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Abstract

Mathematical models have provided important insights into infectious disease spread in ani-

mal populations, but are only rarely used in environmental management. Part of the problem3

may be that direct tests of the models have focused on long-term model predictions, whereas

short-term epizootics (= epidemics in animals) can sometimes be more informative about mech-

anisms of disease transmission. To illustrate this point, we tested models of density-dependent6

disease transmission and host variation in infection risk using multiple, single-host-generation

epizootics of a fatal baculovirus of the Douglas-fir tussock moth (Orgyia pseudotsugata). The tus-

sock moth baculovirus causes epizootics naturally, but because of its narrow host range, it is used9

in biological control to mitigate defoliation, an approach known as “microbial control”. Using

a combination of experiments, observational data, and nonlinear-fitting algorithms, we fit a set

of stochastic epidemiological models to data from tussock moth microbial control programs. We12

then used formal model comparisons to show that there are strong effects of host and pathogen

density and host variation on epizootic severity, and that transmission events at small scales help

explain epizootic severity at large scales. When host density is high, even very low initial virus15

densities can lead to high cumulative infection rates, suggesting that, in some cases, baculovirus

sprays may have been applied to populations that would have collapsed from natural epizootics,

even without intervention. Our study illustrates the usefulness of linking epidemiological mod-18

eling and nonlinear fitting routines in understanding animal diseases, and shows that simple

models can provide important guidance for microbial control programs.
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Introduction21

Efforts to use epidemiological theory to understand animal host-pathogen interactions often fo-

cus on long-term dynamics (Keeling and Rohani, 2008), following Anderson and May’s champi-

oning of host-pathogen models that allow for host reproduction (Anderson and May, 1979; May24

and Anderson, 1979). Anderson and May’s point that host reproduction is important over the

long term is inarguable, but for many pathogens, seasonality prevents transmission for part of

the year (Altizer et al., 2006). Seasonality may prevent transmission if there are seasons when the27

vector is not present (Ruder et al., 2015), or when the pathogen does not co-occur with its host

(Mihaljevic et al., 2017), or when the host is in a life stage that the pathogen cannot infect (Cory

and Myers, 2003). In such cases, models of single epizootics (= epidemics in animals) may be30

more useful than models of long term disease dynamics.

Comparison of single-epizootic models to short-term data may also be more useful for an-

swering basic questions in disease ecology (O’Dea et al., 2014). Here we ask, how do host and33

pathogen density and host heterogeneity in infection risk affect disease spread? Simple models

have shown that both factors can strongly affect disease spread (Keeling and Rohani, 2008), but

the importance of either factor in nature is unclear (McCallum, 2016). Part of the problem may36

be that, over the long term, the effects of density and host heterogeneity are manifest mostly

through changes in equilibrium host and pathogen densities (Anderson and May, 1980), but

inferring mechanisms of population change from equilibrium densities is notoriously difficult39

(Bolker, 2008). Over the short-term in contrast, changes in host and pathogen densities can dra-

matically alter infection rates (Dwyer and Elkinton, 1993), while heterogeneity in host infection

risk can strongly modulate the effects of density (Anderson and May, 1992; Dwyer et al., 1997).42

Here we use data on single epizootics to infer the effects of host and pathogen density and

host heterogeneity on the spread of an insect baculovirus. Because baculoviruses have narrow

host ranges and are obligately lethal (Hunter-Fujita et al., 1998; Moscardi, 1999), baculovirus in-45

secticides have minimal effects on non-target species, a type of biological control known as “mi-
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crobial control” (Lacey et al., 2015). The data that we use come from microbial control programs

aimed at the Douglas-fir tussock moth, Orgyia pseudotsugata (Otvos et al., 1998, 1987), a major48

pest of Douglas-fir, Pseudotsuga menziesii, and true firs, Abies spp., in western North America

(Shepherd et al., 1988). Because managers often monitor infection rates in both sprayed treat-

ment populations and unsprayed control populations, and because microbial sprays can sharply51

raise pathogen densities, microbial control data allow for a broader range of infection rates and

pathogen densities than data from natural epizootics (Otvos et al., 1987).

In microbial-control data sets, even the sprayed populations are fundamentally observational,54

in the sense that post-spray conditions are uncontrolled. This is important because factors such as

host density and host heterogeneity in infection risk affect the rate at which individuals contact

each other and transmit the disease (Keeling and Rohani, 2008), but inferring individual-level57

mechanisms from observational data alone can be very difficult (King et al., 2008). Experiments

in contrast can provide deep insights into individual-level mechanisms, but may not include

mechanisms that occur in natural epizootics (Cory and Hoover, 2006). The problem of inferring60

how individuals affect population-level disease spread is especially difficult for baculoviruses,

because transmission occurs when uninfected larvae, while feeding on foliage, consume infec-

tious “occlusion bodies” released from dead, infected larvae (Cory and Myers, 2003). Baculovirus63

epizootics at the scale of forests are therefore widely assumed to be driven by transmission at

the scale of branches (Cory and Myers, 2003), but it is not obvious how this assumption can be

tested.66

The problem of how to relate individual-level mechanisms to population-level phenomena is

long-standing in ecology (Levin, 1992), however, and methods have therefore been proposed to

solve the problem. In one such method, the parameters of a mechanistic model are first estimated69

from data collected at the individual level, the parameters are then used in the model to make

predictions, and finally the model predictions are compared to data collected at the population

level (Kareiva and Odell, 1987). Agreement between model predictions and population-level data72

is then taken as confirmation that individual-level mechanisms can help explain population-level
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phenomena, on the grounds that agreement between large-scale data and a model parameterized

from small-scale data is unlikely to occur by chance.75

Implementations of this approach, however, typically use only point estimates of the model

parameters (Grimm et al., 2005; Keeling et al., 2003; Longini et al., 2005), neglecting the substan-

tial uncertainty in the parameter values (Elderd et al., 2006). Here we instead follow a formal78

Bayesian statistical approach, in which experimental data are used to construct prior distributions

on model parameter values, and observational epizootic data are used to calculate posteriors. To

assess whether our experimental data do in fact help us to understand the observational data, we81

then use the WAIC model-selection criterion (Gelman et al., 2014), to compare the fit of models

with priors constructed from experiments, to the fit of models with uninformative or “vague”

priors. As we will show, models with priors constructed from experimental data can some-84

times explain the observational data as well as models with uninformative priors, suggesting

that transmission at the scale of branches helps explain epizootics at the scale of forests.

Irrespective of the priors, the epizootic data are best explained by models that allow for87

density-dependent transmission and host variation in infection risk. This result is important

for microbial control, because naturally occurring epizootics have often decimated unsprayed

populations in the same year and in the same general area as epizootics initiated by baculovirus90

sprays (Polivka et al., 2012; Scott and Spiegel, 2002). The occurrence of epizootics in low density,

unsprayed populations has been a surprise to pest managers, but our results suggest that host

densities in control plots have been high enough to drive intense epizootics even when initial93

infection rates are very low, confirming basic epidemiological theory (Keeling and Rohani, 2008).

Using microbial control data to test disease models can thus produce useful insights into disease

ecology, while providing guidance for pest control.96

6

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 19, 2018. ; https://doi.org/10.1101/285080doi: bioRxiv preprint 

https://doi.org/10.1101/285080
http://creativecommons.org/licenses/by-nc-nd/4.0/


Methods

At roughly 10-year intervals (Mason, 1996), tussock moth densities rise from levels at which lar-

vae are undetectable, to levels at which defoliation is severe (Shepherd et al., 1988). The economic99

costs of timber losses drove the USDA Forest Service to propagate naturally occurring virus in

the lab, producing a formulation known as Tussock Moth Biocontrol-1, or ”TMB-1” (Martignoni,

1999). The USDA Forest Service has used TMB-1 widely in the western USA (Polivka et al., 2012;102

Scott and Spiegel, 2002; Shepherd et al., 1984), while the Canadian Forest Service has deployed a

similar formulation in British Columbia (Maclauchlan et al., 2009).

In spray formulations, baculovirus from lab-reared insects is mixed with water or oil and105

sprayed onto foliage from the air using helicopters, or more rarely from the ground using hoses.

Unsprayed control populations are often established in areas that are of lesser concern, because

of lower tussock moth densities or less valuable timber. The occurrence of epizootics in controls108

has been surprising not just because initial infection rates were consistently low, roughly 0.5% in

one study (Polivka et al., 2012), but also because the controls were far enough from spray plots

(1-50km) that virus drift between plots was unlikely (Otvos et al., 1987; Polivka et al., 2012; Scott111

and Spiegel, 2002).

Because higher initial densities of virus in sprayed plots have not always led to higher mor-

tality relative to control plots, managers have hypothesized that naturally occurring virus may114

be more infectious than sprayed virus (Polivka et al., 2012), possibly because of the effects of

prolonged low-temperature storage on the sprayed virus (Reed et al., 2003). Epidemiological

theory, however, suggests that high virus mortality in control plots may instead have been due to117

the amplifying effects of multiple rounds of transmission. To test these competing hypotheses,

and to test general theories of pathogen spread, we built competing epidemiological models,

and we fit the models to data on epizootics in sprayed and unsprayed Douglas-fir tussock moth120

populations. Our competing models assume either that sprayed and naturally occurring bac-

uloviruses have the same transmission rates, or that sprayed virus has a different (presumably
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lower) transmission rate. We fit our models using a non-linear model-fitting algorithm (Kennedy123

et al., 2014), and we chose the best model using the Watanabe-Akaike Information Criterion

(WAIC), a Bayesian generalization of the more traditional Akaike Information Criterion (AIC)

(Gelman et al., 2014; Hooten and Hobbs, 2015; Watanabe, 2010, 2013).126

We also tested whether parameters based on our experiments produce accurate model pre-

dictions. To do this, we used our experimental data to construct prior distributions on the

parameters, and we used our observational data to calculate the likelihood of the parameters.129

Under Bayes’s law, priors and likelihoods together make up the posterior distribution of the

parameters, which can be used to calculate WAIC scores. We then compared WAIC scores for

the case in which we used uninformative priors, to the cases in which we used priors based on132

experimental data.

Priors that are constructed from data are usually referred to as “informative priors”, because

they constrain the prior distribution in a way that improves the model’s ability to make predic-135

tions. Informative priors therefore add information to the model, much in the way that including

additional data in a likelihood calculation adds information to the model (Bernardo and Smith,

2009). When we use ecological field experiments to construct priors, however, the priors may not138

improve the model’s ability to predict observational data, because experiments are often carried

out at smaller scales than the scales at which natural phenomena occur (Kareiva and Andersen,

1988). This is especially true in our case, because our experiments were carried out on single141

branches, whereas the epizootic data were collected in forest plots of up to 10 hectares.

Our experiment-based prior distributions might therefore be constrained in a way that biases

the model predictions and leads to a poorer likelihood. In our case, testing whether priors based144

on our experiments lead to inaccurate or imprecise model predictions is equivalent to testing

whether branch-scale transmission processes help determine the dynamics of forest-scale epi-

zootics. By allowing us to compare models with vague priors to models with priors constructed147

from the experimental data, the WAIC therefore allowed us to test whether our experiment-based

priors provided useful information about our observational data, and thus whether small-scale
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transmission helps drive large-scale epizootics.150

Because our experiments were carried out at a much smaller scale than the scale of epizootics,

it was almost inevitable that priors based on the experiments would produce larger, inferior

WAIC scores than models with uninformative priors. As we will show, however, for models153

with priors based on experiments, WAIC scores were only moderately worse. Experiment-based

priors therefore improved our understanding of the mechanisms driving epizootics, even though

these priors slightly reduced the accuracy and precision of the model predictions.156

Baculovirus Natural History and a Stochastic SEIR Model

In herbivorous insects like the tussock moth, baculovirus transmission occurs when larvae ac-

cidentally consume infectious virus particles known as ”occlusion bodies”, leading to death159

roughly two weeks later (Cory and Myers, 2003). Shortly after death, viral enzymes dissolve

the insect integument, releasing occlusion bodies onto the foliage, where they are available to be

consumed by additional larvae (Miller, 1997). Multiple rounds of infection can occur during the162

larval period, which is early June to mid-August in our study areas in Washington, Idaho, and

Colorado, USA, and British Columbia, Canada. The severe epizootics that result can decimate the

insect population, especially when larval densities are high (Otvos et al., 1987; Shepherd et al.,165

1984).

Epizootics are terminated by larval pupation, or by reductions in host density that are so

severe that the probability of transmission is extremely low (Fuller et al., 2012). The virus then168

survives until the next spring by contaminating egg masses, although survival on the forest floor

may also play a role (Thompson and Scott, 1979). So far as can be known, the Douglas-fir tussock

moth is the only organism in its range that is susceptible to the baculovirus, although Orgyia171

spp. from other parts of North America have been successfully infected in the lab (Rohrmann,

2014).

Because pathogen transmission and host reproduction occur at different times of the year, we

can describe baculovirus epizootics using a model of a single epizootic. We began with a standard
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Susceptible-Exposed-Infectious-Recovered or ”SEIR” model from human epidemiology (Keeling

and Rohani, 2008), and we modified the model to allow for heterogeneity in host infection risk.

Heterogeneity in infection risk includes a stochastic component that reflects the effects of weather,

and a deterministic component that reflects inherent differences between hosts. The model is:

dS
dt

= −ν̄eεt SP
[

S(t)
S(0)

]C2

, (1a)

dE1

dt
= ν̄eεt SP

[
S(t)
S(0)

]C2

−mδE1, (1b)

dEi

dt
= mδEi−1 −mδEi (i = 2, . . . , m), (1c)

dP
dt

= mδEm − µP. (1d)

As in standard SEIR models, susceptible hosts S that become infected proceed through m174

exposed classes, Ei. Exposed hosts eventually die of the infection, joining the infectious-cadaver

class P, which is equivalent to the the I class of standard models. Cadaver infectiousness de-

cays at rate µ, due mostly to UV radiation (Thompson and Scott, 1979). Hosts move between177

exposed classes at rate mδ, so that the time spent in a single exposed class follows an exponential

distribution with mean time 1/(mδ). The total time in the m exposed classes is the sum of m

such distributions, and a well-known theorem has shown that the sum follows a gamma distri-180

bution with mean, 1/δ, and variance, 1/(mδ2) (Keeling and Rohani, 2008). For the tussock moth

virus, the variance in the speed of kill is quite low (Dwyer (1991), also Online Appendices), so in

practice we fixed m = 200, rather than estimating m from the observational data.183

The term
[

S(t)
S(0)

]C2

allows for inherent host variation in infection risk, following models orig-

inally developed for the gypsy moth baculovirus (Dwyer et al., 1997). This term reflects an

assumption that there is a distribution of infection risk in the host, with mean ν̄ and coefficient186

of variation C, where individual infection risk is represented by the transmission rate ν (Dwyer

et al., 2000). This is an approximation to a more computationally intensive partial-differential

equation model. The approximation is highly accurate if transmission rates follow a gamma189

distribution, but it is also reasonably accurate if transmission rates instead follow a log-normal
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distribution, which has a fatter tail than a gamma distribution (G. Dwyer, unpublished). In gen-

eral, we assume that transmission occurs among larvae in the fourth instar (= larval stage), the192

instar that has the biggest impact on cumulative infection rates (Dwyer, 1991; Otvos et al., 1987).

To allow for the smaller size of hatchlings, we multiply the initial virus density by the “ratio”

parameter, ρ, which is equivalent to the ratio of the number of virus particles produced by a195

first-instar cadaver to the number produced by a fourth-instar cadaver.

By including the parameter εt, we allow for daily, stochastic fluctuations in average trans-

mission ν̄, such that the value of εt for a given day is drawn from a normal distribution with198

mean 0 and standard deviation, σ. By exponentiating εt, we eliminate the possibility of negative

transmission, which would be biologically meaningless. Allowing for stochasticity is important

because baculovirus transmission varies due to changes in insect feeding behavior, which in201

turn may respond to stochastic fluctuations in weather (Eakin et al., 2015). Also, stochasticity

may interact in complex ways with disease dynamics, such that the model predictions become

more or less variable as an epizootic proceeds, or as initial host and pathogen densities vary204

between epizootics. By including stochasticity, we allow for this type of variation, ensuring that

our estimation procedures are statistically robust. Because weather conditions likely also varied

between populations, we estimated a value of the standard deviation σ for each population in207

our observational data set.

Although the model includes biological details that are not included in classical disease mod-

els (Kermack and McKendrick, 1927), the model’s dynamics are qualitatively similar to the dy-210

namics of classical models, as shown by fig. 1 for the deterministic case (stochasticity σ = 0).

Notably, there is a threshold value of the uninfected-host density at µ
ν̄ , above which the introduc-

tion of a small density of infectious hosts will lead to an increase in the density of infected hosts,213

and below which the density of infected hosts will always decline. If the density of uninfected

hosts is far enough above the threshold, severe epizootics may occur even if the initial density

of infected individuals is very low. This behavior is a basic feature of density-dependent disease216

models (Keeling and Rohani, 2008), and it plays a key role in explaining baculovirus epizootics
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in unsprayed populations.
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Figure 1: Dynamics of the deterministic version of the stochastic SEIR model, equations 1. (a)

Simulated 50-day epizootic, showing only infected and susceptible host densities. In the model,

the total infected host density is equivalent to the sum of the densities in the exposed classes,

∑ Em. (b) From the same simulation, the fraction of the host population that is infected, calculated

as ∑ Em
∑ Em+S . (c) Phase portrait of the same simulation.

To test whether naturally occurring virus and sprayed virus differ in infectiousness ν̄, we219

fit two classes of models (Polivka et al., 2017). In the “1-ν̄” class, we assumed that the average

transmission rate was the same for naturally occurring virus and sprayed virus. The 1-ν̄ models

therefore assume that differences in infection rates between epizootics were due only to differ-222

ences in initial densities of hosts and pathogens. In the “2-ν̄” class of models, we instead allowed

for the possibility that sprayed virus has a different infectiousness than natural virus, as reflected

in differences in transmission parameters ν̄ between sprayed and unsprayed plots.225

The epizootic data

Our epizootic data came from 7 unsprayed control plots and 5 sprayed treatment plots. At the

beginning of the larval period at each site, initial host and pathogen population densities were228

estimated using standard methods, which provided initial conditions for our models (Online
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Appendices). The data consist of approximately weekly observations of the fraction of larvae

infected with the virus, for up to 50 days, approximately mid-June to mid-August. In sprayed231

plots, insects were collected within 7 days after application of the virus, while in control plots,

the start of collections was more variable, particularly at sites where there was no concurrent

spray project. Collected insects were reared in the lab in individual 2 oz (59.1 ml) cups with234

artificial diet at 25◦C until pupation or death. Smears from dead insects were examined under

a light microscope for the presence of occlusion bodies, which are easily visible at 400× power

(Fleming-Davies et al., 2015; Polivka et al., 2017).237

Experimental data

To estimate average transmission ν̄ and heterogeneity in transmission C, we used a field ex-

periment in which we allowed for a single round of transmission on Douglas-fir branches in240

the field. Measuring transmission in the field ensures that larval feeding, and thus baculovirus

transmission, occur naturally (Cory and Hoover, 2006). We then fit a simplified version of our

SEIR model to the fraction of insects infected in the experiment (Online Appendices). We used243

three baculovirus isolates: TMB-1, the isolate used for biocontrol, and two naturally occurring

isolates collected from Washington and New Mexico, which we refer to as “WA” and “NM”.

Each branch encompassed roughly 0.15 m2 of foliage, whereas our epizootic data were collected246

in populations that covered roughly 10 hectares.

To estimate the average speed of kill, 1/δ, we infected larvae by allowing them to feed on

Douglas-fir foliage that was contaminated with a sprayed virus solution (Online Appendices).249

Because there is no reason to believe that laboratory conditions lead to biased estimates of the

speed of kill, this experiment was carried out in the laboratory. Because speed of kill is affected

by temperature, we were careful to hold the larvae at temperatures typical of field conditions252

(Polivka et al., 2017).

To estimate the ratio parameter, ρ, we again infected larvae in the laboratory, but in this case

we infected both hatchlings and fourth instars using virus-contaminated artificial diet (Online255
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Appendices). We held these larvae in the lab until death or pupation, and we counted the

number of occlusion bodies per dead larva for both instars, using a light microscope and a

hemocytometer.258

Model fitting and model selection

Modern methods of fitting models to data generally rely on calculations of likelihood scores,

which are measures of the goodness of fit of a model. On a log scale, and with a normal like-261

lihood function, maximizing the log likelihood is equivalent to minimizing the sum of squares.

In our case, however, the data are fractional infection rates, and so we used a beta-binomial like-

lihood function, which allows for the binomial nature of the data, while also allowing for the264

possibility of extra-binomial variation ((McCullagh and Nelder, 1989), also Online Appendices).

Because our experimental and observational data sets are independent, we could have calculated

likelihoods by simply adding the log likelihoods of the two data sets, following a maximum-267

likelihood approach (Bolker, 2008). If we had added experimental and observational likelihoods,

however, the total likelihood score would have been very different than if we had only calculated

likelihoods based on the observational data. A maximum likelihood approach would thus make270

it impossible to formally compare model predictions with and without the experimental data.

We therefore followed a Bayesian approach. Bayes’ theorem can be written as:

P(θ|D) ∝ π(θ)L(θ|D), (2)

where P(θ|D) is the posterior probability of the model fit to data D. The symbol π(θ) is the prior273

probability of the parameter values, and L(θ|D) is the likelihood of the parameters. Because in

general posterior probabilities are only used for comparison purposes, we only need to calculate

the posterior probability up to a constant of proportionality, hence our use of the proportion276

symbol ∝.

The posterior distribution of the parameters for each model can then be used to calculate a

WAIC score for that model. Like AIC and other model-selection criteria (Konishi and Kitagawa,279
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2008), WAIC identifies the best model by balancing the poorer fit of simpler models against the

more uncertain predictions of more complex models (Gelman et al., 2014). Unlike AIC, however,

WAIC is fully Bayesian, and so in calculating the ability of the model to predict future or out-of-282

sample data, WAIC takes into account the effects of the model’s priors on the model’s predictive

performance (Online Appendices). Although it is possible for a model with priors constructed

from experimental data to have a better (lower) WAIC score than a model with uninformative285

priors, given the difference in scales between our experimental data and our epizootic data, such

an outcome seems unlikely. For models with priors based on experiments, we therefore treat

WAIC scores that are only modestly worse (larger) than the best score as an indication that288

mechanisms at a small scale help to explain disease spread at a large scale.

Results

Epizootics291

The number of larvae collected varied between studies due to differences in overall design, initial

host density, and the resources available for collections. Also, near the end of epizootics, sample

sizes usually dropped because high baculovirus mortality made it hard to find live larvae (cadav-294

ers disintegrate too rapidly to allow for meaningful collections). The number of larvae collected

per week therefore ranged from 7 to 197, with a mean of 95.6, and with a total across sites of 5830

(Otvos et al., 1987; Polivka et al., 2012; Scott and Spiegel, 2002). In fitting our models, we then297

had 61 observations of virus infection rates, 30 at control sites and 31 at sprayed sites. Initial host

densities spanned almost two orders of magnitude, ranging from 7.20 to 232.0 larvae/m2, with a

mean of 103.2. The control and sprayed sites had similar ranges and means of initial larval host300

density (Online Appendices).

Initial infection rates in controls were low, but increased slowly over the larval period (fig. 2),

as expected, such that it took weeks for the infection rate in populations with lower initial host303

densities to reach high levels. Sprayed sites in contrast received an initial inundation of the

15

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 19, 2018. ; https://doi.org/10.1101/285080doi: bioRxiv preprint 

https://doi.org/10.1101/285080
http://creativecommons.org/licenses/by-nc-nd/4.0/


pathogen, and so infection rates in those sites increased within a week or two after the spray

application. Host population collapse was therefore rapid in the sprayed sites, leading to weaker306

effects of initial host density.

0
0.
5

1 C1-2010
7.2 larvae/m2

C2-1987
44.35 larvae/m2

C3-2015
49.63 larvae/m2
(model estimated)

0
0.
5

1 C4-1987
112.09 larvae/m2

C5-2010
126.08 larvae/m2

C6-2010
149 larvae/m2

0
0.
5

1 C7-1987
165.39 larvae/m2

T1-2010
8.99 larvae/m2

T2-1987
34.27 larvae/m2

0
0.
5

1

0 25 50

T3-1987
124.08 larvae/m2

0 25 50

T4-1987
172.65 larvae/m2

0 25 50

T5-1987
232.03 larvae/m2

Time (days)

Fr
ac

tio
n 

In
fe

ct
ed

Figure 2: Stochastic realizations of the best fitting model (gray lines), which uses uninformative

priors on all parameters, versus the data (black points with 95% binomial confidence intervals as

error bars). The labels C and T stand for Control and Treatment, respectively, and are followed by

the year of observation. The initial larval host density is also shown. Note that for the Colorado

site (C3-2015), the initial larval host density was estimated from the data. Here and in subsequent

figures, for two of the populations (C3-2015, C4-1987), we show the model’s predictions after the

last data point was collected, to illustrate the overall dynamics of the pathogen.
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Experiments

Compared to the case in which hosts are identical, variation in risk leads to higher infection rates309

at low virus density, because some hosts are highly susceptible, and lower infection rates at high

virus density, because some hosts are highly resistant (Dwyer et al., 1997). On a log scale, the

fraction uninfected is then a nonlinear (concave) function of baculovirus density (Online Appen-312

dices). For two of the three strains that we tested, the best-fit model has a strongly nonlinear

shape (fig. 3), and so the model that provides the best overall explanation for our experimental

data includes host heterogeneity in infection risk.315
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Figure 3: Results of the field transmission experiment. Best-fit transmission parameters (average

transmission, ν̄, and heterogeneity, C) for three viral isolates, in terms of medians with interquar-

tile ranges. (a) WA (ν̄: 0.006 (0.004, 0.007); C: 0.60 (0.34, 0.93)), (b) TMB-1 (ν̄: 0.012 (0.009, 0.017);

C: 1.52 (1.17, 1.88)), and (c) NM (ν̄: 0.076 (0.027, 0.309); C: 4.11 (3.31, 4.96)). In the figure, the

solid lines represent the median fitted expectations assuming heterogeneity. The gray dashed

lines represent boot-strapped 95% credible intervals. Error bars are one standard error of the

mean.

Fig. 3 also shows that the three isolates differed strongly, such that the NM isolate had much

higher heterogeneity in transmission, and in general higher average transmission rates ν̄ were

associated with higher variation in transmission C. With only 3 isolates, we cannot reach general318
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conclusions, but in the gypsy moth baculovirus, more extensive data revealed a negative corre-

lation between the average and the CV of transmission, consistent with this pattern (Fleming-

Davies et al., 2015). A similar correlation may therefore occur in the tussock moth baculovirus.321

More immediately, the variation across isolates is important when we use our experimental data

to explain the epizootic data, because in the epizootic data, we have no information about the

isolates that were present. In constructing informative priors from our experimental data, we324

therefore allowed for uncertainty due to isolate variation by pooling the marginal posterior dis-

tributions for the three isolates and inflating the pooled variance slightly (Online Appendices).

When we measured the speed of kill of infected larvae in the laboratory, the average was327

14.9d, with very low variance. The mean value of the death rate is then δ = 1/14.9 = 0.067.

Because our sample size was modest (n = 38 larvae), we inflated the variance on the prior for

δ (Online Appendices). This precautionary variance inflation, however, had no effect on our330

results.

Model selection

In general, our MCMC routines converged rapidly, except for models with no heterogeneity in333

infection risk (C = 0, table 1). Relative to the no-heterogeneity case, heterogeneity in infection

risk modulates the effect of host density, such that, at high host density, heterogeneity reduces

infection rates, due to the dominating effects of resistant individuals, while at low host density,336

heterogeneity increases infection rates, due to the presence of at least a few highly susceptible

individuals (Dwyer et al., 1997). This effect is roughly apparent in fig. 2, in that infection rates

were high across a very broad range of densities. Because of this effect, models that do not339

account for heterogeneity provide poor fits to data from populations at either very low or very

high density.

This lack of fit led to a biased and highly uncertain value of the death rate parameter δ. In this342

obligately lethal pathogen, a fast death rate of infected-but-not-yet-infectious hosts causes more

rapid disease spread and thus higher infection rates. When fitting the no-heterogeneity model
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to the data from low-density populations, the fitting routine therefore attempted to improve the345

fit by increasing δ, so that the best (median) estimate was much higher than our experimental

estimate (median speed of kill (1/δ) = 5.17d, compared to an experimental median of 14.9d).

The necessity of also fitting the high-density populations, however, meant that δ was not well-348

identified, leading to a large upper bound (95% credible interval (Bayesian confidence bound)

on the speed of kill: 2.45 - 16.10d). Moreover, as we will show, the lower bounds on the credible

intervals for the heterogeneity parameters for all the 1-ν̄ models are well above zero (lowest 95%351

credible interval for C = 0.61, Online Appendices). Heterogeneity in infection risk therefore

appears to be substantial in tussock moth populations. We therefore conclude that heterogeneity

in infection risk plays a key role in epizootics of the tussock moth virus, and we do not consider354

the no-heterogeneity models further.

WAIC scores (table 1) then showed that the best explanation for the epizootic data comes from

models that assume that there is no difference between sprayed virus and naturally occurring357

virus. As table 1 shows, two of the 2-ν̄ models had ∆WAIC< 3, and were thus indistinguishable

from the best 1-ν̄ models (Bolker, 2008). For the best 2-ν̄ model, however, the credible interval

on the difference between the two values of ν̄ for the model included zero (CI: -0.13, 2.56, Online360

Appendices), indicating that the best 1-ν̄ model and the best 2-ν̄ model are effectively identical.

Because the 1-ν̄ model is more parsimonious, we conclude that differences in infectiousness

between sprayed virus (TMB-1) and naturally occurring virus were negligible. The epizootic data363

are thus better explained by models that allow only for differences in initial host and pathogen

densities across populations.

Table 1 also shows that, within the 1-ν̄ class of models, the model with uninformative priors366

on all parameters is the best model, as we expected. Nevertheless, for three 1-ν̄ models with pri-

ors based on experimental data, WAIC scores were less than about 3, and thus were effectively

indistinguishable from the score for the best model. These three models were the model with an369

informative prior on the death rate δ, a model with an informative prior on the heterogeneity pa-

rameter C, and a model with informative priors on δ, C, and the ratio parameter ρ. In the Online
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Model Informative Priors
Average Likelihood

∑−log( ˆ̄L)

Penalty Score

pWAIC2

WAIC ∆WAIC

1 ν̄

None -197.33 5.95 406.58 0

δ -197.05 6.34 406.79 0.21

C ρ δ -197.77 7.00 409.52 2.94

C -197.09 7.71 409.61 3.03

ρ -198.38 7.44 411.64 5.06

ν̄ -199.20 7.08 412.57 5.99

C ρ δ ν̄ -198.13 8.55 413.37 6.79

None, C = 0a -208.62 No Convergence

2 ν̄,

Spray & Control

δ -196.63 6.74 406.74 0.16

None -196.89 7.35 408.47 1.89

C ρ δ -196.46 8.81 410.54 3.96

ν̄, TMB-1b -198.24 9.10 414.68 8.10

Table 1: WAIC model selection for observational data. Models for which ∆WAIC<≈ 3 are consid-

ered to be indistinguishable from the best model, and are therefore shown in bold face. aBecause

the model with no heterogeneity in transmission (C = 0) did not converge, the likelihood score

for that model is a rough estimate based on non-converged MCMC samples. bFor this model, the

prior on the ν̄ value in the sprayed plots was based on our experimental estimate for the sprayed

virus, TMB-1.

Appendices, we show that the visual fit of these models to the data is almost indistinguishable372

from the fit of the best model, and here we discuss what this result means for the relevance of

our experiments for understanding epizootics.

First, our laboratory measure of the speed of kill, the inverse of δ, apparently provides a375

reasonably accurate representation of speeds of kill in nature. This is at least moderately sur-

prising, given that temperatures control death rates, and given that temperatures in nature likely
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fluctuate in a complex way, while temperatures in our lab experiment were tightly constrained.378

Temperature variation in nature may therefore play only a minor role in epizootic dynamics.

Our measure of the ratio parameter ρ may similarly be not that far from typical values of ρ in

nature. This result is perhaps less surprising, given that ρ depends only on counts of occlusion381

bodies, which are likely to be the same in the lab as in the field. The success of models with

experiment-based priors on heterogeneity C is more surprising, given that C was measured in

a field experiment. Mechanisms that affect variation in infection risk across individuals may384

therefore act in similar ways at the scale of single branches, and at the scale of entire epizootics.

In contrast, models that had informative priors on ν̄ provided meaningfully worse explana-

tions than the best model, with ∆WAIC values of 6 or more (Table 1). There may therefore be387

mechanisms operating at large spatial scales and long temporal scales that are not accounted for

in our experiments. For example, Douglas-fir tussock moth larvae tend to occur at slightly higher

densities near the crowns of trees (C. Mehmel, unpublished), and this aggregation may increase390

infection rates relative to our experiments (Dwyer and Elkinton, 1993).

Evidence for effects of such large-scale mechanisms on the transmission of this or other bac-

uloviruses, however, is almost entirely lacking (D’Amico and Elkinton, 1995; Dwyer, 1991). More-393

over, failed efforts to estimate the decay rate µ experimentally suggest that µ may be very low

for this virus (Dwyer (1991), Online Appendices). This is important because the median values

of µ estimated for models with experiment-based priors on transmission ν̄ are much lower than396

the median values of µ estimated for the other models. Better experimental estimates of µ might

thus support the models with experiment-based priors on ν̄.

The worse fit provided by the models with informative priors on ν̄ therefore may not have a399

direct biological interpretation. Instead, it may arise from the statistical effects of compounded

error in the observational and experimental data sets. Notably, our experimental estimate of ν̄

depends on our estimate of the ratio parameter ρ, such that high values of ρ lead to low estimates402

of ν̄ (Online Appendices). Estimating ρ is difficult enough that such underestimation may have

been a significant problem (Online Appendices), and this may be why our experimental estimate
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of ν̄ is substantially lower than the posterior median values of ν̄ from the cases in which we405

used uninformative priors (fig. 4). For the other parameters the posterior medians when we

used experiment-based priors were remarkably similar to the posterior medians when we used

uninformative priors.408

Also, the predictions of the SEIR model, equations (1a)-(1d), are quite sensitive to small

changes in the transmission parameter ν̄, but are only moderately sensitive to changes in the

heterogeneity parameter C (Dwyer et al., 1997). The models with informative priors on ν̄ may411

therefore have performed poorly because small errors in our estimate of ν̄ have bigger effects

than small errors in our estimate of C. This problem may have been made worse by the strong

variation across pathogen isolates that is apparent in our experimental data (fig. 3), a point that414

we consider further in the Discussion. Moreover, the fit to data of the model with experiment-

based priors on C, ρ, δ, and ν̄ is only slightly worse (fig. 5) than the fit of the model with all

uninformative priors (fig. 2), in spite of the former model’s substantially worse WAIC score.417
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Figure 4: Marginal posterior parameter estimates (columns) from the 1-ν̄ class of models (rows),

compared to the informative prior distributions derived from experiments (dashed lines). Dots

are median values, while bars are 95% credible intervals. Note that each panel has a different

scale on its horizontal axis.

Another reason why the models with informative priors on the transmission parameter have

larger (poorer) WAIC scores is that the best way for these models to fit the low-density plots

is by assuming that stochasticity was higher in those plots, an effect that is clearly apparent420
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in fig. 5. Increased stochasticity produces poorer WAIC scores because the model-complexity

term increases with the variance in the likelihood, which of course increases with stochastic-

ity. Surprisingly, however, increased stochasticity also increases infection rates. This is because423

increased stochasticity raises the rate at which both very low and very high transmission rates

occur in our simulations, but higher transmission rates have disproportionately strong effects (in

the Online Appendices, we prove this assertion). When fitting models with an informative prior426

on the transmission rate, the fitting algorithm therefore compensates for low transmission rates

by increasing the stochasticity parameter σ.
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Figure 5: Stochastic realizations of the model with informative priors on ν̄, C, ρ, and δ, with

symbols and labels as in fig. 2
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The Disease-density Threshold429

As table 2 shows, our estimates of the disease-density threshold µ/ν̄ are remarkably consistent,

even though our estimates of µ and ν̄ differ depending on whether we take into account our

experimental data. This is a consequence of a strong correlation in the posterior samples of ν̄432

and µ (Online Appendices), which in turn reflects the similar effects that transmission rates and

removal rates have on disease dynamics. From a statistical perspective, the correlation means that

separate estimation of ν̄ and µ requires more data than if the two parameters were not correlated,435

supporting our use of experimental data.

Model

(Informative Priors)

Disease-Density Threshold

(µ/ν̄)

None 0.29 (0.01, 1.04)

δ 0.16 (0.003, 0.60)

C ρ δ 0.29 (0.001, 1.66)

C 0.40 (0.03, 1.19)

C ρ δ ν̄ 0.29 (0.01, 1.57)

ρ 0.47 (0.01, 2.18)

ν̄ 1.05 (0.03, 4.38)

Table 2: Estimates of the disease-density threshold for each model, presented in order of increas-

ing WAIC scores. Estimates are shown as medians with 95% credible intervals in parentheses.

Thresholds are in units of larvae/m2.

Our estimates of the disease-density threshold suggest that it may be effective to spray tussock

moth populations that are well below densities at which significant defoliation occurs. Densities438

slightly above the threshold are too low to produce defoliation, but are apparently high enough

to support at least modest epizootics. The reason why epizootics do not normally occur at such

densities is probably that there is a delay between when the insect population begins to increase,441
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Figure 6: Simulated trajectories of cumulative mortality (i.e. cumulative fraction infected (FI)),

where S0 and P0 are the initial host densities (larvae m−2) and virus densities (infectious cadaver

equivalents m−2), respectively.

and when the baculovirus population begins to increase. This effect is known from both long-

term insect outbreak models (Dwyer et al., 2000), and classical predator-prey models (Kot, 2001).

In the case of the tussock moth baculovirus, the delay may be so severe that it may make economic444

sense to spray tussock moth populations that would otherwise require an additional 2 or 3 years

of increases before natural baculovirus epizootics would occur.

This point can be made more explicit by considering how the model behavior varies with447

initial host and pathogen densities. The middle panel in fig. 6 shows that, for an initial density

of 5 larvae/m2, the input of a modest amount of virus can lead to a reasonably severe epizootic.

This density is lower than all but one of the spray plots in our data set (fig. 2), emphasizing that450

spray programs could be successful even at low densities. In the data for the treatment plot in

2010, for example, spraying a population with an initial density of 9 larvae/m2 produced high

mortality.453

Meanwhile, at high host densities, infection rates are likely to be high even for very low ini-
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tial pathogen densities, an effect that is well known from epidemiological theory (Keeling and

Rohani, 2008). This effect is apparent in the rightmost panel in fig. 6, for which the initial host456

density of 100 larvae/m2 is lower than in 3 of our 5 spray plots. Virus mortality may therefore

have been high in those 3 plots even if they had not been sprayed. Previous researchers recom-

mended that “a natural virus level greater than 25% indicates a [tussock moth] population that459

is already about to collapse from an epizootic, so direct control is not necessary” (Brookes et al.,

1978; Stelzer, 1979). Our work suggests that this rule of thumb is too conservative, especially in

high-density populations.462

Discussion

The success of our models (fig. 2) strongly supports the hypothesis that density-dependent trans-

mission drives epizootics of the tussock moth baculovirus. For many vertebrate diseases in con-465

trast, the logistical hurdles of data collection often make it difficult to test for effects of density on

transmission (McCallum, 2016; McCallum et al., 2001). In the insect pathology literature, the im-

portance of density is widely acknowledged (Moreau and Lucarotti, 2007), but there is also a long468

tradition of explaining epizootics by invoking complex mechanisms other than density (Fuxa and

Tanada, 1987). Perhaps for this reason, disease-density thresholds are invoked less commonly in

microbial control than in wildlife conservation, yet the unexpected natural epizootics discussed471

here are not unusual in microbial control (Moreau and Lucarotti, 2007; Podgwaite, 1985; Wollam

et al., 1978). A clearer consideration of the effects of host and pathogen densities could therefore

improve control strategies (Brown, 1987; Moscardi, 1999; Podgwaite, 1985).474

This is especially true for efforts to control tussock moth populations, which rarely consider

host density as a factor influencing the effectiveness of control. Instead, host density is used

to predict how much defoliation damage will occur, and thus whether control measures should477

be implemented (Maclauchlan et al., 2009; Mason and Wickman, 1991). Previous protocols in

this system have nevertheless suggested that host densities are important and that costs could
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be reduced by spraying earlier, lowering the dosage of sprayed virus, or reducing the area of480

application (Maclauchlan et al., 2009; Otvos et al., 1998). By forecasting the severity of natural

epizootics relative to microbial control, parameterized epidemiological model like ours could

serve as useful tools in such efforts (Otvos et al., 1998), leading to decisions that incorporate the483

relative costs of spraying versus defoliation.

Indeed, our models confirm that in some cases the best way to reduce the costs of tussock

moth control is to forgo a spray program altogether (fig. 6, table 2). Previous efforts to estimate486

initial virus incidence in tussock moth populations, however, have often relied on small sample

sizes (Stelzer, 1979). At small sample sizes, the virus may be undetected even though it is present

at a high enough density to cause a severe epizootic in a dense host population. Inaccurate489

estimation of the initial fraction infected can therefore lead to the unnecessary application of

virus spray, suggesting that more intensive sampling may be worth the effort. This is especially

true given that the model predictions are more strongly affected by such inaccurate estimation492

when host densities are intermediate. It is nevertheless important to recognize that low initial

infection rates may mean that it takes weeks or months for substantial mortality to occur. During

this delay, defoliation may be economically significant, and so microbial control may be necessary495

despite a high observed population density.

Our estimates of the heterogeneity parameter C are mostly greater than 1, and thus high

enough to prevent outbreaks in insect-pathogen models unless there is fluctuating selection for498

disease resistance (Elderd et al., 2008). Natural selection may therefore play a key role in tussock

moth population cycles, as in the gypsy moth (Páez et al., 2017). More broadly, genetic variation

in susceptibility to disease is omnipresent (Keeling and Rohani, 2008), and so it seems likely that501

the lack of evidence for host-variation effects in other pathogens is due to a lack of consideration

of host-variation effects, rather than to an actual lack of host variation. From a biological-control

perspective, high heterogeneity means that a substantial fraction of the population will survive504

even a severe epizootic. This does not mean, however, that defoliation will occur in the following

year, because over-wintering virus may decimate the host population in the following year.
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It is also important to point out the ways in which our models do not explain the data. First,507

the success of models with experiment-based priors on the heterogeneity parameter suggests that

transmission at a small scale helps drive epizootics at a large scale, but the poor performance of

models that use priors on the transmission rate suggests that larger scale mechanisms also play510

a role. Second, our models require at least moderate stochasticity in transmission to explain the

epizootic data, but they do not identify the source of this stochasticity. An important future di-

rection is therefore to consider aspects of the biology of the disease that are not in the model. For513

example, there are two morphotypes of the baculovirus that may differ in infectiousness (Mar-

tignoni and Iwai, 1977), and the frequency of the morphotypes varies with latitude (Williams

et al., 2011). Allowing for this variation in our models was impractical, because the data do516

not include information about which morphotype was present in each epizootic, but pathogen

variation may help explain why models with informative priors on transmission were less suc-

cessful. More concretely, the latitudinal variation in the virus means that microbial control of519

the Douglas-fir tussock moth may be improved if different morphotypes are used at different

latitudes. Understanding the consequences of morphotype variation for epizootic severity is

therefore a key priority in future work. Long-term host-pathogen models have shown that insect522

pathogens can drive host population cycles (Anderson and May, 1980; Hochberg, 1989), and our

work suggests that more mechanistic versions of such models (Dwyer et al., 2000) could be useful

in guiding microbial control. Previous efforts to model Douglas-fir tussock moth population dy-525

namics in contrast have focused on insect population growth and forest biology (Bousfield et al.,

1984; Colbert et al., 1979; Mason and Wickman, 1991; Monserud and Crookston, 1982; Moore

and Hatch, 1981), while providing only highly simplified descriptions of baculovirus dynamics528

(Brookes et al., 1978). Another future direction is therefore to extend the SEIR-type models that

we have presented here to allow for long-term dynamics.

Parameterized models of baculovirus dynamics that could be used in microbial control pro-531

grams are exceedingly rare (Brown, 1987). This is partly because baculovirus sprays are not

widely used, due to the high cost of in vivo propagation, and the failure of in vitro propagation
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methods, which lead to the emergence of strains that do not produce occlusion bodies (Lacey534

et al., 2015). As is often the case in environmental management, however, a major obstacle to

the development of useful models has been the difficulty of estimating model parameters (Gren-

fell et al., 2002). As our works shows, high-performance computing and advanced statistical537

algorithms are now sufficient to provide reasonably accurate parameter values. The high levels

of computing resources that we used are nevertheless often unavailable to environmental man-

agers, emphasizing the usefulness of collaborations between managers and university researchers540

(Joseph et al., 2013).

Our Bayesian approach has the advantage that it allowed us to test the extent to which our

small-scale, experimental data help us to understand large-scale epizootic data. More conven-543

tional maximum-likelihood methods have driven the development of flexible “plug-and-play”

software, which has been used to fit complex models like ours to data (Ionides et al., 2006, 2015;

King et al., 2016), leading to important insights into disease dynamics (King et al., 2016; Mar-546

tinez et al., 2016; Ranjeva et al., 2017). Maximum likelihood methods, however, do not allow

for comparison of models that do and do not take into account prior information, thus prevent-

ing comparison of models that do and do not take into account experimental data. A Bayesian549

version of particle filtering shows great promise, but sometimes fails to converge on the best

parameters (Ionides et al., 2015).
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