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Abstract We present a novel framework to parameterise a mathematical model of
cell invasion that describes how a population of melanoma cells invades into human
skin tissue. Using simple experimental data extracted from complex experimental im-
ages, we estimate three model parameters: (i) the melanoma cell proliferation rate, λ ;
(ii) the melanoma cell diffusivity, D; and (iii) δ , a constant that determines the rate
that melanoma cells degrade the skin tissue. The Bayesian sequential learning frame-
work involves a sequence of increasingly-sophisticated experimental data from: (i)
a spatially uniform cell proliferation assay; (ii) a two-dimensional circular barrier
assay; and, (iii) a three-dimensional invasion assay. The Bayesian sequential learn-
ing approach leads to well-defined parameter estimates. In contrast, taking a naive
approach that attempts to estimate all parameters from a single set of images from
the same experiment fails to produce meaningful results. Overall our approach to in-
ference is simple-to-implement, computationally efficient, and well-suited for many
cell biology phenomena that can be described by low dimensional continuum models
using ordinary differential equations and partial differential equations. We anticipate
that this Bayesian sequential learning framework will be relevant in other biologi-
cal contexts where it is challenging to extract detailed, quantitative biological mea-
surements from experimental images and so we must rely on using relatively simple
measurements from complex images.
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1 Introduction

Mathematical models of cell invasion may be expressed as coupled systems of partial

differential equations where one component describes the density of invading cells,

and another component describes the density of the receding tissues (Perumpanani et

al., 1999; Gatenby et al.,1996; Landman et al., 1998; Smallbone et al., 2005; Ander-

son et al., 2008; Fasano et al., 2009; Swanson et al., 2011; Massey et al., 2012). Typ-

ically, models of cell invasion involve a population of motile, proliferative cells that

release chemical signals to locally degrade surrounding tissues. These models have

been applied to study malignant invasion (Gatenby et al., 1996) and developmen-

tal processes (Landman et al., 1998). While mathematical analysis of these models

is relatively well established (e.g. Perumpanani et al., 1999), there are no standard-

ised statistical protocols to parameterise these models using data from experimental

images.

We consider the invasion of a population of metastatic melanoma cells into hu-

man skin tissue. Experimental images show that melanoma cells simultaneously mi-

grate, proliferate and degrade the skin (Haridas et al., 2017b). To parameterise a par-

simonious model of cell invasion we aim to infer three parameters: (i) the melanoma

cell proliferation rate, λ > 0 [/h]; (ii) the melanoma cell diffusivity, D > 0 [µm2/h];

and (iii) the rate at which melanoma cells degrade the tissue, δ > 0 [/h]. We take a

likelihood-based Bayesian approach and work with a sequence of increasingly so-

phisticated experiments to identify these parameters. These experiments, listed here

in order of increasing sophistication include: (i) a translationally-invariant prolifer-

ation assay; (ii) a barrier assay involving the spatial expansion of populations of

melanoma cells; and (iii) the full invasion assay where proliferative and migratory

melanoma cells degrade human skin tissues and then invade into the space created

by receding tissues. A key outcome is to show that we obtain meaningful parameter

estimates by working with relatively simple measurements from experimental images
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from sequence of increasingly-sophisticated experiments. In fact, we also show that

naively attempting to identify D, λ and δ using only data from the most sophisticated,

invasion experiment, leads to poorly-defined posterior distributions. While other stud-

ies have used information sequentially to help estimate parameters in mathematical

models of cancer progression (Jain et al. 2014), we believe that this is the first study

to use a Bayesian sequential learning approach to parameterise a mathematical model

of cellular-invasion using spatial data extracted from experimental images.

One of the fundamental assumptions we make is that the melanoma cells are

subject to the same individual-level mechanisms in all three experiments. For exam-

ple, we make a standard assumption that melanoma cells undergo random migration

and carrying capacity-limited proliferation in all three experiments. This does not

mean that we observe the exact same population-level behaviour in all three exper-

iments. For example, we see larger net growth of the melanoma population in the

proliferation assay and barrier assay compared to the invasion assay. This is because

melanoma cells in the invasion assay must compete for space with both the human

skin tissue and other melanoma cells whereas in the barrier and proliferation assays

there is no skin tissue and the only competition for space is between the melanoma

cells.

2 Experimental methods

All experiments use the SK-MEL-28 metastatic human melanoma cell line (Carey et

al., 1976). All experimental data are summarised in the Supporting Material.

2.1 Type 1: Proliferation assay

A proliferation assay involves uniformly placing a population of cells, at low den-

sity, on a two-dimensional substrate. Cells migrate and proliferate, and the density of
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the monolayer increases (Browning et al., 2017). On average, proliferation assays are

translationally invariant since the population of cells is distributed uniformly. There-

fore, we simply count the number of cells in the field of view to characterise the

increase in population density over time. We use images and data from Haridas et al.

(2017a). The population growth is quantified by counting the number of cells in sev-

eral regions, and dividing by the area of the region and the carrying capacity density,

K = 2.8× 10−3 cells/µm2 (Haridas et al., 2017a), to give an estimate of the nondi-

mensional cell density at t = 0,24 and 48 h. We consider three identically-prepared

experimental replicates (Haridas et al., 2017a), and 26 subregions per replicate to

give 78 nondimensional density estimates per time point. Images in Figure 1(a)-(c)

show the growth process, and data in Figure 1(d) summarises the data.
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2.2 Type 2: Barrier assay

A circular barrier assay is initiated by uniformly placing a population of cells inside

a circular barrier (Treloar et al., 2013a). The barrier is lifted and the population of

cells spreads outwards across a two-dimensional surface. Figure 1(e) shows that the

initial population of 20,000 melanoma cells is confined to a circular region with a di-

ameter of approximately 6 mm. This means that the initial density of the monolayer

inside the barrier is 20,000/(π30002) ≈ 7.07× 10−3 cells/µm2, corresponding to

an initial nondimensional density of 20,000/(Kπ30002), giving approximately 0.25.

Over four days the population spreads to occupy a circular region with a diameter of

approximately 9 mm (Haridas et al., 2018). The key difference between the circular

barrier assay and the proliferation assay is that the proliferation assay is translation-

ally invariant whereas the barrier assay is not, as the barrier assay involves moving

fronts of cells. Therefore, the proliferation assay is well-suited for estimating the cell

proliferation rate, and the circular barrier assay is well-suited for estimating the cell

diffusivity.

Automated image processing, implemented in MATLAB (Mathworks, 2018a), is

used to quantify the spreading of the cell population by estimating the position of the

leading edge. This involves applying steps 1-7 from Algorithm 1, which are shown

in Figure 2(a)-(f) (Treloar et al., 2013b). Following this initial process, we obtain a

mean pixel density profile as a function of the radius using the procedure outlined

in steps 8-14 of Algorithm 1. This second series of steps are outlined visually in

Figure 2(g)-(h). To summarise each experimental image, we first consider that the

scaled mean pixel density at the centre of the assay is unity. We then estimate the

position of the leading edge of the spreading population to be the radius at which the

scaled mean pixel density of 1% of the initial maximum pixel density. This allows

us to estimate the position of the leading edge of the spreading population where

the density is approximately 1% of the maximum initial density. The threshold of
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1% has been shown, in previous studies, to give a reliable measure of the extent of

spatial spreading (Treloar et al., 2013b). This process is repeated for four identically-

prepared barrier assays, at each time step, and the data is summarised in Figure 1(h).

Algorithm 1 Quantifying experimental images from a circular barrier assay using the
image processing toolbox in MATLAB (Mathworks, 2018a).

1: Load and crop image using imread().
2: Convert image to grayscale using rgb2gray().
3: Obtain the gradient mask using the Sobel method, edge(·,‘Sobel’,γthresh),

where thresh is the MATLAB suggested threshold, and γ is an adjustment param-
eter. We initially fix γ = 1 for each image, and adjust as necessary.

4: Obtain dilated binary mask using imdilate and strel with a ‘disk’ structur-
ing element.

5: Fill holes in the mask using imfill(·,‘holes’).
6: Smooth the mask using imerode and strel using a ‘disk’ shaped structuring

element.
7: Clear border objects using imclearborder and remove small areas using

bwareaopen.
8: Use regionprops(·,’centroid’) to obtain the coordinates of the centre of

the area.
9: Determine the distance of each pixel in the region from the calculated centre.

10: Use histogram() to obtain the distribution of distances using ∆r = 5 µm.
11: Scale by the area of each ‘bin’, π(r2

1− r2
0), where r0 and r1 are the radius edges

of each bin.
12: Scale using the length scale of each image to determine the density profile.
13: Smooth so that the density at small radii is 1.
14: Obtain the profile at all distances as required using interp1() and the

‘spline’ method.
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Fig. 2 Automated image processing for the circular barrier assay. (a)-(f) Stages in the automatic lead-
ing edge detection algorithm: (a) original image; (b) grayscale gradient mask; (c) dilated binary mask;
(d) binary image with holes filled; (e) clear binary image; (f) original image with detected leading edge
superimposed, showing a good match. (g)–(l) Stages in determining the location of the leading edge using
several identically-prepared images: (g) leading edge for each experimental replicate at t = 0 h, with the
centre corresponding to the centre of mass of each region; (h) average pixel density profile as a function
of radius, r, for each experimental replicate; (i) average pixel density, scaled relative to the initial density
of 20,000 cells within a circle of diameter 6 mm, to represent the scaled pixel density as a function of r.
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2.3 Type 3: Invasion assay

The invasion assay involves observing how a monolayer of melanoma cells invade

into human de-epidermised dermis prepared from discarded human skin tissue, as

described by Haridas et al. (2017b). Primary skin cells are used in the invasion assay

to ensure the formation of a stratified epidermis with a basement membrane (Hari-

das et al., 2017b). Vertical invasion of melanoma cells, downward through the base-

ment membrane into the dermis, is observed. The depth of invasion beyond the base-

ment membrane is estimated using immunohistochemistry. Measurements quantify

the depth of invasion into the dermis after 9, 15 and 20 days, thereby providing tem-

poral information about the invasion process. The experimental protocol of Haridas

et al. (2017b) involves labelling all melanoma cells, and it is difficult to distinguish

between closely located individual melanoma cells within the complex skin environ-

ment. Therefore, the simplest measurement to characterise these experiments is to

record the depth of the deepest positively-stained melanoma cell in each image. This

measurement is both mathematically and biologically useful. Firstly, from a math-

ematical point of view, the continuum model we use gives rise to a sharp-fronted

solution meaning that the maximum depth of invasion is a convenient way to con-

nect the experimental data to the solution of the mathematical model. Secondly, from

a biological point of view, the maximum depth of invasion is known clinically im-

portant (Haridas et al. 2017b). A summary of images in Figure 1(i)-(j) show the

melanoma cells invading into the skin tissue. These images show that the invasion

of the melanoma cell population is closely associated with the receding skin tissues.

Data in Figure 1(l) shows multiple measurements of the maximum depth of inva-

sion from many identically prepared experimental replicates using different human

de-epidermised dermis. Here the experiments are summarised by measuring the dis-

tance between the deepest melanoma cells and the boundary between the epidermis

and the dermis (Haridas et al., 2017b). Nine identically prepared invasion experi-
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ments are performed for each time point, and the distribution of invasion depths are

presented in Figure 1(l).

3 Mathematical models

A detailed discussion about the development of the mathematical models, the key as-

sumptions underlying these models, and their nondimensionalisation, is given in the

Supporting Material. In brief, we use a sequence of related models that we present

here in order of increasing sophistication. In all cases, we choose nondimensionalise

the dependent variables, but work with dimensional independent variables and di-

mensional parameters.

3.1 Model 1: Temporal one-component model for the proliferation assay

For a spatially uniform population of melanoma cells in the absence of skin tissue,

we make the standard assumption that the population grows logistically (Sengers et

al., 2007; Maini et al., 2004; Swanson et al., 2011).

dC(t)
dt

= λC(t) [1−C(t)] , (1)

so that

C(t) =
C(0)

C(0)+ e−λ t(1−C(0))
, (2)

where C(t) is the nondimensional density of the monolayer at time t.

3.2 Model 2: Spatial and temporal one-component model for the barrier assay

We assume that a population of motile and proliferative melanoma cells spreads ac-

cording to the Fisher-Kolmogorov model (Sengers et al., 2007; Maini et al., 2004;

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 7, 2018. ; https://doi.org/10.1101/284612doi: bioRxiv preprint 

https://doi.org/10.1101/284612


Parameterising continuum models of melanoma invasion. 11

Swanson et al., 2011), provided that there is no skin tissue present. Written in radial

coordinates, we have

∂C(r, t)
∂ t

=
D
r

∂

∂ r

[
r

∂C(r, t)
∂ r

]
+λC(r, t) [1−C(r, t)] , (3)

where r > 0 is the radial position.

3.3 Model 3: Spatial and temporal two-component model for the invasion assay

The full mathematical model of the invasion assay is given by,

∂C(x, t)
∂ t

= D
∂

∂x

[
(1−S(x, t))

∂C(x, t)
∂x

]
+λC(x, t) [1−C(x, t)−S(x, t)] , (4)

∂S(x, t)
∂ t

=−δC(x, t)S(x, t), (5)

where C(x, t) is the nondimensional density of melanoma cells, S(x, t) is the nondi-

mensional density of skin tissue and x is the vertical depth into the tissue. In brief,

the movement of the melanoma cells is governed by a nonlinear diffusion term where

the nonlinear diffusivity is a decreasing function of the skin density so that melanoma

cells are unable to diffuse when the skin is at maximum density. The proliferation of

melanoma cells is logistic, and crowding effects are incorporated so that when the

total density of skin and melanoma cells are at maximum density the net proliferation

rate is zero. The skin tissues degrade when in contact with melanoma cells. Other

choices for the form of the nonlinear diffusivity function and the sigmoid prolifera-

tion model are possible, and we briefly discuss these options in the Conclusions.

The three models that we consider are closely related. To see this, setting S(x, t) =

0 in Equations (4)-(5) leads to the Fisher-Kolmogorov equation which, when written

in radial coordinates, gives Equation (3). Similarly, setting S(x, t)= 0 and ∂C(x, t)/∂x=

0 in Equations (4)-(5) leads to Equation (1). The methods used to solve Equations

(3)–(5) are outlined in the Supporting Material.
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A notable feature of the mathematical models is that we choose to deal with di-

mensional independent variables and non-dimensional dependent variables. This is a

deliberate choice that we find to be both practical and insightful. For example, when

we work with experimental images it is straightforward to measure the relevant phys-

ical dimensions, such as the relevant length scales and relevant time scales. For ex-

ample, the images in Figure 1(e)-(g) show that the fronts of cells move approximately

1000-2000 µm over a duration of four days. Therefore, it is most biologically mean-

ingful for us to deal with dimensional time with units of [h], dimensional position

with units of [µm], dimensional diffusivities with units of [µm2/h] and dimensional

proliferation rates with units of [/h]. Our interpretation of the dependent variable,

C(x, t), however, is very different. Typically, in continuum models of cell migration

and cell invasion, the dependent variable is the cell density which is bounded by some

maximum carrying capacity density (e.g. Maini et al. 2004a; Maini et al. 2004b). It is

well-known that extracting estimates dimensional cell densities as a function of po-

sition and time from experiments can be extremely challenging since it often replies

on manually counting cells to construct cell density profiles (Treloar et al. 2013; Vit-

tadello et al. 2018). We believe that an attractive feature of our approach is that we do

not rely on counting individual cells to construct cell density profiles for the invasion

assay or the barrier assay. It is convenient to avoid counting individual cells because

this procedure is both extremely time consuming and technically challenging when

dealing with high-density experiments. Therefore, to make our procedure as useful as

possible to others, we rely only on dealing with leading edge data because this data

is far easier and faster to compute (Treloar et al. 2013). The simplest way for us to

interpret the density information in the invasion assay and the barrier assay using the

mathematical models is to non-dimensionalise the dependent variable in the math-

ematical models and treat the position of the leading edge data as corresponding to

the low density edge of the cell density profile where C(x, t)� 1. Therefore, while

it might at first appear to be unusual to deal with dimensional independent variables
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and dimensionless dependent variables, this choice is driven purely by biological and

practical reasons which we believe to hold across of range of cell biology problems

where the aim is to match the solution of a mathematical model to mimic complicated

details in a biological image.

Another feature of our mathematical models is that the three models deal with

different spatial dimensions. For example, the proliferation assay is constructed so

that the measurements of cell density are translationally invariant, and it is standard to

extract density information from these kinds of experiments and to treat that informa-

tion as being dependent on time only (e.g. Cai et al. 2007; Tremel et al. 2009). In the

barrier assay, the experiments are designed so that we observe the movement of cell

fronts and so the experiments are not translationally invariant since density depends

upon position. In this situation it is standard to report the density of cells as a function

of position in the two-dimensional plane, (x,y), or as a function of the radial coordi-

nate, r2 = x2 + y2, for radially symmetric problems (Treloar et al. 2013a; Treloar et

al. 2013b). The invasion assay is clearly three-dimensional since cells move both hor-

izontally and vertically in the human skin tissues (Haridas et al. 2017b; Haridas et al.

2018). Therefore, in general, one could use a three-dimensional Cartesian coordinate

system to describe the cell density as a function of position. However, the geometry

of the experiments allows us to simplify this description to describe the cell density

as a function of the vertical coordinate only. In the experiments melanoma cells are

uniformly placed onto the surface of the skin tissues in a circular barrier of diame-

ter 6000 µm (Haridas et al. 2017b; Haridas et al. 2018). Measurements of the depth

of invasion are intentionally made under the centre of the circular area, and we find

that the depth of invasion is relatively small compared to the horizontal extent of the

barrier. In summary, cells invade vertically into the skin approximately 150 µm over

20 days. This means that the vertical length scale is much smaller than the horizontal

length scale since 150/6000 = 0.025� 1. Under these situations we can reduce the

description of a three-dimensional transport process to a one-dimensional coordinate
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system based on a geometric argument (Simpson et al. 2017). We acknowledge that

had the measurements of invasion been made towards the edge of the 6000 µm ra-

dius of the barrier, or had the invasion process taken place over larger vertical length

scales, it would be appropriate to use a two- or three-dimensional model to describe

this situation (Simpson et al. 2017).

3.4 Initial conditions

For each model we specify an initial condition to match the initial experimental mea-

surements.

Model 1. C(0) is the average nondimensional density measured at t = 0.

Model 2. Algorithm 1 gives the scaled pixel density profile as a function of r,

for images at t = 0. With this information we compute the average the density

profile across all experimental replicates, and re-scale so that the nondimensional

density at the centre of the circular population corresponds to placing 20,000 cells

of diameter 20 µm into a circular barrier of radius 3000 µm.

Model 3. The invasion into the dermis commences approximately 4 days after the

invasion assay is initialised (Haridas et al., 2017b). To capture this we assume the

density of a monolayer of melanoma cells initially placed onto the surface of the

skin tissue grows logistically over the first 4 days, giving the initial nondimen-

sional density of melanoma cells at the top of the tissue to be approximately 0.78.

To model the spatial aspects of the invasion assay, we assume the monolayer of

melanoma cells is 20 µm thick (Haridas et al., 2017a), giving C(x,0) = 0.78 for

−20 < x < 0, and C(x,0) = 0 for x > 0. We assume that the density of skin tissue

is the maximum possible density, S(x,0) = 0 for−20 < x < 0, and S(x,0) = 1 for

x > 0.
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3.5 Boundary conditions

For the spatial models, model 2 and 3, we specify boundary conditions that are con-

sistent with the experimental design.

Model 2. The initial radius of the spreading population is r = 3000 µm and we

find that after four days the radius of the spreading population is no more than

approximately 4500 µm. Since the radius of the wells in the 24-well plate are

approximately 7800 µm, the leading edge of the spreading profile does not touch

the edge of the well. To account for this we solve Equation (3) on 0 < r < R with

∂C/∂ r = 0 at R = 7800 µm to account for the physical boundary at the edge

of the circular well. We also set ∂C/∂ r = 0 at r = 0 to account for the radial

symmetry.

Model 3. The depth of the tissues in Figure 2 is several millimetres (not shown),

yet the invasion depth of the melanoma cells is only 150 µm so that the boundary

condition at the bottom of the tissue does not affect the solution of Equations

(4)-(5) on the time scale of these experiments. To account for this we solve the

equation governing C(x, t) in Equation (4) on−20< x<L, where we set C(L, t)=

0 for L = 1000 µm and we note that our results are insensitive to this choice of L.

We also note that Equation (5) involves no spatial derivative terms so there is no

boundary conditions required to solve this equation.

3.6 Summarising model observations

To connect the models with the experimental measurements, we summarise key fea-

tures of the model solutions that can be matched with simple, objective measurements

from the experimental images. Our aim is to estimate ΘΘΘ = 〈λ ,D,δ 〉. Throughout we

denote Mk(t;ΘΘΘ) as a summarised model observation from model k, at time t. Here,

k = 1,2 or 3. For each model we summarise the observation as follows:

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 7, 2018. ; https://doi.org/10.1101/284612doi: bioRxiv preprint 

https://doi.org/10.1101/284612


16 AP Browning et al.

Model 1. The density:

M1(t;ΘΘΘ) =C(t).

Model 2. The radius of the leading edge:

M2(t;ΘΘΘ) = {r : C(r, t) = 0.01C(0, t)}.

Model 3. The depth of the front of melanoma cells:

M3(t;ΘΘΘ) = min{x : C(x, t) = 0}.

These data, which summarise the predictions of the model, are chosen because they

are objective, simple measurements that can be obtained from experimental images.

4 Statistical inference

Taking a Bayesian approach we consider both the model parameters, ΘΘΘ , and exper-

imental observations to be random variables (Gelman et al., 2004; Toni et al., 2009;

Fearnhead et al., 2012; Collis et al., 2017; Browning et al., 2018; Daly et al., 2018).

We consider that the deterministic models capture the expected behaviour, and that

the experimental data in Figure 1(d),(h),(l) characterises some measurable experi-

mental variability (Warne et al., 2017). Therefore, we make the natural assumption

that the experimental observations are normally distributed about the solution of the

corresponding model (Collis et al., 2017; Warne et al., 2017), and we assume the

observation variance within each experiment is a constant, which we denote Σ
2
k .

Before we make any experimental observations, our knowledge about the param-

eters is contained within the prior distribution, p(ΘΘΘ). We denote a sequence of exper-

imental observations Xk = {yi, ti}nk
i=1, where yi is an experimental observation from

model k at time ti and nk is the number of times that experimental data is recorded for

experiment type k. We may therefore express the likelihood, Lk(Xk|ΘΘΘ), or probabil-
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ity density of the experimental data given the model parameters as

Lk(Xk|ΘΘΘ) =
n

∏
i=1

φ(yi;Mk(ti;ΘΘΘ),Σ 2
k ), (6)

where Mk(ti;ΘΘΘ) is a summary model observation at time ti from model k, and φ

denotes a normal probability density with mean Mk(ti;ΘΘΘ) and variance Σ 2
k . We ap-

proximate Σ 2
k ≈ s2

k , where s2
k is a pooled sample variance of the time-grouped obser-

vations for each experimental data set. That is, we calculate the variance of the pooled

sample for each experiment, after the mean of each time group has been subtracted.

Specifically,

s2
k =

1
nk−1

nk

∑
i=1

(yi−µ(ti))
2 , {yi, ti} ∈ Xk, (7)

where µ(ti) is the mean of the set of experimental observations made at time ti. This

assumption allows for a different mean between each group of data at different time

points.

Using Bayes’ theorem, we update our knowledge of the parameters to form a

posterior distribution,

p(ΘΘΘ |Xk)︸ ︷︷ ︸
posterior

∝ p(ΘΘΘ)︸ ︷︷ ︸
prior

n

∏
i=1

φ(yi;Mk(ti;ΘΘΘ),Σ 2
k )︸ ︷︷ ︸

likelihood

. (8)

A key element of this study is to contrast how a posterior distribution using a uniform

prior differs from an informed prior that is built sequentially. We consider a uniformly

distributed prior defined over a sufficiently large parameter space so that all biologi-

cally feasible parameter combinations are covered. We do not specify the domain of

the prior, and we use the scaled posterior distribution to obtain information such as

maximum likelihood estimates.

When forming posterior distributions using informed prior distributions, pk(ΘΘΘ |Xk),

we use a sequential approach. That is, we specify the prior distribution for model k
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to be the posterior distribution for model k−1,

pk(ΘΘΘ |Xk)︸ ︷︷ ︸
posterior for model k

∝ pk−1(ΘΘΘ |Xk−1)︸ ︷︷ ︸
posterior for model k−1

n

∏
j=1

φ(y j;Mk(t j;ΘΘΘ),Σ 2
k ), k = 2,3. (9)

Mathematically, the posterior distribution formed for model k using this technique is

equivalent to the posterior distribution given data up to experiment type k. That is,

pk(ΘΘΘ |Xk) = p(ΘΘΘ |{Xi}k
i=1) ∝ p(ΘΘΘ)

k

∏
i=1

nk

∏
j=1

φ(y j;Mi(t j;ΘΘΘ),Σ 2
i ). (10)

In practise it is simpler to apply Equation (9) to form these posterior distributions

rather than Equation (10). For example, Model 1 only depends on λ , a single element

of ΘΘΘ . Therefore, the other components of the posterior distribution, D and δ , remain

uniform when we work with Equation (9) for model 1. It is relatively straightforward

to find the posterior support for a single parameter rather than finding the posterior

support for multiple parameters simultaneously. As more parameters are incorporated

in successive models, in this case one at-a-time, the search for the posterior support

remains a simple task. In contrast, and we as will demonstrate, it is both practically

challenging and computationally inefficient to find the posterior support for Model 3

directly, since it depends on all three components of ΘΘΘ . As a result, our sequential

approach allows us to estimate a three-dimensional posterior distribution easily and

efficiently, whereas the direct approach fails to produce meaningful results.

When presenting posterior distributions, we calculate the posterior distribution

exactly at points on a relatively coarse square discretisation of the parameter space

(Supporting Material). Our choice of discretisation allows us to calculate maximum

likelihood estimates accurately to two significant figures, without further refinement.

We then use a spline interpolation (Mathworks, 2018b) to both enhance the resolution

of the posterior distributions and to approximate the posterior density at points that

do not lie on the square discretisation, as required.
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4.1 Credible regions

To summarise the posterior distributions we compute and show credible regions. We

first calculate the total scaled posterior distribution volume, I =
∫
R3

p(ΘΘΘ |X)dΘΘΘ , us-

ing quadrature, on the smoothed posterior distribution. In this work we use the rect-

angle rule to approximate the integrals. This procedure is relevant for the informed

sequential posterior distributions since it is visually obvious that we have covered the

support of the distribution. In contrast, this approach is not possible for the poste-

rior distributions that use a uniform prior, since we have not calculated the posterior

density through the entire support.

Figure 3(a)-(b) illustrates how we calculate the credible region Q, bounded by q,

for one- and two-dimensional posterior distributions. The 1−α credible region of

p(ΘΘΘ |X) is

Q :
∫

Q
p(ΘΘΘ |X)dΘΘΘ = (1−α)I, and p(ΘΘΘ |X) = pcrit ∀ΘΘΘ ∈ q, (11)

for α ∈ [0,1]. This means that the total posterior density within Q is 1−α , with

constant posterior density on the boundary, pcrit. We approximate this region by esti-

mating pcrit such that

∫
ΘΘΘ :p(ΘΘΘ |X)>pcrit

p(ΘΘΘ |X)dΘΘΘ = (1−α)I,

where the integral is estimated using quadrature, in this case the rectangle rule. For

all results we set α = 0.05 to calculate a 95% credible region.
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Fig. 3 Example credible region calculations. In each case the boundary of the interval or region, de-
noted q, has constant posterior density. The total area under in the one-dimensional case, or total vol-
ume in the two-dimensional case is 0.95I. Extending the credible region calculation in (b) to deal with
higher-dimensional posterior distributions is straightforward. The boundary of the 95% credible region is
indicated with a dashed red line.
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When calculating a credible region, we increase the accuracy of the reported cred-

ible interval by smoothing the probability density function using the interp function

in MATLAB with a cubic spline interpolation (Mathworks, 2018b). This approach

allows us to increase the accuracy of the credible interval estimates further than our

relatively coarse discretisation of the parameter space would otherwise allow. The

details of the discretisations are given in the Supporting Material document. In the

Supporting Material document we show how this processing provides a similar, but

visually smoother approximation to credible regions than what would otherwise be

possible with the relatively coarse discretisation.

4.2 Prediction intervals

To demonstrate uncertainty in the model predictions, we approximate and present

prediction intervals along with a model prediction produced using the mode of the

posterior distribution. It should be noted that the borders of the prediction intervals

we present are not model realisations. Rather, these intervals correspond to the in-

terval containing 95% of model realisations. Prediction intervals are calculated by

sampling 50,000 parameter combinations from the posterior distribution and solv-

ing the appropriate model for each combination. We continue our assumption that

the model captures a normally-distributed experimental variability by adding Gaus-

sian noise to each model realisation, independently at each time point. For each time

point, we use the ksdensity function in MATLAB (Mathworks, 2018c) to form a

probability density function, from which we follow our previously outlined procedure

to approximate a credible interval.

5 Results and Discussion

The first step is to estimate λ from Equation (1). Results in Figure 4(a) show that we

arrive at a well-defined, approximately symmetric posterior. The posterior mode is
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0.040 /h and 95% credible interval 0.038 < λ < 0.042 /h. Our estimate of the mode

corresponds to a doubling time of ln(2)/0.04 ≈ 17 h, which is fairly typical for a

melanoma cell line (Treloar et al., 2013a). It is also useful to note that the posterior

support for λ is relatively narrow. In our preliminary investigations (not shown), we

originally explore the interval 0 < λ < 0.2 /h, but since we find non-zero posterior

density for just a small region within this interval we present results in Figure 4(a) on

just 0.03 < λ < 0.05 /h.
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Fig. 4 Posterior distributions. Posterior distributions produced for each model and each experiment: (a)
model 1; (b),(d) model 2; and, (c), (e) model 3. (a), (d) and (e) Posterior distributions using a prior where
each component is uniformly distributed. (b)-(c) Informed posterior distributions for model k = 2,3, where
the prior is taken to be the posterior distribution from model k− 1, as indicated by the arrows. Where
appropriate, the posterior mode, or maximum likelihood estimate, is indicated with a red circle or sphere,
and the boundary of the 95% credible region is indicated with a dashed red line. Modes for each model
and univariate 95% credible intervals are given in Table 1. In all cases, the posterior density is scaled so
that the maximum posterior density in the region shown is yellow, and blue represents a posterior density
of zero.
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With this information about λ , we now have two approaches to estimate λ and

D from the circular barrier assay. First, we use the posterior in Figure 4(a) as a prior

for λ , together with a uniform prior for D. This is the informed approach. The bi-

variate posterior in Figure 4(b) is well-defined, with little correlation between D and

λ , and a mode of D = 620 µm2/h and λ = 0.04 /h. Again, these estimates are con-

sistent with previously-reported values (Treloar et al., 2013a; Haridas et al. 2017),

but we note that previous studies have used extremely detailed experimental data that

involves using nuclear stains to count individual cells and to construct detailed spa-

tial and temporal distributions of cells within the circular barrier assay (Treloar et al.,

2013a; Haridas et al. 2017). In contrast, here we simply use leading edge detection

which completely circumvents the need for counting individual cells to construct de-

tailed spatial and temporal distributions of cells in the barrier assay experiments. This

means that our approach is very fast, simple-to-implement, and suitable for automa-

tion. In contrast, previous approaches are extremely labour intensive and cannot be

easily automated (Treloar et al., 2013a; Haridas et al. 2017; Sengers et al., 2007; Cai

et al., 2007; Vittadello et al. 2018).

In comparison with the informed approach, we now attempt to estimate D and

λ directly with the leading edge data from the barrier assay with uniform priors for

both D and λ . Indicative results in Figure 4(d) highlight several limitations with this

approach. Here we have a very wide, poorly-defined posterior distribution with non-

zero posterior density on the boundary of the parameter space. To arrive at this result

we gradually widened the (D,λ ) support, and it is important to note that the region

in Figure 4(d), covers 0 < λ < 0.1 /h and 0 < D < 1000 µm2/h. Since typical dou-

bling times for cells are always in the range 10-20 h, it is clear that continuing to

widen the support in Figure 4(d) will never lead to biologically-relevant parameter

estimates. Therefore, we do not consider any further widening of the support. The

reason that this approach fails to produce useful results is that the leading edge data

alone is an insufficient summary statistic to identify D and λ from the barrier assay.
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Overall, comparing results in Figure 4(b) and Figure 4(d) confirm that our sequential

Bayesian learning approach of combining minimal summary statistics from different

experiments is both simple-to-implement and promising, as it leads to well-defined

posterior distributions with a mode that is close to previously-determined estimates.

We now attempt to estimate λ , D and δ from the invasion assay. Again, with the

informed approach, we use the posterior in Figure 4(b) as a prior for λ and D, with a

uniform prior for δ . The posterior distribution in Figure 4(c) is well-defined, with a

mode of D = 620 µm2/h, λ = 0.04 /h and δ = 0.0036 /h. As before, these estimates

for D and λ are consistent with previously-reported estimates, but we note that val-

ues of δ have not been reported previously for this kind of experimental data set. In

contrast to the informed approach, result in Figure 4(e) show the outcome of using

uniform priors for all three parameters, and we see that this leads to a poorly-defined

posterior with regions of non-zero posterior density that are biologically irrelevant.

We also reproduce the results from Figure 4 in the Supporting Material using syn-

thetic experimental data to validate our approach. We examine a synthetic data set

that uses a target parameter combination taken to be the maximum likelihood es-

timate from the informed posterior distribution for Model 3, and a synthetic data

set where we lower the proliferation rate to simulate a more diffuse pattern of inva-

sion. Full details on the method used to produce the synthetic experimental data sets

are outlines in the Supporting Material. Similar trends are observed overall for both

synthetic data sets. For example, the uninformed approach leads to poorly-defined

posterior distributions, with regions of non-zero posterior density that are not close

to the target parameter combination used to produce the synthetic data.
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λ (/h) D (µm2/h) δ (/h)
Model 1 0.040 (0.038,0.042) − −
Model 2 0.040 (0.038,0.042) 620 (480,800) −
Model 3 0.040 (0.038,0.042) 620 (480,800) 0.0036 (0.0027,0.0046)

Table 1 Point estimates for each parameter, taken to be the posterior mode, or maximum likelihood esti-
mate from the informed posterior distribution for each model. 95% credible intervals are estimated using
the univariate marginal distributions and are shown in parentheses. All estimates are displayed to two
significant figures.

Overall, comparing the informed posteriors in Figure 4(a)-(c) with the uninformed

posteriors in Figure 4(d)-(e) we see the importance of the sequential approach. Given

the full posterior distribution in Figure 4(c) we can integrate one of the components to

form a series of three bivariate posterior distributions, as shown in Figure 5. Visually

we see that D and λ , and δ and λ are approximately uncorrelated, whereas δ and

D appear to be strongly negatively correlated. The Pearson correlation coefficients

(Illowsky et al., 2015), given in Figure 5, confirm these visual observations.
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Fig. 5 Informed bivariate marginal posterior distributions for model 3. Bivariate marginal posterior
distributions formed by integrating out δ , D and λ in (a), (b) and (c), respectively, using the informed
posterior distribution in Figure 4(e). The Pearson correlation coefficient, ρ(·, ·), is approximated using
quadrature, and is shown, as indicated, for each marginal bivariate distribution. The 95% credible region
for each bivariate marginal distribution is enclosed by the orange dashed lines.
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In addition to visualising the posterior and marginal posterior distributions in Fig-

ure 4(c) and Figure 5, respectively, we can also calculate and compute the credible

region shown in Figure 6.
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Fig. 6 95% credible region for the model 3 posterior distribution. Given experimental data from all
experiment types, we are 95% confident that the parameter combination for model 3 lies within this region.
Note that shadows on axis planes do not indicate marginal posterior distributions, but rather the profile of
the 95% credible region, viewed perpendicular to the plane. Estimates of the three bivariate marginal
posterior distributions are given in Figure 5.
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Now that we have arrived at a well-defined posterior distribution for ΘΘΘ , we can

sample from this distribution and evaluate all three models and compare the expected

model solution, and variability across many samples of model solutions, with the ex-

perimental data. A summary of the experimental data and model predictions, includ-

ing 95% prediction intervals, are shown in Figure 7(a)-(c) for the proliferation assay,

circular barrier assay and the invasion assay. For the proliferation assay, the barrier as-

say, and the invasion assay we see that the expected model predictions passes through

most of the experimental data points. Again, for all three experiments we see that the

95% prediction intervals encompass almost all of the experimental measurements, as

we would expect. In addition to showing how the solution of Equations (4)-(5) pre-

dicts the position of the leading edge of the invading population, min{x : C(x, t) = 0}

in Figure 7(c), we also show the full solution of Equations (4)-(5) in Figure 7(d).

Here we see the temporal evolution of both the melanoma density, C(x, t), and the

density of skin tissues, S(x, t). These profiles show that the advance of the melanoma

cell density profile in the positive x direction is closely associated with the retreat

of the skin tissue profile, as expected. This coupling between the advance of the

melanoma cells and the retreat of the skin tissues is evident in Figure 1(i)–(l). In the

solution of the mathematical model, the simultaneous migration and proliferation of

melanoma cells, coupled with the retreat of the tissue, gives rise to an advancing front

of melanoma cells that is illustrated in the space-time diagram in Figure 7(e).
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6 Conclusion and Outlook

Continuum mathematical models of cell invasion typically involve coupled partial

differential equations that describe how a population of cells degrades and simultane-

ously invades into some biological tissue. These models have become very well es-

tablished in the literature over the last 20 years, and have been developed to describe

malignant invasion (Fasano et al., 2009; Gatenby and Gawlinski, 1996; Marchant et

al., 2001; Marchant and Norbury, 2002; Marchant et al., 2006; Perumpanani et al.,

1999; Perumpanani et al., 2000; Smallbone et al., 2005) and invasion during em-

bryonic development (Landman and Pettet, 1998; Landman et al., 2003; Landman

et al., 2005; Simpson and Landman 2007). The scientific importance of these mod-

els (Gatenby and Gawlinski, 1996) and the mathematical analysis of these models

(Perumpanani et al. 1999) are both relatively well advanced. Yet, it is surprising that

despite the significance of these models, that there are presently no standard statistical

protocols for calibrating these models using experimental data and/or experimental

images. Our work is the first time these kinds of models have been quantitatively

calibrated to match spatially quantitative measurements from invasion experiments.

In this work we present a Bayesian sequential learning approach, and demon-

strate how it can be used to parameterise a simple model of cell invasion using data

describing how a population of melanoma cells invades into human skin tissue. A

key attraction of our approach is that we use images from a sequence of increasingly-

sophisticated experiments. The measurements from each image are objective and

straightforward, yet when these simple measures are combined sequentially, they al-

low us to parameterise the mathematical model to arrive at well-defined posterior dis-

tributions from which biologically-relevant parameter estimates can be taken. In con-

trast, taking a naive approach and simply estimating all parameters simultaneously

from the images of the invasion assay leads to poorly-defined parameter estimates

that, in this case, are biologically irrelevant.
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While we have chosen to present our approach using a standard mathematical

model of invasion in which we make fairly standard assumptions, it is possible to ap-

ply our approach to other types of models. For example, here we make the standard

assumption that cells proliferate logistically in the invasion assay. However, if addi-

tional evidence suggested that a more general sigmoid growth model was appropriate

(Browning et al., 2017; Sarapata et al., 2014), then our inference procedure could be

applied to any other deterministic growth model. Similarly, we have used a non-linear

diffusion term in the invasion model so that the diffusivity of the melanoma cells is

a linearly decreasing function of total density. Again, if there were some evidence

that some other kind of decreasing function of total density was warranted (Cai et

al., 2007), our procedure could be repeated using a slightly different model with a

different functional form for the nonlinear diffusivity.

Our inference approach is novel from a statistical point of view as we make

progress by sequentially estimating parameters in a sequence of related models. This

approach requires very little prior knowledge of the parameters and leads to well-

defined posterior distributions. Deterministic models of cell migration and cell in-

vasion are often calibrated to match experimental data using maximum likelihood,

least-squares approaches (Cai et al., 2007; Sengers et al., 2007; Bowden et al., 2014;

Hormuth et al., 2017). Such approaches produce a best-fit parameter combination

but do not provide a means of systematically incorporating experimental variability

from a sequence of related, but distinct experiments. As a result, parameter estimates

produced using standard maximum likelihood approaches across a sequence of in-

creasingly sophisticated models may not make sense. Our approach enforces a sensi-

ble relationship between those parameters estimated in the simpler experiments and

those parameters estimated using more sophisticated experiments. The importance of

taking a sequential approach is demonstrated in our study as we show that attempting

to estimate all three parameters in the mathematical model using images from the

invasion assay, without applying informed prior knowledge, leads to a poorly defined
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posterior distribution that may produce biologically irrelevant parameter combina-

tions. Our informed approach may also be used in conjunction with gradient search

techniques to find the maximum likelihood estimate. This could be advantageous in

the sense that a gradient search technique does not require the computation of the

posterior density over a wide range of the parameter space. However, the disadvan-

tage of using such an approach is that it requires a good initial guess so that the initial

guess lies relatively close to the maximum. The problem of having a good initial

guess is particularly challenging because much of the posterior density in each of the

distributions in 4 is essentially zero and extremely flat, meaning that gradient meth-

ods could suffer from convergence problems. Our approach avoids this issue because

we simply expand the support of the search region in a computationally efficient way

until we identify the maximum.

In our study, we focus on a likelihood-based technique as we are able to spec-

ify our likelihood function. Approximate techniques for parameter inference, such as

approximate Bayesian computation (ABC), are also widely used to calibrate mathe-

matical models to match experimental data (Toni et al., 2009; Beaumont et al., 2002;

Browning et al., 2018), and are a necessity with stochastic mathematical models

where the likelihood function is intractable. An extension of our study, that could

include stochastic or individual based models, could apply such techniques such as

ABC to our data set in a similar way. A key limitation of methods that rely on ABC is

that they require a prior distribution to be fully specified before performing inference

(Fearnhead et al., 2012). Another limitation is that ABC techniques typically require a

large number of model realisations to produce a posterior distribution. While different

variations of ABC have been developed to alleviate some of these limitations, such

as Markov chain Monte Carlo sampling (Toni et al., 2009), sequential Monte Carlo

sampling (Sisson et al., 2007), multilevel rejection sampling (Warne et al., 2018), and

hierarchical ABC (Maclaren et al., 2017), our approach avoids some of these issues

as we are able to directly specify the likelihood. For example, our application of a
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likelihood-based method enables the posterior density to be calculated numerically

using a coarse discretisation of the parameter space using a relatively small number

of deterministic model realisations. Such a coarse discretisation can be used to ex-

plore the posterior support, and the posterior distribution can be enhanced by refining

the discretisation within the support, or by applying interpolation techniques. Finally,

calculating the posterior distribution directly using a likelihood-based approach al-

lows us to compute measures such as credible regions, and posterior mode estimates,

without further data processing.
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