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Abstract

A key assumption of epidemiological models is that population-scale disease spread is driven

by close contact between hosts and pathogens. At larger scales, however, mechanisms such as3

spatial structure in host and pathogen populations and environmental heterogeneity could al-

ter disease spread. The assumption that small-scale transmission mechanisms are sufficient to

explain large-scale infection rates, however, is rarely tested. Here we provide a rigorous test6

using an insect-baculovirus system. We fit a mathematical model to data from forest-wide epi-

zootics, while constraining the model parameters with data from branch-scale experiments, a

difference in spatial scale of four orders of magnitude. This experimentally-constrained model9

fits the epizootic data well, supporting the role of small-scale transmission, but variability is

high. We then compare this model’s performance to an unconstrained model that ignores the

experimental data, which serves as a proxy for models with additional mechanisms. The uncon-12

strained model has a superior fit, revealing a higher transmission rate across forests compared to

branch-scale estimates. Our study suggests that small-scale transmission is insufficient to explain

baculovirus epizootics. Further research is needed to identify the mechanisms that contribute to15

disease spread across large spatial scales, and synthesizing models and multi-scale data is key to

understanding these dynamics.
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Introduction18

Ordinary differential equation (ODE) models of host-pathogen interactions rely on the assump-

tion that the host population is well-mixed (Murray, 1989), so that transmission can result from

random contact between any given infected/susceptible host pair, with no effects of spatial vari-21

ation in host density or the environment (Keeling and Rohani, 2008). Such ODE models have led

to important conceptual advances, such as the threshold theorem of epidemiology (Kermack and

McKendrick, 1927), and the hypothesis that pathogens can control populations of their hosts (An-24

derson and May, 1979). More recently, the availability of high-performance computing, and the

development of sophisticated fitting algorithms, have made it possible to use stochastic versions

of ordinary differential equation models, further enhancing their ability to serve as statistical27

tools for carrying out robust tests of theory (King et al., 2008).

The assumption that pathogen dynamics are driven only by small-scale, spatially-homogenous

interactions between individual hosts is perhaps most appropriate for directly transmitted hu-30

man diseases such as measles and flu (Keeling and Rohani, 2008), and for bite-transmitted ani-

mal diseases such as rabies (Blackwood et al., 2013) and facial tumor disease of Tasmanian devils

(Hamede et al., 2009). For many other animal diseases, transmission instead occurs when hosts33

contact infectious pathogen particles in the environment (Rohani et al., 2003), but this complica-

tion is often accommodated simply by adding a pathogen-particle equation to otherwise standard

models (Anderson and May, 1980). Theory of environmentally transmitted pathogens then fol-36

lows classical theory in assuming that transmission results from small-scale interactions between

hosts and infectious particles, and in assuming that spatial structure and spatial heterogeneity

have negligible effects.39

For many environmentally transmitted pathogens, however, these assumptions are likely to

be incorrect. In bovine spongiform encephalopathy, for example, particle densities in the soil vary

spatially (Somerville et al., 2019), while in chronic wasting disease of deer, particle survival in the42

soil can be altered by spatial variation in soil properties (Kuznetsova et al., 2014). In some Daphnia
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pathogens, infectious particles are ingested during feeding (Shocket et al., 2018), and pathogen

dynamics may therefore be modulated by resource quality (Hall et al., 2009), which may in turn45

vary spatially. In ranaviruses of frogs, transmission rates are partly determined by short-range

dispersal of infectious particles (Mihaljevic et al., 2018), which may lead to spatial variation

in particle density. In these cases, it seems likely that neglecting spatial structure could lead48

to deeply flawed model predictions. The reliability of models of environmentally transmitted

pathogens is therefore in doubt.

Whether the models are indeed unreliable, however, is unknown, because there are very51

few tests of the assumption that disease dynamics are driven by contacts between hosts and

pathogens at small scales. Part of the problem is that such tests face significant obstacles. Ar-

guably the simplest test would be to compare infection rates at different scales, but data on small54

scale transmission are often lacking, because epidemiological studies understandably focus on

data collected at the scale of the entire host population. Collecting data at both small and large

scales could nevertheless provide a robust test of a fundamental model assumption.57

A straightforward way to collect infection data at small scales is to carry out transmission ex-

periments. For the vertebrate pathogens that are often the focus of disease ecology, experiments

are often impossible (McCallum, 2016), but for some invertebrate pathogens, experiments are60

possible. For insect baculoviruses, like the baculovirus of the Douglas-fir tussock moth (Orgyia

pseudotsugata) that we study here, experiments can even be straightforward (Elderd, 2013). In in-

sect baculoviruses, transmission occurs when uninfected host larvae, while feeding on their host63

plant, accidentally consume infectious particles known as “occlusion bodies”, which are released

from the cadavers of dead infected larvae (Cory and Hoover, 2006). For insect baculoviruses,

it is therefore possible to carry out experiments on single branches, in which the only process66

operating is transmission that results from uninfected hosts consuming occlusion bodies released

from dead infectious hosts on the same branch.

Because baculoviruses play an important role in controlling pest insects, baculovirus data69

are also often available at the scale of entire forests (Moreau and Lucarotti, 2007). Forest-scale
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data are collected to understand the conditions under which natural baculovirus epizootics (epi-

zootics = epidemics in animals) cause the collapse of pest insect populations (Moreau and Lu-72

carotti, 2007), and to document epizootics that result from using baculoviruses as insecticides

(Hunter-Fujita et al., 1998). To understand the role of small-scale transmission in baculovirus

epizootics, we therefore carried out a small-scale transmission experiment, and we collected75

large-scale epizootic data from pest control programs in which we participated, and from pest-

control programs documented in the literature (Otvos et al., 1987). Our experiment was carried

out on single Douglas-fir branches that encompassed an average of 0.15 m2 of foliage, while78

the epizootic data were collected in plots that encompassed 1-10 hectares of forest. The differ-

ence in spatial scale over which the two data sets were collected was thus about four orders of

magnitude.81

To compare pathogen dynamics across spatial scales, we used our short-term, small-scale

experimental data to estimate the parameters of a model of baculovirus dynamics, and we in-

serted the parameters into the model to predict infection rates in epizootics. As we will show, the84

model is able to explain a substantial fraction of the variation in the epizootic data, but consider-

ing only a single model begs the question of whether a model that includes larger-scale processes

could better explain the data. Indeed, spatial variation in pathogen densities (Dwyer and Elkin-87

ton, 1993) and in forest tree-species composition (Elderd et al., 2013) have been suggested to be

key determinant of the dynamics of baculoviruses. A seemingly obvious additional step would

therefore be to test whether a model that allows not just for small-scale transmission, but also for90

large-scale spatial structure or environmental heterogeneity can explain the epizootic data better

than a model that allows only for small-scale transmission.

A problem with such an approach is that the epizootic data do not include information about93

changes in infection rates over space, so it would likely be impossible for us to use the data to

make inferences about spatial models. The underlying problem is that the collection of the large-

scale data was not guided by an appropriate spatial model. This is a common problem in ecology96

and epidemiology, especially when theory is confronted by data collected during management
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programs (Restif et al., 2012).

To avoid this problem, we devised a model-based statistical strategy to infer whether large-99

scale processes were reflected in the large-scale data, in which we used a proxy model that did not

include spatial structure, but that was unconstrained by the small-scale data. This unconstrained

model uses the same equations as the model for which we estimated parameters from small-scale102

data, but its parameters were estimated only from the epizootic data, allowing for the possibility

that its parameter values would reflect large-scale spatial variation in host and pathogen den-

sities. To fit both the model with experiment-based parameters and the unconstrained proxy105

model to the epizootic data, we used Bayesian statistical techniques, which provided a consistent

framework with which to compare the two models (Gelman et al., 2014). We thus constructed

informative priors for the experiment-based model using the experimental data, and we con-108

structed uninformative or “vague” priors for the proxy model by assuming that all parameters

were equally likely, within some large range of possible values.

This approach allows for uncertainty in the experimental parameters, while also allowing111

for the possibility that spatial structure would lead to differences in the parameter estimates

for the two models. As we will show, the parameter estimates are indeed quite different for

the two models, and model selection using the Watanabe-Akaike Information Criterion (WAIC,114

Gelman et al. (2014)) showed that the unconstrained model explains the data far better than

the model with experiment-based priors. Interactions between individual hosts and infectious

particles at small scales are therefore not sufficient to explain the population-level spread of the117

tussock moth baculovirus. As we discuss, important missing mechanisms in our models involve

large-scale spatial variation, specifically in the frequency of different strains of the baculovirus

(Williams et al., 2011), and in the composition of the forests in which tussock moth outbreaks120

occur (Shepherd et al., 1988). Our results therefore suggest that a better understanding of spatial

structure and environmental heterogeneity could significantly improve our understanding of the

dynamics of animal diseases, emphasizing the importance of statistically robust empirical tests123

in the development of ecological theory.
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Methods

Baculovirus Natural History126

The models that we use were first developed for human pathogens (Anderson and May, 1992),

but are general enough that they can be used to describe baculovirus epizootics. To explain why,

we first describe baculovirus natural history, and then we show how simple SEIR models can129

encompass this natural history.

Baculovirus epizootics play a key role in terminating tussock moth outbreaks, which occur

at roughly 10-year intervals (Mason, 1996). During outbreaks, tussock moth densities increase132

from levels at which larvae are undetectable, to levels at which defoliation may be widespread

and severe (Shepherd et al., 1988). Outbreaking populations are usually terminated by bac-

ulovirus epizootics, in which cumulative mortality can exceed 90% (Mason, 1996). So far as can135

be known, the Douglas-fir tussock moth is the only organism in its range that is susceptible to the

baculovirus, although Orgyia species from other parts of North America have been successfully

infected with the Douglas-fir tussock moth baculovirus in the lab (Rohrmann, 2014).138

As is often the case in insect baculoviruses, transmission of the tussock moth baculovirus

occurs when larvae accidentally consume infectious virus particles known as ”occlusion bodies”

while feeding on foliage (Cory and Myers, 2003). Larvae that consume a large enough dose die141

in about two weeks. Shortly after death, viral enzymes dissolve the insect’s integument, releasing

occlusion bodies onto the foliage, where they are available to be consumed by uninfected larvae

(Miller, 1997). Epizootics are terminated when larvae pupate, or when epizootics are so severe144

that most hosts die before pupating (Fuller et al., 2012).

The virus overwinters largely through external contamination of egg masses (Thompson and

Scott, 1979). The rate of egg-mass contamination therefore appears to determine infection rates at147

the beginning of the larval period, which are often low (Otvos et al., 1987). High infection rates

then apparently result from multiple rounds of transmission during the larval period (Otvos

7

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 26, 2019. ; https://doi.org/10.1101/285080doi: bioRxiv preprint 

https://doi.org/10.1101/285080
http://creativecommons.org/licenses/by-nc-nd/4.0/


et al., 1987; Shepherd et al., 1984). In our study areas in Washington, Idaho, and Colorado, USA,150

and British Columbia, Canada, this period is currently early June to mid-August.

A Random SEIR Model

Because pathogen transmission and host reproduction occur at different times of the year, we153

described baculovirus epizootics using a model that does not include host reproduction. We

began with a standard Susceptible-Exposed-Infectious-Recovered or ”SEIR” model from human

epidemiology (Keeling and Rohani, 2008), and we modified the model to allow for two sources156

of heterogeneity in infection risk. The first source of heterogeneity results from variation be-

tween individual hosts, which in insect-baculovirus interactions can be due either to variation in

infection risk given exposure to the virus (Páez et al., 2015), or to variation in exposure risk itself159

(Parker et al., 2010), either of which may be heritable. The second source of variation in infection

risk in our model arises from stochastic fluctuations in transmission.

Allowing for stochasticity is important because stochasticity may interact in complex ways162

with disease dynamics, so that the variability in the model predictions may change as the epi-

zootic proceeds, or as initial host and pathogen densities vary between epizootics. By including

stochasticity, we allow for this type of variation, ensuring that our estimation procedures are165

statistically robust.

Perhaps the best known approach to allowing for stochasticity in ordinary differential equa-

tions (ODEs) is to assume that stochastic perturbations occur over infinitesimal time scales, lead-168

ing to “stochastic ODEs” (Øksendal, 2003). In insect-baculovirus interactions, it seems likely that

stochasticity is due to stochastic changes in weather conditions, which can affect baculovirus

feeding, and thus infection risk (Eakin et al., 2015). It is therefore intuitive to instead assume that171

stochasticity operates on a daily time scale.

We thus assume that stochastic perturbations occur over a finite time scale, and so our model

equations are known as “random ODEs” (Han and Kloeden, 2017). The distinction from stochas-174

tic ODEs is important because it allow us to rely on methods from deterministic calculus (Han
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and Kloeden, 2017), whereas numerical integration of stochastic ODEs in contrast requires more

sophisticated methods (Øksendal, 2003).177

Our approach is to first construct a model for epizootic dynamics during a single day:

dSτ

dt
= −ν̄eετ SτPτ

[
Sτ(t)
Sτ(0)

]C2

, (1)

dE1,τ

dt
= ν̄eετ SτPτ

[
Sτ(t)
Sτ(0)

]C2

−mδE1,τ, (2)

dEi,τ

dt
= mδEi−1,τ −mδEi,τ (i = 2, . . . , m), (3)

dPτ

dt
= mδEm,τ − µPτ. (4)

Here the subscript τ is an integer denoting the day, so that the stochasticity term ετ represents the

stochastic perturbation on day τ. In the interests of simplicity, we assume that ετ follows a normal180

distribution with mean 0 and standard deviation σ, and we exponentiate ετ to avoid negative

transmission rates, which would be biologically nonsensical. Because weather conditions likely

varied between populations, we estimated a value of the standard deviation σ for each epizootic.183

As in standard SEIR models, transmission in this model occurs through a mass action term. In

models of human diseases, this term is often written as βSI, where S is the density of uninfected

or “susceptible” hosts, I is the density of infected hosts, and β is the transmission parameter.186

Here transmission instead occurs through contact between susceptible hosts S and infectious

cadavers P, with transmission parameter ν̄.

We further modify the transmission term to allow for inherent variation among hosts, ac-189

cording to
[

Sτ(t)
Sτ(0)

]C2

. This term comes from models originally developed for the gypsy moth

baculovirus (Dwyer et al., 1997), which were in turn derived from models of sexually trans-

mitted infections in humans (Anderson and May, 1992). The approach is to assume that there192

is a distribution of infection risk in the host, with mean ν̄ and coefficient of variation C (Dwyer

et al., 2000), as an approximation to a more computationally intensive partial-differential equation

model. The approximation is highly accurate if transmission rates follow a gamma distribution,195

but it is also reasonably accurate if transmission rates instead follow a log-normal distribution,

which has a fatter tail than a gamma distribution (G. Dwyer, unpublished). In general, we as-
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sume that transmission occurs among larvae in the fourth instar (= larval stage), the instar that198

has the biggest impact on cumulative infection rates (Dwyer, 1991; Otvos et al., 1987). To allow

for the smaller size of hatchlings, we multiply the initial virus density by the parameter, ρ, which

is the ratio of the number of virus particles produced by a first-instar cadaver to the number201

produced by a fourth-instar cadaver.

As in standard SEIR models, susceptible hosts Sτ that become infected proceed through m

exposed classes, Ei,τ. Exposed hosts eventually die of the infection, joining the infectious-cadaver204

class Pτ, which represents the dynamics of the pathogen in the environment (the R class of SEIR

models corresponds to cadavers that are no longer infectious, and so we do not include it here).

Pathogen infectiousness decays at rate µ, due mostly to UV radiation (Thompson and Scott,207

1979). Hosts move between exposed classes at rate mδ, so that the time spent in a single exposed

class follows an exponential distribution with mean time 1/(mδ). The total time in the m exposed

classes is the sum of m such distributions, and a well-known theorem has shown that this sum210

follows a gamma distribution with mean, 1/δ, and variance, 1/(mδ2) (Keeling and Rohani, 2008).

Once equations (1)-(4) have been numerically integrated for day τ, the initial conditions for

day τ + 1 are updated. To carry out this updating, the model sets the initial conditions for day213

τ + 1 equal to the final values on day τ:

Sτ+1(0) = Sτ(1), (5)

Eτ+1,j(0) = Eτ,j(1), (j = 1, . . . , m) (6)

Pτ+1(0) = Pτ(1). (7)

Here Sτ(1) is the density of uninfected larvae at the end of day τ, while Sτ+1(0) is the density of

uninfected larvae at the beginning of the following day, and so on for the other state variables.216

Field transmission experiments

In equations (1)-(4), the average transmission rate, ν̄, represents the overall infection risk per unit

time. It therefore encompasses both the probability of exposure and the probability of infection219
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given exposure, and so it allows for the effects of both host behavior and host-tree foliage quality.

Transmission ν̄ is therefore best measured in the field, so that larvae can feed freely on virus-

contaminated foliage (Elderd, 2013).222

Previous work with the gypsy moth, Lymantria dispar, produced a protocol for baculovirus

field-transmission experiments that gave repeatable results (Dwyer, 1991; Dwyer et al., 1997;

Fleming-Davies et al., 2015). Following this protocol, we first reared uninfected tussock moth225

larvae in the laboratory from field-collected egg masses. The egg masses had been collected

from an early-stage outbreak in Cheyenne Mountain State Park in Colorado, USA, in 2014. To

deactivate any virus particles on the surface of the eggs, we submerged the egg masses in 5%228

formalin for 90 minutes prior to incubation (Dwyer and Elkinton, 1995). We used hatchling

larvae as infected hosts in our experiments because the most important round of transmission

occurs when third and fourth instar larvae are infected by first instar cadavers (Otvos et al., 1987;231

Shepherd et al., 1984).

To infect the hatchlings, we placed them on artificial diet contaminated with the virus. A

pilot study allowed us to determine the viral dose that results in roughly 95% of larvae becoming234

infected. We therefore used a solution of 104 occlusion bodies/µl, and we used a Pasteur pipette

to place 5 drops of this solution onto artificial diet in a 6 oz (177 ml) plastic rearing cup. After

larvae fed for 24h, they were moved to additional rearing cups.237

To ensure that the infected larvae were indeed infected, we reared them at 26 ◦C in the

laboratory for five days. Five days was long enough to ensure that any uninfected larvae would

molt to the second instar, whereas the virus prevented infected larvae from molting (Burand and240

Park, 1992). Second instars have different coloring from first instars, and so it was straightforward

to identify and remove uninfected larvae, which were all in the second instar (Fuller et al., 2012).

The infected larvae were then placed on Douglas-fir branches in the field at two densities, 10243

and 40 larvae per branch. The trees that we used were encompassed within an area of roughly 2

hectares in the Okanogan-Wenatchee National Forest, near Entiat, Washington, USA.

The branches were enclosed in mesh bags, which prevent the emigration of larvae and the246
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breakdown of the virus (Fuller et al., 2012). We then allowed 5 days for the infected larvae to

disperse on the foliage and die, a time sufficient to ensure that they all died. On the fifth day,

we added 20 uninfected larvae, which we had reared in the lab to the fourth instar (Dwyer et al.,249

1997). Controls consisted of branches containing only uninfected larvae.

An insect larva’s susceptibility to baculovirus infection can vary in a complex way within

an instar (Grove and Hoover, 2007). We therefore developmentally synchronized the uninfected252

fourth instars, as follows. Shortly before molting, a larva’s head capsule slips forward, making

it possible to see that the larva is close to the end of its instar. To synchronize fourth instars, we

collected third instars with slipped head capsules, and we held them at 4◦C, halting development,255

until we had enough larvae to begin the experiment. We then reared the larvae at 26◦C until

they had molted to the fourth instar, which occurred within 48 hours. The effect was that the

uninfected larvae all reached the fourth instar within a relatively short period. In previous258

experiments that used this protocol, the variance in the infection rate was indistinguishable from

the variance of the corresponding binomial distribution (Elderd et al., 2008). Synchronization

therefore appears to eliminate most sources of extraneous variability, leaving only the binomial261

variation that is expected in an infection experiment.

Our experimental treatments consisted of the 2 viral densities (10, 40), crossed with 3 viral

isolates, for a total of 6 treatments, each replicated 14 times. We also had 7 control bags, in264

which there were no infectious cadavers. The WA isolate was collected from Washington State

in 2010, while the NM isolate was collected in New Mexico in 2014. The final isolate was TMB-1

(“Tussock Moth Bio-control 1”), which makes up the insecticidal spray formulations produced267

by the USDA Forest Service (Martignoni, 1999). Transmission electron microscopy showed that

all three isolates were the multicapsid form of the virus, known as “OpMNPV”. In multi-capsid

strains, the virions are found in clumps within the occlusion bodies, as opposed to single-capsid270

(OpSNPV) strains, in which the virions occur singly within the occlusion bodies (Hughes and

Addison, 1970).

The experiment included 91 branches with 20 uninfected larvae each, for a total of 1,820273

12

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 26, 2019. ; https://doi.org/10.1101/285080doi: bioRxiv preprint 

https://doi.org/10.1101/285080
http://creativecommons.org/licenses/by-nc-nd/4.0/


uninfected larvae. We allowed the initially uninfected larvae to feed on foliage for 7 days, and

then we removed the branches from the trees and brought them into the laboratory. Next, larvae

from the branches were reared individually for three weeks in 2 ounce (59 ml) cups partially276

filled with artificial tussock moth diet, at 26 ◦C in the laboratory. To determine if larvae had

died of the virus, we examined smears from dead larvae under a light microscope at 400× for

the presence of occlusion bodies, which are easily visible at that magnification (Fleming-Davies279

et al., 2015).

After the 7 day experimental period, we photographed each branch, and we used ImageJ

(Schindelin et al., 2015) to estimate the area of foliage on each branch. We then calculated the282

density of infectious cadavers and the density of uninfected hosts by dividing the number of

cadavers or hosts by the foliage area. This allowed us to measure densities on single branches

using the same units as in the epizootic data, with the proviso that the epizootic data were285

collected at a much larger scale.

As part of this experiment, we attempted to measure the decay rate µ of infectious cadavers

on foliage, by allowing some cadavers to be exposed to sunlight outside of the mesh bags for 3288

days. 3 days, however, proved to be too short a period for us to detect meaningful decay of the

virus, and we therefore do not report those results. Previous work was similarly unsuccessful at

estimating the decay rate of the tussock moth baculovirus using exposure periods of 1, 4, 13, and291

32 days (Dwyer, 1992). It may therefore be that the decay rate of the virus is very low. As we

will show, this result is consistent with some of the estimates of the decay rate µ that result from

fitting our models to the epizootic data.294

Estimating Transmission Parameters ν̄ & C From the Experimental Data

Direct comparison of the infection rate in our experiment to the infection rate in the epizootics

is not meaningful, because our experiments were designed to only allow for a single round of297

transmission, whereas there were undoubtedly multiple rounds of transmission in the epizootics.

The infection rate in the experiment was therefore likely to differ from the infection rate in the
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epizootics simply because of differences in time scales, rather than because of differences in300

spatial scales.

To correct for the difference in time scales, we fit a simplified version of our SEIR model

to the experimental data, to estimate the transmission rate in the experiment. We then used303

the resulting estimates of the average transmission rate ν̄ and the heterogeneity in transmission

parameter C in the full model, and we compared the model predictions to the epizootic data, as

we described. This approach allowed us to compare transmission rates at the two spatial scales306

in a way that corrected for the difference in temporal scales.

To simplify the full model, we first assumed that transmission stochasticity was negligible

during the short time scale of the experiment. This allowed us to eliminate the dependence on τ309

in equations (1)-(4). Also, the mesh bags that enclosed the experimental branches prevented the

emigration of larvae and the breakdown of the virus, and the experiment was short enough that

no larvae became infected and died during the experiment. The density of infectious cadavers312

on the experimental branches was therefore constant after the experiment began, so the density

of particles P was constant during the experiment. This latter simplification allowed us to solve

equation (1) for the fraction of hosts i that have become infected by the end of the experiment, as315

a function of the initial (and constant) virus density P0 (Dwyer et al., 1997).

When we compare the model to the experimental data, it is useful to write the expression for

the fraction infected in terms of the log of the fraction uninfected (1− i):

− log(1− i) =
1

C2 log
(
1 + C2ν̄P0 t̂ρ

)
(8)

Here, t̂ is the time larvae were exposed to virus on foliage, which was 7 days. The ratio parameter,

ρ, is included because an implicit assumption of the SEIR model is that all larvae are in the fourth

instar, but the infectious cadavers in our experiment were in the first instar. The parameter ρ

therefore scales the transmission rate so that it is expressed in terms of fourth-instar cadavers.

We also considered a model in which host heterogeneity C is negligible:

− log(1− i) = νP0 t̂ρ. (9)
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To estimate average transmission ν̄ and heterogeneity C from the experimental data, we used

the Bayesian inference software, JAGS (http://mcmc-jags.sourceforge.net/) via the rjags package318

in R. We assumed vague priors for ν̄ and C, and an experimentally-derived prior for the ratio

parameter ρ, as we will describe. To avoid biases in the parameter estimates, we explicitly allowed

for error in the cadaver densities P0 in the statistical model. We then used WAIC to compare the321

ability of different models to explain the data (see Online Appendix for the definition of WAIC).

Example code for this fitting routine is in the Online Appendices.

On seven of our 91 experimental branches, all the initially uninfected larvae died due to324

desiccation. Desiccation is a common source of natural mortality in Douglas-fir tussock moth

populations (Mason and Torgersen, 1983), but it may have been slightly worse in our case because

the mesh bags can elevate temperatures (Páez et al., 2017). We therefore excluded these seven327

branches from our analyses. We also excluded desiccated larvae from the data from the other

branches, partly because desiccated larvae were too dry to be autopsied, but more importantly

because desiccated larvae were unlikely to have been infected.330

Because the transmission rate ν̄ is scale dependent, we measured the foliage area of the

branches in our experiment. This area ranged from 0.09 to 0.28 m2 (mean = 0.15). After we

corrected for branch area, the cadaver densities for the low density treatment (10 cadavers per333

branch) ranged from 38.49 to 112.58 cadavers per m2 of foliage (mean = 70.58), while the densities

for the high density treatment (40 cadavers per branch) ranged from 142.38 to 426.98 cadavers

per m2 of foliage (mean = 254.41).336

Estimating Speed of Kill 1/δ and Ratio ρ From Experimental Data

We also used an experiment to estimate the average speed of kill, which in the model is equiv-

alent to 1/δ, the inverse of the death rate. In this experiment, we infected larvae by allowing339

them to feed on Douglas-fir foliage that was contaminated with a sprayed virus solution (Online

Appendices). For logistic convenience, this experiment was carried out in the laboratory. Be-

cause speed of kill is affected by temperature, we held the larvae at temperatures typical of field342
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conditions (Polivka et al., 2017).

To estimate the ratio parameter, ρ, we again infected larvae in the laboratory, but in this case

we infected both hatchlings and fourth instars (Online Appendices). We held these larvae in the345

laboratory until death or pupation, and we counted the number of occlusion bodies per dead

larva for each instar, using a hemocytometer under a light microscope.

The Epizootic Data348

Our epizootic data came both from naturally occurring epizootics, and from pest management

programs that used the virus as an environmentally benign insecticide to reduce tussock moth

defoliation. Our data set included 7 unsprayed control plots and 5 sprayed treatment plots, with351

data coming both from the literature (Otvos et al., 1987), and from data that we present here for

the first time. Although it is at least possible that the TMB-1 isolate used in the spray formulation

is phenotypically different than wild-type virus, fitting models with different transmission rates354

for spray and control plots showed that the transmission rates of sprayed and wild-type virus

are effectively indistinguishable.

In spray programs, managers typically establish control plots in the same general area as357

spray plots, but far enough away to prevent sprayed virus from drifting into the controls. Data

from Washington State, for example, were from a spray program in 2010, in which all plots were

at least 10 kilometers apart. This distance is far enough that drift of the virus spray was highly360

unlikely. The data from British Columbia were similarly from a spray program in 1982 (Otvos

et al., 1987), but some plots were only a few hundred meters apart. In the control plots in British

Columbia, however, the epizootics started 3-4 weeks later than in the treatment plots. Given that363

sprayed virus typically decays within a few days (Polivka et al., 2017), this time lag suggests that

drift of the spray was again minimal.

At the beginning of the larval period at each site, initial host and pathogen population densi-366

ties were estimated using standard methods. These initial densities provided initial conditions for

the model (Online Appendices). Because initial virus densities in sprayed treatment plots were
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much higher than in unsprayed control plots, the two types of epizootic data together encom-369

pass a broader range of initial pathogen densities than either type of epizootic data alone. This

is important because a broad range of densities often increases statistical power when ecological

models are fit to data (Pascual and Kareiva, 1996).372

The data then consist of the fraction of larvae infected, estimated at intervals of roughly a

week, for up to 50 days, typically from mid-June to mid-August. In the sprayed plots, insects

were collected within 7 days of the application of the virus, but in the control plots the start of375

collections was more variable, particularly at sites where there was no concurrent spray project.

Insects were reared and diagnosed as in the field transmission experiment.

Model fitting and model selection378

To fit models to the epizootic data, we compared the fraction infected in the data to the fraction

infected in the model. In the model, infected (but not yet dead) larvae are represented by the

exposed classes Em. The fraction of larvae infected is then ∑ Em
∑ Em+S .381

For the transmission data, we used a binomial likelihood function, but for the epizootic data,

a binomial likelihood function was unlikely to be sufficient. Use of the binomial distribution rests

on the assumption that individual hosts are independent (McCullagh and Nelder, 1989), which384

likely held in our field experiment, as in similar field experiments (Elderd et al., 2008), but the

environment in which epizootics occur is much more complicated. For example, the density of

hosts may have been clumped within the forest, and this clumping could cause the variance in387

the infection risk to be substantially higher than the variance of the corresponding binomial, a

phenomenon known as over-dispersion. It was therefore important to allow for the possibility of

over-dispersion.390

In the absence of direct information on the level of over-dispersion, a useful approach is to use

a beta-binomial distribution (Cox and Snell, 1989). In a beta-binomial, the binomial probability

of an infection p follows a beta distribution, which describes quantities like p that vary between393

0 and 1. The beta-binomial then has two parameters, as opposed to the single parameter of the

17

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 26, 2019. ; https://doi.org/10.1101/285080doi: bioRxiv preprint 

https://doi.org/10.1101/285080
http://creativecommons.org/licenses/by-nc-nd/4.0/


binomial, making it possible to increase the variance of the likelihood, as needed, to explain the

lack of fit of the model to the data (by including stochasticity in transmission, we also allowed for396

the possibility that the lack of fit was due to stochasticity). As parameters of the beta-binomial,

we used a = peγ and b = (1− p)eγ, where p is the model prediction of the fraction infected

and γ is an inverse measure of the over-dispersion. As we will show, over-dispersion levels were399

moderate but not excessive.

Because our epizootic models allow for stochastic fluctuations in transmission, we integrated

values of the likelihood over many realizations of the models. This approach is equivalent to

integrating out the values of the stochasticity ετ to produce an average likelihood:

L̄ =
∫

L (ε1, ε2, . . . , εD) f (ε1, ε2, . . . , εD) dε1dε2 . . . dεD (10)

Here L̄ is the average likelihood, and D is the number of days in an epizootic. D is thus the

number of days for which we drew values of ετ. The function f (ε1, ε2, . . . , εD) is the probability402

density of the ετ’s, where each integer, 1, 2, . . ., D, indicates a different day.

Numerical integration of the model is computationally expensive, and using numerical quadra-

ture to calculate the integral in equation (10) is therefore impractical. Accordingly, we instead405

used Monte Carlo integration (Ross, 2002). This meant that we drew values of the ετ’s, and then

we estimated the average likelihood, according to;

ˆ̄L =
1
R

R

∑
j=1

L(εj
1, ε

j
2 . . . ε

j
D). (11)

Here R is the number of realizations, and ε
j
1 is the value of ε1, meaning the stochastic term on408

day 1, in the jth realization, and so on for ε
j
2 . . . ε

j
D . According to the weak law of large numbers,

as R→ ∞, ˆ̄L→ L̄ (Ross, 2002).

To reduce computing time, it was important to ensure that ˆ̄L approached L̄ for a reasonably411

small number of realizations. For this purpose we used the MISER Monte-Carlo integration

algorithm. This algorithm uses recursive, stratified sampling to estimate the average likelihood,

while minimizing the number of realizations. Briefly, the algorithm works as follows (the code414
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that we use is from the Gnu Scientific Library, but for a clear explanation of how the algorithm

works, see Press et al. (1992)). As equation (11) shows, in calculating an estimate of the average

likelihood ˆ̄L, we are sampling over a D-dimensional space of stochasticity parameters ετ. Within417

this parameter space, it is likely that there are sub-spaces within which the variance in ˆ̄L is

higher than in other sub-spaces. In estimating ˆ̄L across the entire space, it turns out to be more

efficient to sample more frequently in sub-spaces within which the variance is higher. There is420

a formal proof of this proposition, and so the process of sub-sampling forms the basis of the

MISER algorithm, as follows.

The algorithm is given a quota of R realizations. Some fraction of these realizations, in423

our case 0.1, is devoted to sampling uniformly across the entire space. Based on this initial

sample, the algorithm recursively divides the overall sample space into sub-spaces of high and

low variance. In using the remaining realizations, the algorithm samples more intensively in sub-426

spaces of high variance. The end result is an estimate of ˆ̄L that minimizes the variance. Initial

trials with this algorithm showed that 150 realizations was usually sufficient to produce reliable

estimates of ˆ̄L. Using a larger number of realizations only reduced the variance in ˆ̄L by a small429

amount.

We then used our likelihood in Bayes’ theorem:

P(θ|D) ∝ π(θ)L(θ|D). (12)

Here P(θ|D) is the posterior probability distribution of the parameters θ of our model, which432

we fit to the data D. The symbol π(θ) is the prior probability of the parameters, and L(θ|D)

is the likelihood of the parameters. Because posterior probabilities are generally only used for

comparison purposes, we only need to calculate the posterior probability up to a constant of435

proportionality, and so we use the proportion symbol ∝.

To create priors from our experimental data, we used the data to construct log-normal prior

distributions for transmission ν̄, heterogeneity C, and ratio ρ. To do this, we used the marginal438

posterior samples generated from fitting the model to our transmission data. On a log scale, the
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marginal posterior samples were well described by normal distributions, so we used log-normal

priors with means and standard deviations calculated from the posterior samples. In the case of441

the heterogeneity parameter C, we instead estimated k = 1/C2, because k has a distribution that

is closer to normal than C, after being log-transformed.

We similarly used our speed of kill data to construct a log-normal prior on the death-rate444

parameter δ. Because, in the model, the variance in the speed of kill is determined by the number

of exposed classes m, in principle it should be possible to estimate m from the observed variance

in the speed of kill in experimental data. In practice, however, the variance in the speed of kill447

in experimental data is usually very low (Dwyer, 1991). Meanwhile, our preliminary efforts to

estimate m from the epizootic data were unsuccessful. Accordingly, instead of estimating m, we

set m = 200. Fixing m at this value ensured that the variance in the speed of kill was realistically450

low, without the necessity of estimating the uncertainty in m.

The model parameters that we fit to the epizootic data were the decay rate µ, the stochasticity

parameter σ, and the over-dispersion parameter γ. For these latter parameters, we used uniform453

probability distributions as “vague” priors, so that effectively all possible parameter values were

equally likely, up to some high upper limit. The parameters σ and γ in particular determine

the process error and the observation error respectively (Bolker, 2008), and are thus effectively456

“nuisance” parameters. The only biologically interesting parameter that was unconstrained by

the epizootic data was therefore the cadaver decay rate µ.

By using Bayes’s theorem, we allowed for the possibility that the likelihood would dominate459

the experiment-based priors, and it was therefore possible that our fitting routine would produce

posterior parameter estimates that were far from the values calculated from our experiments. For

the model with experiment-based priors, however, the posterior median values of the parameters462

were not that far from the medians calculated from our experiments. This could have happened

because the experiment-based priors provide an excellent fit to the epizootic data, but it could

also have happened because the epizootic data did not provide much information about the465

model and its parameters. In practice, both phenomena were operating, in the sense that the
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experiment-based priors provide a reasonable fit, and that the epizootic data provided only a

moderate amount of information about the model parameters.468

To show this, we compare the parameter values for the model with experiment-based priors

to a model in which the corresponding parameters have vague priors. Differences in the posterior

distributions of the parameters for the two models then indicate first that the experimental data471

did indeed constrain the posterior estimates of the parameters for the model with experiment-

based priors. As we will show, for the heterogeneity parameter C, the ratio parameter ρ, and the

death-rate parameter δ, the posterior medians for the model with vague priors were close to the474

posterior medians for the model with experiment-based priors, but the posterior median of the

transmission rate ν̄ was meaningfully different from the median for the model with experiment-

based priors.477

It is also important to remember that the model with all-vague priors is the model that we

use as a proxy for more complex models that take into account processes above and beyond

the processes that take place on a single branch. From this perspective, the difference in poste-480

rior median transmission rates between the model with experiment-based priors and the model

with all-vague priors is important because the transmission rate ν̄ reflects the scale at which

interactions occur. Partly for this reason, ν̄ is in units of per infectious cadaver per m2, per day.483

To compare the fit of the model with all-vague priors to the fit of the model with experiment-

based priors, we first calculated the coefficient of determination r2 for each model. To define r2,

we first define SStot to be the total sum of squared errors across all observations in our data set:486

SStot =
n

∑
i=1

(Di − D̄)2. (13)

Here n is the total number of observations of the fraction infected in the epizootic data, Di is data

point i, and D̄ is the average fraction infected across all epizootics. SStot is thus the total variation

in the data set. Also, SSres is the residual sum of squares, defined as:489

SSres =
n

∑
i=1

1
R

R

∑
j=1

(Di −Mi,j)
2 (14)
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Here we are averaging across R = 500 model realizations. SSres thus measures the error between

the model and the data, which is the extent to which the model reproduces the data. We then

define r2 according to,492

r2 = 1− SSres

SStot
. (15)

We thus use r2 to calculate the fraction of the variance in the data that is explained by the model,

or alternatively, the extent to which the model produces better predictions of the epizootic data

than a simple prediction that the fraction infected at each time point in each population is equal495

to the average fraction infected across the entire dataset.

Because the model with vague priors was fit only to the epizootic data, its r2 value was guar-

anteed to be as good or better than the r2 value for the model with experiment-based priors. As498

we mentioned, however, the improvement in the r2 value turned out to be modest. An additional

important question is therefore, how much better is the fit of the model with vague priors than

the fit of the model with experiment-based priors? That is, does the model with vague priors501

provide a meaningfully better explanation for the data than the model with experiment-based

priors? To consider which processes in particular are poorly described by our experiments, we

also considered models that allowed for experiment-based priors on only some of the parameters504

for which we had experimental data.

We then used statistical model selection to compare the ability of the different models to

explain the epizootic data. Because Bayesian statistical techniques are fundamental to our ap-507

proach, we chose between models using the Watanabe-Akaike Information Criterion or WAIC, a

Bayesian version of the more familiar AIC (Gelman et al., 2014). In most applications of model

selection, the models being compared differ in structure, but in our case, the model structure, as510

defined by the random ODEs in equations (1)-(4), is the same for all models. Because WAIC is a

type of Bayesian information criterion, it allowed us to choose between models that differed only

in their prior probability distributions. We are thus carrying out model selection in an uncon-513

ventional way, but to our knowledge there is no established method of choosing between models
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with different priors. This is true even though estimating model parameters at a smaller scale

than the test data is a common procedure in disease ecology. Using small-scale data to construct516

priors is one way to estimate model parameters at a smaller scale than the test data, in a way that

allows for parameter uncertainty (Elderd et al., 2006). We therefore argue that WAIC is useful for

testing whether small-scale data can explain large-scale data.519

As we will show, the results of our WAIC analysis confirm the results of our comparisons of

posterior parameter estimates. That is, models with experiment-based priors on the transmis-

sion parameter fit the epizootic data substantially worse than models with vague priors on the522

transmission parameter. We therefore conclude that the dynamics of the baculovirus are partly

affected by processes at larger scales than the scale at which individual hosts interact.

Results525

Experiments

For two of the three virus strains that we tested, the overall best-fit model is clearly nonlinear

(fig. 1). The model with the best (lowest) overall WAIC score therefore includes host heterogene-528

ity in infection risk (Table 2). Fig. 1 also shows that the three isolates differed strongly, such that

the NM isolate had much higher heterogeneity in transmission, while the WA isolate had much

lower heterogeneity in transmission. These effects are reflected in the median posterior estimates531

of heterogeneity C for the three isolates (Table 1).

In the gypsy moth baculovirus, there is a negative correlation between the average and the

CV of transmission (Fleming-Davies et al., 2015). Table 1 at least suggests that such a correlation534

may similarly occur in the tussock moth baculovirus, but with only 3 isolates, we cannot reach

general conclusions. More immediately, the variation across isolates is important because, in

the epizootic data, we have no information about the isolates that were present. In constructing537

informative priors from our experimental data, we therefore allowed for variation across isolates

by pooling the marginal posterior distributions for the three isolates, and inflating the pooled
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Figure 1: Results of the field transmission experiment, with (a) the WA isolate, (b) TMB-1, and

(c) the NM isolate. In the figure, the solid lines represent the median model predictions, while

the gray dashed lines represent boot-strapped 95% credible intervals. The large black points with

error bars represent the mean and the standard error of the data.

variance slightly (Online Appendices).540

Comparing Models to the Epizootic Data

In the epizootic data, initial infection rates in control populations were low, but increased slowly

over the larval period (fig. 2), taking weeks to reach high levels. Sprayed populations in contrast543

received an initial inundation of the pathogen, and so their infection rates increased within a

week or two after the spray application. Host population collapse was therefore rapid in the

sprayed sites, leading to weaker effects of initial host density, as opposed to initial virus density.546

The model with experiment-based priors generally does a good job of reproducing the epi-

zootic data (fig. 2), with r2 = 0.68, while the model with vague priors improves on the fit only

modestly (fig. 3), with r2 = 0.75. The posterior estimates of the model parameters, however, show549

that the models provide quite different explanations for the dynamics of epizootics.

For both models, the posterior distributions of the heterogeneity parameter C, the ratio pa-

rameter ρ, and the speed of kill parameter δ strongly overlap with the posteriors from the ex-552
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Isolate Average transmission, ν̄ Host heterogeneity, C

WA 0.006 (0.003, 0.010) 0.60 (0.05, 1.52)

TMB-1 0.012 (0.004, 0.030) 1.52 (0.25, 2.51)

NM 0.076 (0.005, 3.104) 4.11 (2.15, 6.45)

Table 1: Best-fit transmission parameters (average transmission, ν̄, and heterogeneity, C) for

three viral isolates. Values are posterior medians with 95% credible intervals. Units on ν̄ are

per infected cadaver, per m2, per day. Heterogeneity is the squared C.V. of the distribution of

infection risk, and it is therefore scale free.

Model Type WA Isolate NM Isolate TMB-1 Overall

C > 0 175.53 179.48 165.06 520.07

C = 0, 174.28 199.11 168.45 541.84

Table 2: Model selection for the transmission experiment. The bold-faced WAIC scores highlight

the best model, based on ∆WAIC > 3.

perimental data (fig. 4). For models with intermediate numbers of experiment-based priors, the

posterior distributions of these three parameters also strongly overlap with the experimental pos-

teriors (fig. 5). These results suggest that our experimental estimates of heterogeneity C, the ratio555

parameter ρ, and the death rate parameter δ are all reasonably accurate, compared to estimates

that take into account epizootic data.

For both the unconstrained model and the model with experiment-based priors, however, the558

posterior median value for transmission ν̄ is very different from the experimental median. For

the model with experiment-based priors, the posterior median is roughly an order of magnitude

higher than the experimental median, and there is no overlap in the 95% credible intervals on ν̄561

in the two cases. For the model with all vague priors, the posterior median is almost two orders

of magnitude higher than the experimental median, and there is no overlap in the 95% credible

interval on ν̄ for that model with the 95% credible interval on ν̄ from the experimental data,564
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Figure 2: Stochastic realizations of the model with informative priors on ν̄, C, ρ, and δ, versus the

data (black points with 95% binomial confidence intervals as error bars). The labels C and T stand

for Control and Treatment (meaning treated with virus spray), respectively, and are followed by

the year of observation. The initial larval host density is also shown. Note that for the Colorado

site (C3-2015), the initial larval host density was estimated from the data. Here and in subsequent

figures, for two of the populations (C3-2015, C4-1987), we show the model’s predictions after the

last data point was collected, to illustrate the overall dynamics of the pathogen.

or with the 95% credible interval on ν̄ for the model with experiment-based priors (fig. 4). For

models with experiment-based priors on parameters other than ν̄, the posterior medians of ν̄ are

similarly higher than the experimental median, or the posterior medians for any models with567
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Figure 3: Stochastic realizations of the model that uses vague priors on all parameters, with

symbols and labels as in fig. 2.

experiment-based priors on ν̄ (fig. 5).

For the models with experiment-based priors on transmission, the posterior distributions of

transmission are thus concentrated at much lower values than the corresponding posteriors for570

the models with vague priors on transmission. This effect occurs because of the constraining ef-

fects of the experiment-based prior on transmission. The same models, however, are also strongly

constrained by the epizootic data, and so their posterior distributions of transmission parame-573

ters are concentrated at much higher values than the prior itself. The posterior distributions of

transmission rates for these models thus reflect the combined influence of the priors and the
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Figure 4: Comparison of posterior distributions for the 4 model parameters for which we have

small-scale experimental estimates: the average transmission rate ν̄, the heterogeneity in trans-

mission C, the ratio parameter ρ, and the death rate parameter δ. For each parameter, we com-

pare the posterior marginal distribution from our experimental data (purple), to the posterior

marginals when we fit models to the epizootic data. The latter distributions include the case

in which we used experiment-based priors (green), and the case in which we used uninformed

priors (orange). Points with error bars near the top of each panel show the median and the 95%

credible interval in each case. Note that each panel has a different scale on its horizontal axis.
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Figure 5: Summaries of the marginal posterior parameter estimates (columns) for all models

(rows), compared to the experiment-based prior distributions derived from experiments (dashed

lines). Dots are median values, while the horizontal bars show the 95% credible intervals. Note

that each panel has a different scale on its horizontal axis.

28

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 26, 2019. ; https://doi.org/10.1101/285080doi: bioRxiv preprint 

https://doi.org/10.1101/285080
http://creativecommons.org/licenses/by-nc-nd/4.0/


likelihood.576

Part of the reason why models with experiment-based priors on transmission still fit the

epizootic data reasonably well has to do with the effects of stochasticity on infection rates. As we

show in the Online Appendix, high stochasticity can also increase overall transmission. Because579

the experiment-based priors on the transmission rate ν̄ are centered at low transmission rates,

models that use experiment-based priors on transmission attempt to explain the epizootic data

using high stochasticity. The reasonably high r2 value for the model with experiment-based582

priors on most parameters is therefore due to high levels of transmission stochasticity. Although

it may be that baculovirus epizootics in nature are indeed strongly affected by stochasticity, a

more parsimonious explanation is that there is a mechanism operating in epizootics that is not585

in the model.

Comparison of WAIC scores then shows that the model with vague priors provides a much

better explanation for the data than the models with experiment-based priors on the transmission588

rate (Table 3), with ∆WAIC > 5 in all cases. We therefore conclude that, in this pathogen, small-

scale transmission is insufficient to explain large-scale epizootics.

That is not to say, however, that individual-level mechanisms do not play a role in epi-591

zootics. Evidence in support of the role of individual-level mechanisms comes from models

with experiment-based priors on parameters other than transmission. For these models, ∆WAIC

scores were less than 3, indicating that the fit of these models is effectively indistinguishable from594

the fit of the model with all vague priors. In the Online Appendices, we show that the visual fit

of these models to the data is very similar to the visual fit of the best model, for which all priors

were vague.597

Of particular note is that the posterior medians for the model with all vague priors, and for

the models with experiment-based priors on heterogeneity but not on transmission, are close to

the posterior median for heterogeneity from our experimental data. We therefore conclude that600

individual heterogeneity in transmission plays a key role in the dynamics of the baculovirus.

Overall, then, our results show that processes beyond the branch-scale affect epizootics, but that
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branch-scale processes also play an important role.603

An important feature of host-pathogen models with high heterogeneity is that they predict

lower infection rates at high host density, due to the dominating effects of resistant individu-

als, and higher infection rates at low host density, due to the presence of at least a few highly606

susceptible individuals (Dwyer et al., 1997). In figs. 2 and 3, infection rates were high across

a broad range of densities in both the data and the models, consistent with these effects. Also

because of these effects, models that do not account for heterogeneity provide poor fits to data609

from populations at either very low or very high densities (Table 3, also see Online Appendices).

Experiment-Based Priors On . . .
Average Likelihood

∑−log( ˆ̄L)

Penalty Score

pWAIC2

WAIC ∆WAIC

No parameters -197.33 5.95 406.58 0

δ -197.05 6.34 406.79 0.21

C ρ δ -197.77 7.00 409.52 2.94

C -197.09 7.71 409.61 3.03

ρ -198.38 7.44 411.64 5.06

ν̄ -199.20 7.08 412.57 5.99

C ρ δ ν̄ -198.13 8.55 413.37 6.79

No parameters, C = 0a -208.62 No Convergence

Table 3: WAIC model selection for observational data. Models for which ∆WAIC<≈ 3 are

considered to be indistinguishable from the best model, and are therefore shown in bold face.

aBecause the model with no heterogeneity in transmission (C = 0) did not converge, the average

likelihood for that model is a rough estimate based on non-converged MCMC samples.

Taken together, these results provide a complicated answer to our original question: are inter-

actions between individual hosts on single branches sufficient to explain baculovirus epizootics612

in entire forests? The large differences in posterior values of transmission ν̄ between the model

with all vague priors, and the models with experiment-based priors on transmission, as well as
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the worse WAIC scores of models with experiment-based priors on transmission, suggest that615

there are processes affecting epizootics besides interactions between hosts on single branches,

and thus that the answer to our question is no. The ability of models with experiment-based

priors on heterogeneity in transmission nevertheless emphasizes that branch-scale processes also618

play a key role.

Discussion

The assumption that interactions between individual hosts at a small scale determine infection621

and parasitization rates has been fundamental to studies of host-pathogen and host-parasitoid

interactions for decades (Anderson and May, 1979; Varley et al., 1973). A common approach to

understanding pathogen or parasite dynamics is therefore to estimate transmission rates from624

small-scale data or laboratory data (Blackwood et al., 2013; Buhnerkempe et al., 2011; George

et al., 2011). Our results for the baculovirus of the Douglas-fir tussock moth instead show that

estimating transmission from small-scale data provides a meaningfully worse fit to large-scale627

data than if transmission was estimated from the large-scale data alone. Our work therefore

suggests that small-scale interactions between hosts are insufficient to explain the dynamics of

this pathogen.630

Direct tests of general models require specific biological systems, but we nevertheless argue

that our results are of general significance. The basis of our argument is that, among animals,

environmentally transmitted pathogens may be the rule rather than the exception (Cory and633

Myers, 2003; Duffy and Sivars-Becker, 2007; Mihaljevic et al., 2018; Rohani et al., 2003). Our

results then suggest that, for such diseases, models that include only small-scale interactions

between hosts may often be insufficient.636

Our work does not definitively identify spatial structure as the missing mechanism in our

models, but the failure of models that rely on branch-scale estimates of transmission at least

suggests that the missing processes in our models operate at larger scales than the scale of639
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our experiment. Moreover, there are several important factors that likely affect the pathogen

but that are not included in our models, and each of these factors involves spatial structure or

environmental heterogeneity.642

First, Douglas-fir tussock moth larvae can grow and develop on multiple different host tree

species, and forest tree-species composition varies strongly across the insect’s range (Shepherd

et al., 1988). In British Columbia, Douglas fir is the dominant host tree species, while Abies645

species predominate in California and Nevada, with intermediate frequencies in other parts of

the western USA. This is important because previous work showed that the transmission of the

gypsy moth baculovirus can be strongly affected by variation in plant foliage chemistry (Elderd648

et al., 2013). If similar effects occur in the tussock moth baculovirus, differences in forest tree-

species composition may have modulated epizootics in a way that was not accounted for in the

model with experiment-based priors.651

Second, although all 3 of the baculovirus isolates in our experiments were of the multicapsid

or OpMNPV morphotype, in which viral capsids occur in clumps within occlusion bodies, there

is a second, unicapsid or OpSNPV morphotype that occurs in tussock moth populations in na-654

ture, in which viral capsids occur singly within occlusion bodies (Hughes and Addison, 1970).

The frequencies of the two morphotypes appear to vary latitudinally, with high frequencies of

OpMNPV in British Columbia, high frequencies of OpSNPV in New Mexico, and intermediate657

frequencies in Washington, Oregon, Idaho, and California (Williams et al., 2011). Although not

much is known about differences in phenotypes between the morphotypes, phylogenetic anal-

yses have shown that the two are at least moderately diverged (Jakubowska et al., 2007), and it660

therefore seems likely that the phenotypes of the two morphotypes differ. This seems especially

likely given that we observed meaningful differences in transmission parameters even within the

three OpMNPV strains that we used in our experiment. Variation in morphotype frequency is663

thus a second possible missing mechanism in the model with experiment-based priors, while

interactions between morphotypes and host-tree species provide yet a third possible missing

mechanism.666
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Finally, tussock moth larvae are often observed to be at higher densities near the tops of

trees, and this aggregation may increase infection rates relative to our experiments (Dwyer and

Elkinton, 1993). Superficially, it seems unlikely that this mechanism plays a key role, because our669

estimates of over-dispersion levels are modest, but theory has shown that modest clumping can

sometimes have strong effects (Bolker and Pacala, 1999). Clumping is therefore a final possible

missing mechanism in the model with experiment-based priors.672

Likely explanations for the missing mechanisms in the model thus have largely to do with

spatial structure. We therefore advocate the further development of spatial theory in disease

ecology. In particular, spatial models in disease ecology have often focused on traveling waves675

and other dramatic spatial phenomena (Dwyer, 1992), reflecting the focus of spatial models in

ecology as a whole (Murray, 1989). Our work in contrast suggests that an unresolved question is,

how do spatial patchiness and environmental heterogeneity together drive temporal dynamics?678

This is a long-standing problem in ecology (Bolker and Pacala, 1999), but our work suggests that

solutions to the problem may have practical applications in pest control.

There are also two ways in which our work emphasizes the importance of stochasticity in681

pathogen dynamics. First, all of our models invoke substantial stochasticity to fit the epizootic

data. The models with experiment-based priors on transmission have particularly high posterior

estimates of stochasticity, not only because randomness helps those models better fit the epi-684

zootic data, but also because higher stochasticity by itself increases infection rates (in the Online

Appendices, we prove this assertion). This effect occurs because increased stochasticity in trans-

mission increases the frequency of both very low and very high transmission rates, but higher687

transmission rates have disproportionately stronger effects on the infection rate. For the models

with experiment-based priors on transmission, the fitting routine therefore attempted to fit the

epizootic data using high levels of stochasticity. This leads to more uncertain predictions, which690

is part of the reason why those models have larger (worse) WAIC scores.

Second, it is not clear that our models include the correct type of stochasticity. To explain this,

we note that, because we fit a separate value of stochasticity to each population, it is possible to693

33

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 26, 2019. ; https://doi.org/10.1101/285080doi: bioRxiv preprint 

https://doi.org/10.1101/285080
http://creativecommons.org/licenses/by-nc-nd/4.0/


consider how stochasticity varied with host density. In the unsprayed populations in particular,

the median posterior values of stochasticity were smaller in populations with higher initial host

densities (Online Appendix). The stochasticity associated with small population sizes, known696

as “demographic stochasticity” (Bolker, 2008), may therefore have been more important than the

environmental stochasticity that we included in our models. Because similar effects did not occur

in the sprayed populations, we suspect that any such demographic stochasticity has do to with699

low initial densities of the pathogen, rather with low initial densities of hosts. Moreover, it seems

likely that any such demographic stochasticity is compounded by the effects of space, because

the number of occlusion bodies on a branch is of course much smaller than the total number of702

occlusion bodies in a forest.

In making these points, we are not arguing that a lack of consideration of demographic

stochasticity means that our results were flawed, because we suspect that allowing for demo-705

graphic stochasticity instead of environmental stochasticity would have given similar results.

Our larger point is instead that further development of spatial models should also include care-

ful consideration of the effects of stochasticity, and how stochasticity is compounded by spatial708

structure.

Although branch-scale transmission is insufficient to explain the dynamics of the Douglas-

fir tussock moth baculovirus, it is important to remember that models with experiment-based711

priors on heterogeneity in transmission fit the data nearly as well as the model with vague

priors. Individual-level mechanisms thus also play a key role in the dynamics of this pathogen.

In disease ecology, host heterogeneity is typically only invoked in studies of sexually transmitted714

infections of humans (Keeling and Rohani, 2008), but our work suggests that host variation may

have effects in many systems. Detecting such effects, however, may require a consideration of

individual-scale data, as emphasized by Murdoch et al. (2005). Although individual data are717

unavailable in many host-pathogen systems, recent work has used measurements of antibody

kinetics in individual hosts to estimate the force of infection (Pepin et al., 2017). A similar

approach may allow for estimation of heterogeneity in host transmission.720
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Our estimates of heterogeneity C are also relevant to insect-pathogen population cycles. As

fig. 4 shows, a substantial fraction of our posterior estimates of C are greater than 1, and for

the model with vague priors, the lower bound on the 95% credible interval is above 1. This is723

important because, in simple, long-term models of insect outbreak cycles, values of heterogeneity

C > 1 guarantee a stable point equilibrium (Dwyer et al., 2000). In such models, however, C > 1

can instead allow cycles if resistance is heritable, so that selection by the virus drives fluctuations726

in resistance (Elderd et al., 2008). Given that there is overwhelming evidence that Douglas-fir

tussock moth populations have cyclic outbreaks (Mason, 1996), our estimates of heterogeneity

suggest that selection plays a role in tussock moth population cycles, much as selection plays a729

role in gypsy moth population cycles (Páez et al., 2017).

Our Bayesian approach allowed us to show that our small-scale experimental data are not

sufficient to explain the dynamics of the tussock moth baculovirus at large scales, even though732

the model with experiment-based priors fits the data fairly well. We therefore echo Restif et al.

(2012)’s argument that Bayesian methods can allow for deep insights into disease dynamics.

Moreover, in ecology, mechanistic model-fitting and high-performance computing are typically735

applied only to observational data (Ionides et al., 2015). This is problematic partly because

a reliance on observational data alone can lead to flawed inferences (Cobey and Baskerville,

2016), but more broadly because mechanistic model-fitting is rarely used in experimental field738

ecology. By using model-fitting and high-performance computing to synthesize experimental and

observational data, we hope to have shown that such tools can indeed be useful in experimental

field ecology. The computational methods that we present here may therefore be of general741

usefulness.
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