for many
cell biology phenomena that can be described by low dimensional continuum models
using ordinary differential equations and partial differential equations. We anticipate
that this Bayesian sequential learning framework will be relevant in other biologi-
cal contexts where it is challenging to extract detailed, quantitative biological mea-
surements from experimental images and so we must rely on using relatively simple
measurements from complex images.
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2 AP Browning et al.

1 Introduction

Mathematical models of cell invasion may be expressed as coupled systems of partial

differential equations where one component describes the density of invading cells,

and another component describes the density of the receding tissues (Perumpanani et

al., 1999; Gatenby et al.,1996; Landman et al., 1998; Smallbone et al., 2005; Ander-

son et al., 2008; Fasano et al., 2009; Swanson et al., 2011; Massey et al., 2012). Typ-

ically, models of cell invasion involve a population of motile, proliferative cells that

release chemical signals to locally degrade surrounding tissues. These models have

been applied to study malignant invasion (Gatenby et al., 1996) and developmen-

tal processes (Landman et al., 1998). While mathematical analysis of these models

is relatively well established (e.g. Perumpanani et al., 1999), there are no standard-

ised statistical protocols to parameterise these models using data from experimental

images.

We consider the invasion of a population of metastatic melanoma cells into hu-

man skin tissue. Experimental images show that melanoma cells simultaneously mi-

grate, proliferate and degrade the skin (Haridas et al., 2017b). To parameterise a par-

simonious model of cell invasion we aim to infer three parameters: (i) the melanoma

cell proliferation rate, λ > 0 [/h]; (ii) the melanoma cell diffusivity, D > 0 [µm2/h];

and (iii) the rate at which melanoma cells degrade the tissue, δ > 0 [/h]. We take a

likelihood-based Bayesian approach and work with a sequence of increasingly so-

phisticated experiments to identify these parameters. A key outcome is to show that

we obtain meaningful parameter estimates by working with relatively simple mea-

surements from experimental images from sequence of increasingly-sophisticated ex-

periments. In fact, we also show that naively attempting to identify D, λ and δ using

only data from the most sophisticated, invasion experiment, leads to poorly-defined

posterior distributions.
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Parameterising continuum models of melanoma invasion. 3

2 Experimental methods

All experiments use the SK-MEL-28 metastatic human melanoma cell line (Carey et

al., 1976). All experimental data are summarised in the Supporting Material.

2.1 Type 1: Proliferation assay

A proliferation assay involves uniformly placing a population of cells, at low den-

sity, on a two-dimensional substrate. Cells migrate and proliferate, and the density of

the monolayer increases (Browning et al., 2017). On average, proliferation assays are

translationally invariant since the population of cells is distributed uniformly. There-

fore, we simply count the number of cells in the field of view to characterise the

increase in population density over time. We use images and data from Haridas et al.

(2017a). The population growth is quantified by counting the number of cells in sev-

eral regions, and dividing by the area of the region and the carrying capacity density,

K = 2.8× 10−3 cells/µm2 (Haridas et al., 2017a), to give an estimate of the nondi-

mensional cell density at t = 0,24 and 48 h. We consider three identically-prepared

experimental replicates (Haridas et al., 2017a), and 26 subregions per replicate to give

78 nondimensional density estimates per time point. Images in Figure 1a-c show the

growth process, and data in Figure 1d summarises the data.
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2.2 Type 2: Barrier assay

A circular barrier assay is initiated by uniformly placing a population of cells inside

a circular barrier (Treloar et al., 2013a). The barrier is lifted and the population of

cells spreads outwards across a two-dimensional surface. Figure 1e shows that the

initial population of 20,000 melanoma cells is confined to a circular region with a di-

ameter of approximately 6 mm. This means that the initial density of the monolayer

inside the barrier is 20,000/(π30002) ≈ 7.07× 10−3 cells/µm2, corresponding to

an initial nondimensional density of 20,000/(Kπ30002), giving approximately 0.25.

Over four days the population spreads to occupy a circular region with a diameter of

approximately 9 mm (Haridas et al., 2018). The key difference between the circular

barrier assay and the proliferation assay is that the proliferation assay is translation-

ally invariant whereas the barrier assay is not, as the barrier assay involves moving

fronts of cells. Therefore, the proliferation assay is well-suited for estimating the cell

proliferation rate, and the circular barrier assay is well-suited for estimating the cell

diffusivity.

Automated image processing, implemented in MATLAB (Mathworks, 2018a), is

used to quantify the spreading of the cell population by estimating the position of the

leading edge. This involves applying steps 1-7 from Algorithm 1, which are shown

in Figure 2a-f (Treloar et al., 2013b). Following this initial process, we obtain a mean

pixel density profile as a function of the radius using the procedure outlined in steps

8-14 of Algorithm 1. This second series of steps are outlined visually in Figure 2g-

h. To summarise each experimental image, we first consider that the scaled mean

pixel density at the centre of the assay is unity. We then estimate the position of the

leading edge of the spreading population to be the radius at which the scaled mean

pixel density of 1% of the initial maximum pixel density. This allows us to estimate

the position of the leading edge of the spreading population where the density is

approximately 1% of the maximum initial density. The threshold of 1% has been
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6 AP Browning et al.

shown, in previous studies, to give a reliable measure of the extent of spatial spreading

(Treloar et al., 2013b). This process is repeated for four identically-prepared barrier

assays, at each time step, and the data is summarised in Figure 1h.

Algorithm 1 Quantifying experimental images from a circular barrier assay using the
image processing toolbox in MATLAB (Mathworks, 2018a).

1: Load and crop image using imread().
2: Convert image to grayscale using rgb2gray().
3: Obtain the gradient mask using the Sobel method, edge(·,‘Sobel’,γthresh),

where thresh is the MATLAB suggested threshold, and γ is an adjustment param-
eter. We initially fix γ = 1 for each image, and adjust as necessary.

4: Obtain dilated binary mask using imdilate and strel with a ‘disk’ structur-
ing element.

5: Fill holes in the mask using imfill(·,‘holes’).
6: Smooth the mask using imerode and strel using a ‘disk’ shaped structuring

element.
7: Clear border objects using imclearborder and remove small areas using

bwareaopen.
8: Use regionprops(·,’centroid’) to obtain the coordinates of the centre of

the area.
9: Determine the distance of each pixel in the region from the calculated centre.

10: Use histogram() to obtain the distribution of distances using ∆r = 5 µm.
11: Scale by the area of each ‘bin’, π(r2

1− r2
0), where r0 and r1 are the radius edges

of each bin.
12: Scale using the length scale of each image to determine the density profile.
13: Smooth so that the density at small radii is 1.
14: Obtain the profile at all distances as required using interp1() and the

‘spline’ method.
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Fig. 2 Automated image processing for the circular barrier assay. (a)-(f) Stages in the automatic lead-
ing edge detection algorithm: (a) original image; (b) grayscale gradient mask; (c) dilated binary mask;
(d) binary image with holes filled; (e) clear binary image; (f) original image with detected leading edge
superimposed, showing a good match. (g)–(l) Stages in determining the location of the leading edge using
several identically-prepared images: (g) leading edge for each experimental replicate at t = 0 h, with the
centre corresponding to the centre of mass of each region; (h) average pixel density profile as a function
of radius, r, for each experimental replicate; (i) average pixel density, scaled relative to the initial density
of 20,000 cells within a circle of diameter 6 mm, to represent the scaled pixel density as a function of r.
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2.3 Type 3: Invasion assay

The invasion assay involves observing how a monolayer of melanoma cells invade

into human de-epidermised dermis prepared from discarded human skin tissue, as

described by Haridas et al. (2017b). Primary skin cells are used in the invasion assay

to ensure the formation of a stratified epidermis with a basement membrane (Hari-

das et al., 2017b). Vertical invasion of melanoma cells, downward through the base-

ment membrane into the dermis, is observed. The depth of invasion beyond the base-

ment membrane is estimated using immunohistochemistry. Measurements quantify

the depth of invasion into the dermis after 9, 15 and 20 days, thereby providing tem-

poral information about the invasion process. A summary of images in Figure 1i-j

show melanoma cells invading into the skin tissue. Here we see that the invasion of

the population of melanoma cells is closely associated with the receding skin tissues.

These experiments are summarised by measuring the distance between the deepest

melanoma cells and the boundary between the epidermis and the dermis (Haridas et

al., 2017b).

The depth of invasion over 20 days is approximately 150 µm and the initial width

of the monolayer of melanoma cells on the top of the skin is approximately 6 mm.

Since the depth of invasion is measured under the centreline of the monolayer, and

the depth of invasion is very small relative to the horizontal extent of the initial popu-

lation, 150/6000 = 0.025� 1, we characterise the invasion as a function of time and

vertical depth only. Nine identically prepared invasion experiments are performed for

each time point, and the invasion depth data is presented in Figure 1l.

3 Mathematical models

A detailed discussion about the development of the mathematical models, the key as-

sumptions underlying these models, and their nondimensionalisation, is given in the

Supporting Material. In brief, we use a sequence of related models that we present
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Parameterising continuum models of melanoma invasion. 9

here in order of increasing sophistication. In all cases, we choose nondimensionalise

the dependent variables, but work with dimensional independent variables and di-

mensional parameters.

3.1 Model 1: Temporal one-component model for the proliferation assay

For a spatially uniform population of melanoma cells in the absence of skin tissue,

we make the standard assumption that the population grows logistically (Sengers et

al., 2007; Maini et al., 2004; Swanson et al., 2011).

dC(t)
dt

= λC(t) [1−C(t)] , (1)

so that

C(t) =
C(0)

C(0)+ e−λ t(1−C(0))
, (2)

where C(t) is the nondimensional density of the monolayer at time t.

3.2 Model 2: Spatial and temporal one-component model for the barrier assay

We assume that a population of motile and proliferative melanoma cells spreads ac-

cording to the Fisher-Kolmogorov model (Sengers et al., 2007; Maini et al., 2004;

Swanson et al., 2011), provided that there is no skin tissue present. Written in radial

coordinates, we have

∂C(r, t)
∂ t

=
D
r

∂

∂ r

[
r

∂C(r, t)
∂ r

]
+λC(r, t) [1−C(r, t)] , (3)

where r > 0 is the radial position.
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10 AP Browning et al.

3.3 Model 3: Spatial and temporal two-component model for the invasion assay

The full mathematical model of the invasion assay is given by,

∂C(x, t)
∂ t

= D
∂

∂x

[
(1−S(x, t))

∂C(x, t)
∂x

]
+λC(x, t) [1−C(x, t)−S(x, t)] , (4)

∂S(x, t)
∂ t

=−δC(x, t)S(x, t), (5)

where C(x, t) is the nondimensional density of melanoma cells, S(x, t) is the nondi-

mensional density of skin tissue and x is the vertical depth into the tissue. In brief,

the movement of the melanoma cells is governed by a nonlinear diffusion term where

the nonlinear diffusivity is a decreasing function of the skin density so that melanoma

cells are unable to diffuse when the skin is at maximum density. The proliferation of

melanoma cells is logistic, and crowding effects are incorporated so that when the

total density of skin and melanoma cells are at maximum density the net proliferation

rate is zero. The skin tissues degrade when in contact with melanoma cells. Other

choices for the form of the nonlinear diffusivity function and the sigmoid prolifera-

tion model are possible, and we briefly discuss these options in the Conclusions.

The three models that we consider are closely related. To see this, setting S(x, t) =

0 in Equation (4) leads to the Fisher-Kolmogorov equation which, when written in

radial coordinates, gives Equation (3). Similarly, setting S(x, t)= 0 and ∂C(x, t)/∂x=

0 in Equation (4) leads to Equation (1). The methods used to solve Equations (3)–(4)

are outlined in the Supporting Material.

3.4 Initial conditions

For each model we specify an initial condition to match the initial experimental mea-

surements.

Model 1. C(0) is the average nondimensional density measured at t = 0.
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Parameterising continuum models of melanoma invasion. 11

Model 2. Algorithm 1 gives the scaled pixel density profile as a function of r,

for images at t = 0. With this information we compute the average the density

profile across all experimental replicates, and re-scale so that the nondimensional

density at the centre of the circular population corresponds to placing 20,000 cells

of diameter 20 µm into a circular barrier of radius 3000 µm.

Model 3. The invasion into the dermis commences approximately 4 days after the

invasion assay is initialised (Haridas et al., 2017b). To capture this we assume the

density of a monolayer of melanoma cells initially placed onto the surface of the

skin tissue grows logistically over the first 4 days, giving the initial nondimen-

sional density of melanoma cells at the top of the tissue to be approximately 0.78.

To model the spatial aspects of the invasion assay, we assume the monolayer of

melanoma cells is 20 µm thick (Haridas et al., 2017a), giving C(x,0) = 0.78 for

−20 < x < 0, and C(x,0) = 0 for x > 0. We assume that the density of skin tissue

is the maximum possible density, S(x,0) = 0 for−20 < x < 0, and S(x,0) = 1 for

x > 0.

3.5 Summarising model observations

To connect the models with the experimental measurements, we summarise key fea-

tures the model solutions that can be matched with simple, objective measurements

from the experimental images. Our aim is to estimate ΘΘΘ = 〈λ ,D,δ 〉. Throughout we

denote Mk(t;ΘΘΘ) as a summarised model observation from model k, at time t. Here,

k = 1,2 or 3. For each model we summarise the observation as follows:

Model 1. The density:

M1(t;ΘΘΘ) =C(t).

Model 2. The radius of the leading edge:

M2(t;ΘΘΘ) = {r : C(r, t) = 0.01C(0, t)}.
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12 AP Browning et al.

Model 3. The depth of the front of melanoma cells:

M3(t;ΘΘΘ) = min{x : C(x, t) = 0}.

These data, which summarise the predictions of the model, are chosen because they

are objective, simple measurements that can be obtained from experimental images.

4 Statistical inference

Taking a Bayesian approach we consider both the model parameters, ΘΘΘ , and exper-

imental observations to be random variables (Gelman et al., 2004; Toni et al., 2009;

Fearnhead et al., 2012; Collis et al., 2017; Browning et al., 2018). We consider that

the deterministic models capture the expected behaviour, and that the experimental

data in Figure 1d,h,l characterises some measurable experimental variability (Warne

et al., 2017). Therefore, we make the natural assumption that the experimental obser-

vations are normally distributed about the solution of the corresponding model (Collis

et al., 2017; Warne et al., 2017), and we assume the observation variance within each

experiment is a constant, which we denote Σ
2
k .

Before we make any experimental observations, our knowledge about the param-

eters is contained within the prior distribution, p(ΘΘΘ). We denote a sequence of exper-

imental observations Xk = {yi, ti}nk
i=1, where yi is an experimental observation from

model k at time ti and nk is the number of times that experimental data is recorded for

experiment type k. We may therefore express the likelihood, Lk(Xk|ΘΘΘ), or probabil-

ity density of the experimental data given the model parameters as

Lk(Xk|ΘΘΘ) =
n

∏
i=1

φ(yi;Mk(ti;ΘΘΘ),Σ 2
k ), (6)

where Mk(ti;ΘΘΘ) is a summary model observation at time ti from model k, and φ

denotes a normal probability density with mean Mk(ti;ΘΘΘ) and variance Σ 2
k . We ap-
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Parameterising continuum models of melanoma invasion. 13

proximate Σ 2
k ≈ s2

k , where s2
k is a pooled sample variance of the time-grouped obser-

vations for each experimental data set. That is, we calculate the variance of the pooled

sample for each experiment, after the mean of each time group has been subtracted.

Specifically,

s2
k =

1
nk−1

nk

∑
i=1

(yi−µ(ti))
2 , {yi, ti} ∈ Xk, (7)

where µ(ti) is the mean of the set of experimental observations made at time ti. This

assumption allows for a different mean between each group of data at different time

points.

Using Bayes’ theorem, we update our knowledge of the parameters to form a

posterior distribution,

p(ΘΘΘ |Xk)︸ ︷︷ ︸
posterior

∝ p(ΘΘΘ)︸ ︷︷ ︸
prior

n

∏
i=1

φ(yi;Mk(ti;ΘΘΘ),Σ 2
k )︸ ︷︷ ︸

likelihood

. (8)

A key element of this study is to contrast how a posterior distribution using a uni-

form prior differs from an informed prior that are built sequentially. We consider a

uniformly distributed prior defined over a sufficiently large parameter space so that

all biologically feasible parameter combinations are covered. We do not specify the

domain of the prior, and we use the scaled posterior distribution to obtain information

such as maximum likelihood estimates.

When forming posterior distributions using informed prior distributions, pk(ΘΘΘ |Xk),

we use a sequential approach. That is, we specify the prior distribution for model k

to be the posterior distribution for model k−1,

pk(ΘΘΘ |Xk)︸ ︷︷ ︸
posterior for model k

∝ pk−1(ΘΘΘ |Xk−1)︸ ︷︷ ︸
posterior for model k−1

n

∏
j=1

φ(y j;Mk(t j;ΘΘΘ),Σ 2
k ), k = 2,3. (9)
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Mathematically, the posterior distribution formed for model k using this technique is

equivalent to the posterior distribution given data up to experiment type k. That is,

pk(ΘΘΘ |Xk) = p(ΘΘΘ |{Xi}k
i=1) ∝ p(ΘΘΘ)

k

∏
i=1

nk

∏
j=1

φ(y j;Mi(t j;ΘΘΘ),Σ 2
i ). (10)

In practise it is simpler to apply Equation (9) to form these posterior distributions

rather than Equation (10). For example, Model 1 only depends on λ , a single element

of ΘΘΘ . Therefore, the other components of the posterior distribution, D and δ , remain

uniform when we work with Equation (9) for model 1. It is relatively straightforward

to find the posterior support for a single parameter rather than finding the posterior

support for multiple parameters simultaneously. As more parameters are incorporated

in successive models, in this case one at-a-time, the search for the posterior support

remains a simple task. In contrast, and we as will demonstrate, it is both practically

challenging and computationally inefficient to find the posterior support for Model 3

directly, since it depends on all three components of ΘΘΘ . As a result, our sequential

approach allows us to estimate a three-dimensional posterior distribution easily and

efficiently, whereas the direct approach fails to produce meaningful results.

When presenting posterior distributions, we calculate the posterior distribution

exactly at points on a relatively coarse square discretisation of the parameter space

(Supporting Material). Our choice of discretisation allows us to calculate maximum

likelihood estimates accurately to two significant figures, without further refinement.

We then use a spline interpolation (Mathworks, 2018b) to both enhance the resolution

of the posterior distributions and to approximate the posterior density at points that

do not lie on the square discretisation, as required.

4.1 Credible regions

To summarise the posterior distributions we compute and show credible regions. We

first calculate the total scaled posterior distribution volume, I =
∫
R3

p(ΘΘΘ |X)dΘΘΘ , us-
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ing quadrature, on the smoothed posterior distribution. In this work we use the rect-

angle rule to approximate the integrals. This procedure is relevant for the informed

sequential posterior distributions since it is visually obvious that we have covered the

support of the distribution. In contrast, this approach is not possible for the poste-

rior distributions that use a uniform prior, since we have not calculated the posterior

density through the entire support.

Figure 3a-b illustrates how we calculate the credible region Q, bounded by q,

for one- and two-dimensional posterior distributions. The 1−α credible region of

p(ΘΘΘ |X) is

Q :
∫

Q
p(ΘΘΘ |X)dΘΘΘ = (1−α)I, and p(ΘΘΘ |X) = pcrit ∀ΘΘΘ ∈ q, (11)

for α ∈ [0,1]. This means that the total posterior density within Q is 1−α , with

constant posterior density on the boundary, pcrit. We approximate this region by esti-

mating pcrit such that

∫
ΘΘΘ :p(ΘΘΘ |X)>pcrit

p(ΘΘΘ |X)dΘΘΘ = (1−α)I,

where the integral is estimated using quadrature, in this case the rectangle rule. For

all results we set α = 0.05 to calculate a 95% credible region.
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Fig. 3 Example credible region calculations. In each case the boundary of the interval or region, de-
noted q, has constant posterior density. The total area under in the one-dimensional case, or total vol-
ume in the two-dimensional case is 0.95I. Extending the credible region calculation in (b) to deal with
higher-dimensional posterior distributions is straightforward. The boundary of the 95% credible region is
indicated with a dashed red line.
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When calculating a credible region, we increase the accuracy of the reported cred-

ible interval by smoothing the probability density function using the interp function

in MATLAB with a cubic spline interpolation (Mathworks, 2018b). This approach

allows us to increase the accuracy of the credible interval estimates further than our

relatively coarse discretisation of the parameter space would otherwise allow. The

details of the discretisations are given in the Supporting Material document. In the

Supporting Material document we show how this processing provides a similar, but

visually smoother approximation to credible regions than what would otherwise be

possible with the relatively coarse discretisation.

4.2 Prediction intervals

To demonstrate uncertainty in the model predictions, we approximate and present

prediction intervals along with a model prediction produced using the mode of the

posterior distribution. It should be noted that the borders of the prediction intervals

we present are not model realisations. Rather, these intervals correspond to the in-

terval containing 95% of model realisations. Prediction intervals are calculated by

sampling 50,000 parameter combinations from the posterior distribution and solv-

ing the appropriate model for each combination. We continue our assumption that

the model captures a normally-distributed experimental variability by adding Gaus-

sian noise to each model realisation, independently at each time point. For each time

point, we use the ksdensity function in MATLAB (Mathworks, 2018c) to form a

probability density function, from which we follow our previously outlined procedure

to approximate a credible interval.

5 Results and Discussion

The first step is to estimate λ from Equation (1). Results in Figure 4a show that

we arrive at well-defined, approximately symmetric posterior. The posterior mode is
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0.040 /h and 95% credible interval 0.038 < λ < 0.042 /h. Our estimate of the mode

corresponds to a doubling time of ln(2)/0.04 ≈ 17 h, which is fairly typical for a

melanoma cell line (Treloar et al., 2013a). It is also useful to note that the posterior

support for λ is relatively narrow. In our preliminary investigations (not shown), we

originally explore the interval 0 < λ < 0.2 /h, but since we find non-zero posterior

density for just a small region within this interval we present results in Figure 4a on

just 0.03 < λ < 0.05 /h.
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model 1; (b),(d) model 2; and, (c), (e) model 3. (a), (d) and (e) Posterior distributions using a prior where
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With this information about λ , we now have two approaches to estimate λ and D

from the circular barrier assay. First, we use the posterior in Figure 4a as a prior for

λ , together with a uniform prior for D. This is the informed approach. The bivariate

posterior in Figure 4b is well-defined, with little correlation between D and λ , and a

mode of D = 620 µm2/h and λ = 0.04 /h. Again, these estimates are consistent with

previously-reported values (Treloar et al., 2013a), but we note that previous studies

have used extremely detailed experimental data that involves using nuclear stains to

count individual cells and to construct detailed spatial and temporal distributions of

cells within the circular barrier assay (Treloar et al., 2013a; Sengers et al., 2007; Cai et

al., 2007). In contrast, here we simply use leading edge detection which completely

circumvents the need for counting individual cells to construct detailed spatial and

temporal distributions of cells in the barrier assay experiments. This means that our

approach is very fast, simple-to-implement, and suitable for automation. In contrast,

previous approaches are extremely labour intensive and cannot be easily automated

(Treloar et al., 2013a; Sengers et al., 2007; Cai et al., 2007).

In comparison with the informed approach, we now attempt to estimate D and

λ directly with the leading edge data from the barrier assay with uniform priors

for both D and λ . Indicative results in Figure 4d highlight several limitations with

this approach. Here we have a very wide, poorly-defined posterior distribution with

non-zero posterior density on the boundary of the parameter space. To arrive at this

result we gradually widened the (D,λ ) support, and it is important to note that the

region in Figure 4d, covers 0 < λ < 0.1 /h and 0 < D < 1000 µm2/h. Since typical

doubling times for cells are always in the range 10-20 h, it is clear that continuing

to widen the support in Figure 4d will never lead to biologically-relevant parameter

estimates. Therefore, we do not consider any further widening of the support. The

reason that this approach fails to produce useful results is that the leading edge data

alone is an insufficient summary statistic to identify D and λ from the barrier assay.

Overall, comparing results in Figure 4b and Figure 4d confirm that our sequential
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Bayesian learning approach of combining minimal summary statistics from different

experiments is both simple-to-implement and promising, as it leads to well-defined

posterior distributions with a mode that is close to previously-determined estimates.

We now attempt to estimate λ , D and δ from the invasion assay. Again, with the

informed approach, we use the posterior in Figure 4b as a prior for λ and D, with

a uniform prior for δ . The posterior distribution in Figure 4c is well-defined, with a

mode of D = 620 µm2/h, λ = 0.04 /h and δ = 0.0036 /h. As before, these estimates

for D and λ are consistent with previously-reported estimates, but we note that values

of δ have not been reported previously for this kind of experimental data set. In

contrast to the informed approach, result in Figure 4e show the outcome of using

uniform priors for all three parameters, and we see that this leads to a poorly-defined

posterior with regions of non-zero posterior density that are biologically irrelevant.

λ (/h) D (µm2/h) δ (/h)
Model 1 0.040 (0.038,0.042) − −
Model 2 0.040 (0.038,0.042) 620 (480,800) −
Model 3 0.040 (0.038,0.042) 620 (480,800) 0.0036 (0.0027,0.0046)

Table 1 Point estimates for each parameter, taken to be the posterior mode, or maximum likelihood esti-
mate from the informed posterior distribution for each model. 95% credible intervals are estimated using
the univariate marginal distributions and are shown in parentheses. All estimates are displayed to two
significant figures.

Overall, comparing the informed posteriors in Figure 4a-c with the uninformed

posteriors in Figure 4d-e we see the importance of the sequential approach. Given

the full posterior distribution in Figure 4c we can integrate one of the components to

form a series of three bivariate posterior distributions, as shown in Figure 5. Visually

we see that D and λ , and δ and λ are approximately uncorrelated, whereas δ and

D appear to be strongly negatively correlated. The Pearson correlation coefficients

(Illowsky et al., 2015), given in Figure 5, confirm these visual observations.
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Fig. 5 Informed bivariate marginal posterior distributions for model 3. Bivariate marginal posterior
distributions formed by integrating out δ , D and λ in (a), (b) and (c), respectively, using the informed pos-
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In addition to visualising the posterior and marginal posterior distributions in Fig-

ure 4c and Figure 5, respectively, we can also calculate and compute the credible

region shown in Figure 6.
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Fig. 6 95% credible region for the model 3 posterior distribution. Given experimental data from all
experiment types, we are 95% confident that the parameter combination for model 3 lies within this region.
Note that shadows on axis planes do not indicate marginal posterior distributions, but rather the profile of
the 95% credible region, viewed perpendicular to the plane. Estimates of the three bivariate marginal
posterior distributions are given in Figure 5.
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Now that we have arrived at a well-defined posterior distribution for ΘΘΘ , we can

sample from this distribution and evaluate all three models and compare the expected

model solution, and variability across many samples of model solutions, with the

experimental data. A summary of the experimental data and model predictions, in-

cluding 95% prediction intervals, are shown in Figure 7a-c for the proliferation assay,

circular barrier assay and the invasion assay. For the proliferation assay, the barrier as-

say, and the invasion assay we see that the expected model predictions passes through

most of the experimental data points. Again, for all three experiments we see that the

95% prediction intervals encompass almost all of the experimental measurements, as

we would expect. In addition to showing how the solution of Equation (4) predicts the

position of the leading edge of the invading population, min{x : C(x, t) = 0} in Figure

7c, we also show the full solution of Equation (4) in Figure 7d. Here we see the tem-

poral evolution of both the melanoma density, C(x, t), and the density of skin tissues,

S(x, t). These profiles show that the advance of the melanoma cell density profile in

the positive x direction is closely associated with the retreat of the skin tissue pro-

file, as expected. This coupling between the advance of the melanoma cells and the

retreat of the skin tissues is evident in Figure 1i–l. In the solution of the mathemati-

cal model, the simultaneous migration and proliferation of melanoma cells, coupled

with the retreat of the tissue, gives rise to an advancing front of melanoma cells that

is illustrated in the space-time diagram in Figure 7e.
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6 Conclusion and Outlook

Mathematical models of cell invasion involve coupled partial differential equations

that describe how a population of cells degrades and simultaneously invades into

some biological tissue. These models are well-established in the mathematical biol-

ogy literature. The scientific importance of these models (Gatenby et al., 1996) and

the mathematical analysis of these models (Perumpanani et al., 1999) are both well

advanced. Yet, despite the significance of these models, there are no standard, well-

accepted statistical protocols for calibrating these models using experimental data

and/or experimental images.

In this work we present a Bayesian sequential learning approach, and demon-

strate how it can be used to parameterise a simple model of cell invasion using data

describing how a population of melanoma cells invades into human skin tissue. A

key attraction of our approach is that we use images from a sequence of increasingly-

sophisticated experiments. The measurements from each image are objective and

straightforward, yet when these simple measures are combined sequentially, they al-

low us to parameterise the mathematical model to arrive at well-defined posterior dis-

tributions from which biologically-relevant parameter estimates can be taken. In con-

trast, taking a naive approach and simply estimating all parameters simultaneously

from the images of the invasion assay leads to poorly-defined parameter estimates

that, in this case, are biologically irrelevant.

While we have chosen to present our approach using a standard mathematical

model of invasion in which we make fairly standard assumptions, it is possible to ap-

ply our approach to other types of models. For example, here we make the standard

assumption that cells proliferate logistically in the invasion assay. However, if addi-

tional evidence suggested that a more general sigmoid growth model was appropriate

(Browning et al., 2017; Sarapata et al., 2014), then our inference procedure could be

applied to any other deterministic growth model. Similarly, we have used a non-linear
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diffusion term in the invasion model so that the diffusivity of the melanoma cells is

a linearly decreasing function of total density. Again, if there were some evidence

that some other kind of decreasing function of total density was warranted (Cai et

al., 2007), our procedure could be repeated using a slightly different model with a

different functional form for the nonlinear diffusivity.

Our inference approach is novel from a statistical point of view as we make

progress by sequentially estimating parameters in a sequence of related models. This

approach requires very little prior knowledge of the parameters and leads to well-

defined posterior distributions. Deterministic models of cell migration and cell in-

vasion are often calibrated to match experimental data using maximum likelihood,

least-squares approaches (Cai et al., 2007; Sengers et al., 2007; Bowden et al., 2014;

Hormuth et al., 2017). Such approaches produce a best-fit parameter combination

but do not provide a means of systematically incorporating experimental variability

from a sequence of related, but distinct experiments. As a result, parameter estimates

produced using standard maximum likelihood approaches across a sequence of in-

creasingly sophisticated models may not make sense. Our approach enforces a sensi-

ble relationship between those parameters estimated in the simpler experiments and

those parameters estimated using more sophisticated experiments. The importance of

taking a sequential approach is demonstrated in our study as we show that attempting

to estimate all three parameters in the mathematical model using images from the

invasion assay, without applying informed prior knowledge, leads to a poorly defined

posterior distribution that may produce biologically irrelevant parameter combina-

tions.

In our study, we focus on a likelihood-based technique as we are able to spec-

ify our likelihood function. Approximate techniques for parameter inference, such as

approximate Bayesian computation (ABC), are also widely used to calibrate mathe-

matical models to match experimental data (Toni et al., 2009; Beaumont et al., 2002;

Browning et al., 2018), and are a necessity with stochastic mathematical models
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where the likelihood function is intractable. An extension of our study, that could

include stochastic or individual based models, could apply such techniques such as

ABC to our data set in a similar way. A key limitation of methods that rely on ABC is

that they require a prior distribution to be fully specified before performing inference

(Fearnhead et al., 2012). Another limitation is that ABC techniques typically require a

large number of model realisations to produce a posterior distribution. While different

variations of ABC have been developed to alleviate some of these limitations, such

as Markov chain Monte Carlo sampling (Toni et al., 2009), sequential Monte Carlo

sampling (Sisson et al., 2007), multilevel rejection sampling (Warne et al., 2018), and

hierarchical ABC (Maclaren et al., 2017), our approach avoids some of these issues

as we are able to directly specify the likelihood. For example, our application of a

likelihood-based method enables the posterior density to be calculated numerically

using a coarse discretisation of the parameter space using a relatively small number

of deterministic model realisations. Such a coarse discretisation can be used to ex-

plore the posterior support, and the posterior distribution can be enhanced by refining

the discretisation within the support, or by applying interpolation techniques. Finally,

calculating the posterior distribution directly using a likelihood-based approach al-

lows us to compute measures such as credible regions, and posterior mode estimates,

without further data processing.
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