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Abstract

Computational models of learning and decision-making processes in the brain play an important role in
many domains. Such models typically have a constrained structure and make specific assumptions about
the underlying human learning processes; these may make them underfit observed behaviours. Here we
suggest an alternative method based on learning-to-learn approaches, using recurrent neural networks
(RNNs) as a flexible family of models that have sufficient capacity to represent the complex learning and
decision-making strategies used by humans. In this approach, an RNN is trained to predict the next
action that a subject will take in a decision-making task, and in this way, learns to imitate the processes
underlying subjects’ choices and their learning abilities. We demonstrate the benefits of this approach
with a new dataset containing behaviour of uni-polar depression (n=34), bipolar (n=33) and control
(n=34) participants in a two-armed bandit task. The results indicate that the new approach is better
than baseline reinforcement-learning methods in terms of overall performance and its capacity to predict
subjects’ choices. We show that the model can be interpreted using off-policy simulations, and thereby
provide a novel clustering of subjects’ learning processes – something that often eludes traditional
approaches to modelling and behavioural analysis.

Introduction 1

A computational model of learning in decision-making can be regarded as a mathematical function that 2

inputs past experiences (such as chosen actions and the rewards that result), and outputs predictions of 3

the actions that will be taken in the future (e.g., Busemeyer and Stout, 2002; Dezfouli et al., 2007; 4

Montague et al., 2012; Daw et al., 2006). Typically, experimenters specify a set of assumptions that 5

define and constrain the general structure and form of a whole class of computational models, leaving 6

free a set of parameters that are estimated from the data. For example, in value-based decision-making, 7

a common assumption is that subjects’ choices are determined in a noisy manner by learned action 8

values (often called Q values; Watkins, 1989), which are updated given experience of rewards. This 9

model has two free parameters: the level of noise and the learning rate governing updating. 10
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Despite the flexibility afforded by the free parameters, a class of computational models can only 11

capture learning processes that fall within the boundaries of the assumptions embedded in its structure. 12

If the actual learning and choice method used by the subjects is more complex or otherwise different 13

from that implied by the structure of the model, then it will under- and/or otherwise mis-fit the data. 14

For example, if the model assumes that subjects are using a single learning-rate parameter to update the 15

values of actions, but in reality rewards and punishments are modulated by two different learning-rates, 16

then the model will fail to provide a complete representation of the learning processes (e.g., Piray et al., 17

2014). Because of this, in practice, the process of computational modelling typically involves various 18

forms of analysis in order to confirm that the assumptions about the behaviour are correct. If they are 19

found wanting, then different assumptions must be made, leading to different models that must be 20

selected between to find the one that misfits least. This iterative process has become standard scientific 21

practice for model development, and has been influential in domains such as cognitive modelling, 22

computational psychiatry (e.g., Busemeyer and Stout, 2002; Dezfouli et al., 2007; Montague et al., 2012), 23

and model-based analysis of neural data (e.g., Daw et al., 2006). 24

By contrast, we consider an alternative approach to modelling involving minimal assumptions about 25

the underlying learning processes used by subjects. Instead, these are captured by a very flexible class of 26

models on the basis of observing the information the subjects see and the choices they make, and 27

predicting the latter. This process is known as learning-to-learn (Hochreiter et al., 2001; Wang et al., 28

2016; Duan et al., 2016; Weinstein and Botvinick, 2017).1 Since the models are flexible, they can come 29

automatically to characterize the major behavioural trends exhibited by the subjects, without requiring 30

tweaking and engineering explicitly based on behavioural analysis of data. This approach is particularly 31

useful when major trends in the data are not apparent in behavioural summary statistics. Even if such 32

trends are visible, it might be complicated to create compact models that encompass them adequately. 33

In particular, we consider as our flexible class recurrent neural networks (RNNs), which are known to 34

have sufficient capacity to represent a wide range of learning processes used by humans (and other 35

animals). Learning to learn involves adjusting the weights in the networks so they can predict the 36

choices that subjects will make as those subjects themselves learn. Once the weights have been trained, 37

they are frozen, and the model is simulated in the actual learning task to assess its predictive capacity 38

and to gain insights into human behaviour. 39

To illustrate and evaluate this approach, we focus on a relatively simple decision-making task in 40

which subjects had a choice between two key presses that were rewarded probabilistically (a two-arm 41

bandit task). Data from three groups were collected: healthy subjects, and patients with depression and 42

bipolar disorders. The results showed that the new method was able to learn subjects’ decision-making 43

strategies more accurately than baseline models. Furthermore, we show that off-policy simulations of the 44

model help visualise, and thus uncover, the properties of the learning process behind subjects’ actions. 45

We show that these were inconsistent with the assumptions made by baseline reinforcement-learning 46

treatments. Finally, we show how the method can be applied to predict diagnostic labels for different 47

patient populations. 48

1Albeit more commonly the learner is a human facing a series of learning tasks, rather than a computer model trying to
copy the human on a single task.
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Materials and methods 49

Participants 50

34 uni-polar depression (depression), 33 bipolar (bipolar) and 34 control (healthy) participants (age, 51

gender, IQ and education matched) were recruited from outpatient mental health clinics at the Brain 52

and Mind Research Institute, Sydney, and the surrounding community. Participants were aged between 53

16 and 33 years. Exclusion criteria for both clinical and control groups were history of neurological 54

disease (e.g. head trauma, epilepsy), medical illness known to impact cognitive and brain function (e.g. 55

cancer), intellectual and/or developmental disability and insufficient English for neuropsychological 56

assessment. Controls were screened for psychopathology by a research psychologist via clinical interview. 57

Patients were tested under ‘treatment-as-usual’ conditions, and at the time of assessment, 77% of 58

depressed and 85% of bipolar patients were taking medications (see Table 1 for breakdown of medication 59

use). The study was approved by the University of Sydney ethics committee. Participants gave informed 60

consent prior to participation in the study. 61

Demographics and clinical characteristics of the sample are presented in Table 1. Levene’s test 62

indicated unequal variances for the HDRS (Hamilton Depression Rating Scale; Hamilton, 1960), YMRS 63

(Young Mania Rating Scale; Young et al., 1978), SOFAS (Social and Occupational Functional Scale; 64

Goldman et al., 1992) and age, thus Welch’s statistic was used for these variables. A one-way ANOVA 65

revealed no differences between groups in age [F (2, 98) = 2.48, p = 0.09], education [F (2, 98) = 1.76, 66

p = 0.18], IQ [F (2, 94) = 0.47, p = 0.62] or gender (χ2 = 2.66, p = 0.27). There were differences in 67

HDRS [F (2, 49.21) = 64.21, p < 0.001], YMRS [F (2, 43.71) = 12.57, p < 0.001], and SOFAS 68

[F (2, 41.61) = 169.66, p < 0.001]. Bonferroni post-hoc comparisons revealed higher depression scores in 69

depression group compared to bipolar and healthy groups, and higher depression in bipolar group 70

compared to healthy group. Mania scores were significantly higher in bipolar group compared to 71

healthy group. Both patient groups had significantly reduced SOFAS scores compared to healthy 72

group, but did not differ from one another. Age of mental illness onset was younger in depression 73

group compared to bipolar group [t(56) = −2.14, p = 0.04], however duration of illness did not 74

significantly differ between groups [t(56) = 1.25, p = 0.22]. There were no differences between groups in 75

pre-test hunger [F (2, 79) = 0.54, p = 0.59] or average snack rating [F (2, 79) = 2.53, p = 0.09]. 76

Task 77

The instrumental learning task (Figure 1) involved participants choosing between pressing the left or 78

right button in order to earn food rewards (an M&M chocolate or a BBQ flavoured cracker). We refer to 79

these two key presses as L and R for left and right button presses respectively. Fourteen healthy 80

participants (41.2% of the group) and 13 bipolar participants (36.7% of the group) completed the task 81

in an fMRI setting, using a 2 button Lumina response box. The remaining healthy and bipolar 82

participants, and all depression participants, completed the task on a computer with a keyboard, where 83

the “Z” and “?” keys were given as L and R. Although the performance of subjects was overall higher in 84

the fMRI settings [β = 0.050, SE= 0.024, p = 0.041]2, the mode of task completion (in fMRI setting vs 85

on a computer) had no significant effect on how choices were adjusted on a trial-by-trial basis, and 86

2The intercept term was random-effect at the group level (healthy or bipolar), and the mode of task completion (in
fMRI settings vs on a computer) was the fixed-effect; the probability of staying on the same action was the dependent
variable; see section Statistical analysis for details.
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Table 1. Demographic and clinical characteristics of participants.
Means(SD).
HDRS: Hamilton Depression Rating Scale;
YMRS: Young Mania Rating Scale;
SOFAS: Social and Occupational Functioning Scale;
a: depression greater than healthy and bipolar, p < 0.05.
b: bipolar greater than healthy, p < 0.05.
c: healthy greater than depression and bipolar, p < 0.05.
d: depression slower than healthy and bipolar, p < 0.05.

healthy depression bipolar
(n=34) (n=34) (n=33)

Demographics
Gender (M:F) 15:19 15:19 9:24
Age in years 23.6 (4.3) 21.6 (2.5) 23.1 (4.4)
Predicted IQ 107.3 (7.5) 105.5 (7.9) 106.0 (7.4)
Eduation 14.3 (3.0) 13.3(1.9) 13.3 (2.4)

Symptoms and History
Age of onset (years) - 14.4 (3.8) 15.9 (4.7)
Duration of illness (years) - 7.7 (4.3) 6.4 (3.3)
HDRS 1.5(2.0) 14.1 (7.2)a 8.9 (6.5)
YMRS 0.1 (0.4) 2.5 (5.4) 4.6 (5.8)b

SOFAS 91.0 (3.5)c 63.8 (9.2) 65.7 (13.7)
Medication

Medicated - 77% 85%
Anti-depressants - 71% 41%
Mood stabilizers/Anti-convulsants - 9% 73%
Lithium - 0% 18%
Anti-psychotics - 18% 33%
Anxiolytics - 0% 3%

Motivation measures
Hunger 6.5 (1.7) 6.0 (2.1) 6.0 (2.4)
Reward Pleasantness 3.1 (1.3) 2.0 (2.0) 2.6 (2.0)
Press Rate/Sec 0.93 (0.3) 0.71 (0.2)d 0.98 (0.3)

Duration of illness indicates time since patient first experienced mental health problems,
not time since diagnosis.

therefore the data from both groups were combined (how subjects completed the task had no significant 87

effect on the probability of staying on the same action neither after earning a reward [β = 0.041, 88

SE= 0.054, p = 0.45]3, nor after no reward [β = 0.030, SE= 0.062, p = 0.627]). 89

During each block, one action was always associated with a higher probability of reward than the 90

other. Across blocks, the action with the higher reward probability switched identities (left or right), and 91

the probabilities varied (taking one of the values 0.25, 0.125, 0.08). The probability of reward on the 92

other action always remained at 0.05. Participants were instructed to earn as many points as possible, as 93

they would be given the concomitant number of M&Ms or BBQ flavoured crackers at the end of the 94

session. During each a non-rewarded response, a grey circle appeared in the centre of the screen for 95

250ms, whereas during a rewarded response, the key turned green and an image of the food reward 96

3The intercept term was random-effect at the group level (healthy or bipolar), and the mode of task completion (in
fMRI settings vs on a computer) was the fixed-effect; the probability of selecting the better key was the dependent variable;
see section Statistical analysis for details.
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was small (that is, at intermediate values of D near or equal to
zero), we compared the predictive value of P and D over choice at
different levels of P and D in a logistic regression. Figure 2b shows
we were able successfully to identify conditions under which P
and D are differentiated: at small differences in action values (the
middle tertile of D values), P was a significant predictor, whereas
D was not. Conversely, Fig. 2c shows that P and D were
significant predictors across all tertiles of P values (pso0.001).
This result confirms that when choices were made in the presence
of small differences in action value, P values better discriminated
the best action.

Dorsolateral prefrontal cortex tracks the relative advantage. To
identify the neural regions involved in the computation of the
relative advantage values that guided choice, we defined a stick
function for each response and parametrically modulated this by

P in a response-by-response fashion for each participant. As we
used a free-response task and the interval between choices was
not systematically jittered, we cannot determine whether the
model variables had separate effects at the time of each choice (or
between choice and feedback). We can only determine whether
neural activity was related to the time course of the model vari-
ables across the 40-s block as subjects tried to learn the best action
(for example, Fig. 2a). An SPM one-sample t-test with the
parametric regressor representing P revealed neural activity
positively related to P in a single large cluster in the right middle
frontal gyrus, with the majority of voxels overlapping BA9
(dlPFC22,23; peak voxel: 44, 25, 37; t¼ 5.98, family-wise cluster
(FWEc) P¼ 0.012). Figure 2a shows the cortical regions where
the BOLD response covaried with the P values of each response,
implicating these regions in encoding the relative likelihood that
the left action is best (QLeft4QRight).
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Figure 1 | Experimental stimuli, behavioural choices and causal ratings. (a) Before the choice, no stimuli indicated which button was more likely to
lead to reward. When the participant made a choice, the button chosen was highlighted (green) and on rewarded trials the reward stimulus was presented
for 1,000 ms duration. After each block of trials, the participant rated how causal each button was. (b) Mean response rate (responses per second)
was higher for the high-contingency action (blue) over low-contingency action (red) in each condition. (c) Causal ratings were higher for the high-
contingency action (blue) over low-contingency action (red) in each condition. Response rate and causal rating significantly varied with contingency,
Po0.001. Vertical bars represent s.e.m.

Table 1 | Model comparisons between the hybrid model and its special cases.

Hybrid Q-learning Relative advantage

Negative log likelihood 5421 5506 5558
Aggregate LRT favouring hybrid — X2

40¼ 170*** X2
20¼ 274***

No. of favouring hybrids — 13 8
Pseudo R2 0.608 0.602 0.597

Shown for each model: negative log likelihood; test statistic and P-value for a likelihood ratio test against the hybrid (full) model, aggregated across subjects; the number of subjects favoring the hybrid
model on a likelihood ratio test (Po0.05); and the degree to which the model explained the choice data averaged over the individual fits (pseudo R2). ***Po1E-16.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5390 ARTICLE

NATURE COMMUNICATIONS | 5:4390 | DOI: 10.1038/ncomms5390 | www.nature.com/naturecommunications 3
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40 seconds (free-responses) 12 seconds

Figure 1. Structure of the decision-making task. Before the choice, no stimulus indicated which
button was more likely to lead to reward. When the participant made a choice, the button chosen was
highlighted (green) and on rewarded trials the reward stimulus was presented for 500ms duration. After
each block of trials, the participant rated how causal each button was in earning rewards.

appeared in the centre of the screen for 500ms. A tally of accumulated winnings remained on the bottom 97

of the screen for the duration of the task. Responding was self-paced during the 12 blocks, each 40-s in 98

length. At the end of each block, participants were asked to judge, on a 10-point scale, how likely it was 99

that pressing each button earned them the reward on the previous trial. 100

The task began with a 0.25 contingency practice block, a hunger rating (0 to 10) and a pleasantness 101

rating for each food outcome (-5 to +5). The data from hunger ratings and subjective ratings (at the 102

end of each block) was missing for some subjects and it was not used in the analysis. 103

Computational models 104

Notation 105

The set of available actions is denoted by A. Here A = {L,R}, with L and R referring to left and right 106

key presses respectively. A set of subjects is denoted by S, and the total number of trials completed by 107

subject s ∈ S over the whole task (all blocks) is denoted by Ts. ast denotes the action taken by subject s 108

at trial t. The reward earned at trial t is denoted by rt, and we use at to refer to an action taken at time 109

t, either by the subjects or the models (in simulations). 110

Recurrent neural network model (rnn) 111

The architecture used is based on recurrent neural network model (rnn) and is depicted in Figure 2. 112

The model is composed of an LSTM layer (Long short-term memory; Hochreiter and Schmidhuber, 1997) 113

and an output softmax layer with two nodes (since there are two actions in the task). The inputs to the 114

LSTM layer are the previous action (at−1 coded using one-hot transformation) and the reward received 115

after taking action (rt−1 ∈ {0, 1}). The outputs of the softmax are probabilities of selecting each action, 116

which are denoted by πt(a; rnn) for action a ∈ A at trial t. 117
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In the learning-to-learn phase, the aim is to train weights in the network so that the model learns to
predict subjects’ actions given their past observations (i.e., learns how they learn). For this purpose, the
objective function for optimising weights in the network (denoted by Θ) for subject set S is,

L(Θ; rnn) =
∑
s∈S

∑
t=1...Ts

log πt(a
s
t ; rnn), (1)

where ast is the action selected by subjects s at trial t, and πt(.; rnn) is the probability that model 118

assigns to each action. Note that the policy is conditioned on the previous actions and rewards in each 119

block of training, which are not shown in notations for simplicity. 120

Models were trained using maximum-likelihood (ML) estimation method,

ΘML
rnn = arg max

Θ
L(Θ; rnn), (2)

where Θ is a vector containing free-parameters of the model (in both LSTM and softmax layers). The 121

models were implemented in TensorFlow (Abadi et al., 2016) and optimized using Adam optimizer 122

(Kingma and Ba, 2014). Note that Θ was estimated for each group of subjects separately. Networks with 123

different numbers Nc of LSTM cells (Nc ∈ {5, 10, 20}) were considered, and the best model was selected 124

using leave-one-out cross-validation (see below). Early stopping was used for regularization and the 125

optimal number of training iterations was selected using leave-one-out cross-validation. 126

The total number of free parameters (in both the LSTM layer and softmax layer) were 190, 580, and 127

1960 for the networks with 5, 10, and 20 LSTM cells, respectively. In order to control for the effect of 128

initialization of network weights on the final results, a single random network of each size (5, 10, 20) was 129

generated, and was used to initialize the weights in the network. 130

After the learning-to-learn phase, the weights in the network were frozen and the trained model was 131

used for three purposes: (i) cross-validation (see below), (ii) on-policy simulations and (iii) off-policy 132

simulations. For cross-validation, the previous actions of the test subject(s) and the rewards experienced 133

by the subject(s) were fed into the model, but unlike the learning-to-learn phase, the weights were not 134

changing and we only recorded the prediction of the model about the next action. Note that even though 135

the weights in the network were fixed, the output of the network changed from trial to trial due to the 136

recurrent nature of these networks. Also, due to the small sample size we used the same set of subjects 137

for testing the model and for the validation of model hyper-parameters (Nc and number of optimization 138

iterations). 139

Other than being used for calculating cross-validation statistics, trained models were used for 140

on-policy and off-policy simulations (with frozen weights). In the on-policy simulations, the model 141

received its own actions and earned rewards as the inputs (instead of receiving the action selected by the 142

subjects). In the off-policy simulations, the set of actions and rewards that the model received was fixed 143

and predetermined. The details of these simulations are reported in the Results section. 144

Baseline methods 145

We used three baseline methods, ql, qlp and gql, which are variants and generalizations of Q-learning 146

(Watkins, 1989). 147
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h1
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.

hNc
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. . .

⇡t

P (at = L)

P (at = R)

L(⇥;rnn)

rnn

Figure 2. Structure of the rnn model. The model has a LSTM layer which receives previous action
and reward as inputs, and is connected to a softmax layer which outputs the probability of selecting each
action in the next trial (policy). Maximum likelihood estimate method is used to train the weights in
LSTM and softmax layers. hi is the output of LSTM cell i in the LSTM layer. Nc is the number of cells
in the LSTM layer.

ql model. After taking action at−1 at time t− 1, the value of the action, denoted by Qt(at−1), is
updated as follows,

Qt(at−1) = (1− φ)Qt−1(at−1) + φrt−1, (3)

where φ is the learning-rate and rt−1 is the reward received after taking the action. Given the action
values, the probability of taking action a ∈ {L,R} in trial t is:

πt(a; ql) =
eβQt(a)∑

A′∈A e
βQt(a′)

,

where β > 0 is a free-parameter and controls the contribution of values to the choices (balance between 148

exploration and exploitation). The free-parameters of this variant are φ and β. Note that the probability 149

that models predict for each action at trial t, is necessarily based on the data before observing the action 150

and reward at trial t. Further, since there are only two actions, we can write 151

πt(L; ql) = 1− πt(R; ql) = σ(β(Qt(L)−Qt(R))) where σ(·) is the standard logistic sigmoid. 152

qlp model. This model is inspired by the fact that humans and other animals have a tendency to
stick with the same action on multiple trials (i.e., perseverate), or sometimes to alternate between the
actions (independent of the reward effects; Lau and Glimcher, 2005). We therefore call this model qlp,
for Q-learning with perseveration. In it, action values are updated according to equation 3 similar to ql
model, but the probability of selecting actions is,

πt(a; qlp) =
eβQt(a)+kt(a)∑

a′∈A e
βQt(a′)+kt(a′)

,
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where,

kt(a) =

κ if a = at−1

0 otherwise
. (4)

Therefore, there is a tendency for selecting the same action again in the next trial (if κ > 0) or switching 153

to the other action (if κ < 0), and, in the specific case that κ = 0, the qlp model reduces to ql. 154

Free-parameters are φ, β, κ. 155

gql model. As we will show in the results section, neither ql nor qlp fit the behaviour of the
subjects in the task. As such, we aimed to develop a baseline model which could at least capture
high-level behavioural trends, and we built a generalised Q-learning model, gql, to compare with rnn.
In this variant, instead of learning a single action value for each action, the model learns N different
values for each action, where the difference between the values learned for each action is that they are
updated using different learning-rates. The action values for action a are denoted by Q(a), which is a
vector of size N , and the corresponding learning-rates are denoted by vector Φ of size N (0 � Φ � 1).
Based on this, the value of action at−1 at trial t− 1 is updated as follows,

Qt(at−1) = (1− Φ)�Qt−1(at−1) + rt−1Φ, (5)

where � represents element-wise Hadamard product. For example, if N = 2, and Φ = [0.1, 0.05], then it 156

means that the model learns two different values for each action (L, R actions) and one of the values will 157

be updated using learning-rate 0.1 and the other one is updated using learning-rate 0.05. In the specific 158

case that N = 1, the above equation reduces to equation 3 used in ql and qlp models, in which only a 159

single value is learned for each action. 160

In the qlp model, the current action is affected by the last taken action (perseveration). This 161

property is generalised in gql model by learning the history of previously taken actions, instead of just 162

the last action. These action histories are denoted by H(a) for action a. H(a) is a vector of size N , and 163

each entry of this vector tracks the tendency of taking action a in the past, i.e., if an element of H(a) is 164

close to one it means that action a was taken frequently in the past and being close to zero implies that 165

the action was taken rarely. Similar to action values, for each action, N different histories are tracked, 166

each of which is modulated by a separate learning-rate. Learning-rates are represented in vector Ψ of size 167

N (0 � Ψ � 1). Assuming that action at−1 was taken at trial t− 1, H(a) updates as follows, 168

Ht(a) =

(1−Ψ)�Ht−1(a) + Ψ if a = at−1

(1−Ψ)�Ht−1(a) otherwise
. (6)

Intuitively, according to the above equation, if action a was taken on a trial, H(a) increases (the amount 169

of increase depends on the learning-rate of each entry), and for the rest of the actions, H(other actions) 170

will decrease (again the amount of decrement is modulated by the learning rates). For example, if N = 2, 171

and Ψ = [0.1, 0.05], it means that for each action two choice tendencies will be learned, one of which is 172

updated by rate 0.1 and the other one by rate 0.05. 173

Having learned Q(a) and H(a) for each action, the next question is how these two combine to guide
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choices. Q-learning models assume that the contribution of values to choices is modulated by parameter
β. Here, since the model learns multiple values for each action, we assume that each value is weighted by
a separate parameter, denoted by vector B of size N . Similarly, in the qlp model the contribution of
perseveration to choices is controlled by parameter κ, and here we assume that parameter K modulates
the contribution of previous actions to the current choice. Based on this, the probability of taking action
a at trial t is,

π′t(a; gql) =
eB·Qt(a)+K·Ht(a)∑

a′∈A e
B·Qt(a′)+K·Ht(a′)

,

where “ ·” operator refers to inner product. Here, we also add an extra flexibility to the model by
allowing values to interact with history of previous actions for influencing choices. For example, if N = 2,
we allow the two learned values for each action to interact with the two learned action histories of each
action, leading to four interaction terms, and the contribution of each interaction term to choices is
determined by matrix C of size N ×N (N = 2 in this example),

πt(a; gql) =
eB·Qt(a)+K·Ht(a)+Ht(a)·C·Qt(a)∑

a′∈A e
B·Qt(a′)+K·Ht(a′)+Ht(a′)·C·Qt(a′)

, (7)

The free-parameters of this model are Φ, Ψ, B, K, and C. In this paper we use models with N = 1, 2, 10, 174

which have 5, 12 and 140 free parameters respectively. We used N = 2 for the results reported in the 175

main text, since this model setting was able to capture several behavioural trends while still being 176

interpretable. The results using N = 1, 10 are reported in the supplementary materials to illustrate the 177

models’ capabilities in extreme cases. 178

Objective function. The objective function for optimising the models was the same as the one
chosen for rnn,

L(Θ;M) =
∑
s∈S

∑
t=1...Ts

log πt(a
s
t ;M),M∈ {ql,qlp,gql}, (8)

where as mentioned before, ast is the action selected by subject s at trial t, and πt(.;M) is the probability
that modelM assigns to each action. Models were trained using maximum-likelihood estimation method,

ΘML
M = arg max

Θ
L(Θ;M), (9)

where Θ is a vector containing the free-parameters of the models. Optimizations for all models were 179

performed using Adam optimizer (Kingma and Ba, 2014), and using automatic differentiation method 180

provided in TensorFlow (Abadi et al., 2016). The free-parameters with the limited support (φ, β, Φ, Ψ) 181

were transformed to satisfy the constraints. 182

Performance measures 183

Two different measures were used for quantifying the predictive accuracy of the models. The first
measure is the average log-probability of the models’ prediction for the actions taken by subjects. For a
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group of subjects denoted by S, we define negative log-probability (nlp) as follows:

nlp = −
∑
s∈S

∑
t=1...Ts log πt(a

s
t ;M)∑

s∈S Ts
,M∈ {rnn,gql,ql,qlp}. (10)

The other measure is the percentage of actions predicted correctly,

%correct =

∑
s∈S

∑
t=1...TsJarg maxa πt(a;M) = ast K∑

s∈S Ts
, (11)

where J.K denotes the indicator function. Unlike, ‘%correct’, nlp takes the probabilities of predictions 184

into account instead of making binary predictions for the next action. In this way, if the models are 185

certain about wrong predictions nlp performance gets penalized, and it gets credit if the models are 186

certain about a correct prediction. 187

Model selection 188

Leave-one-out cross-validation was used for comparing different models. At each round, one of the 189

subjects was held out and the model was trained using the rest of the subjects; the trained model was 190

then used for making predictions for the held out subject. The held out subject was rotated in the each 191

group, yielding 34, 34, 33 prediction accuracy measures in healthy, depression, and bipolar groups 192

respectively. 193

Statistical analysis 194

For the analysis we performed hierarchical linear mixed-effects regression using the lme4 package in R 195

(Bates et al., 2015) and obtained p-values for regression coefficients using the lmerTest package 196

(Kuznetsova et al., 2016). For each test we report parameter estimate (β), standard error (SE), and 197

p-value. 198

Results 199

We first focus on the high-level evaluation of the new approach in terms of making predictions about 200

subjects’ actions and diagnostic labels. Then, in the following sections we focus on behavioural analysis 201

of the data using the rnn. 202

Prediction analysis 203

Model settings. For the rnn model, leave-one-out cross-validation was used to determine the number 204

of cells and optimisation iterations required for the rnn model to achieve the highest prediction accuracy. 205

The results are shown in Figure S1, which shows that the lowest mean negative log-probability (nlp) is 206

achieved by 10 cells in the LSMT layer and after 1100, 1200 optimisation iterations for healthy and 207

depression groups respectively. For bipolar group the best nlp was achieved by 20 cells and 400 208

optimisation iterations. These settings were used in the next steps for making predictions and 209

simulations. For the case of the gql model, we used N = 2, which implies that for each action two 210

different values and action histories were tracked by the model. 211
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Figure 3. Cross-validation results. (Left-panel) nlp (negative log-probability) averaged across
leave-one-out cross-validation folds. Lower values are better. (Right-panel) Percentage of actions
predicted correctly averaged over cross-validation folds. Error-bars represent 1SEM.

Action prediction. Here the aim was to quantify how well the models predict the actions chosen by 212

the subjects. We used Leave-one-out cross-validation (as above) and calculated prediction accuracy 213

measures for the held out subjects. The results are reported in Figure 3. Left-panel in the figure shows 214

prediction accuracy in terms of nlp (averaged over leave one-out cross-validation folds; lower values are 215

better) and the right-panel shows the percentage of actions predicted correctly (higher values are better). 216

Focusing on nlp measures, which unlike ‘%correct’ take the certainty of predictions into account, we 217

make two observations. Firstly, among the baseline models, gql provided the highest performance in 218

terms of nlp in all the three groups, which was statistically significant in depression and bipolar 219

groups (healthy [β = −0.036, SE= 0.020, p = 0.086 ]4, depression [β = −0.101, SE= 0.024, 220

p < 0.001], bipolar [β = −0.105, SE= 0.019, p < 0.001]). Secondly, across all groups, rnn provided the 221

highest mean performance (healthy [β = 0.090, SE= 0.040, p = 0.030], depression [β = 0.126, 222

SE= 0.021, p < 0.001], bipolar [β = 0.180, SE= 0.032, p < 0.001]. Based on this, we conclude that rnn 223

was more predictive than the baseline models. Indeed, we show in the next section that it captures some 224

trends in the behaviour of the subjects that other models fail to capture. 225

Diagnostic label prediction. Next, we sought to evaluate the new approach in terms of predicting 226

diagnostic labels using a leave-one-out cross-validation method. In each run, one of the subjects were 227

held out, and a rnn model was fitted to the rest of the subject’s group. This model, along with the 228

versions of the same model fitted on all the subjects in each of the other two groups, were used to predict 229

the diagnostic label for the held out subject. This prediction was based on which of the three models 230

provided the best fit (lowest nlp) for that subject. The results are reported in Table 2. The baseline 231

random performance is near 33%. As the table shows, the highest performance is achieved in the 232

healthy group, in which 64% of subjects are classified correctly. On the other hand, in depression 233

group there is a significant portion of subjects classified as healthy. The overall correct classification 234

rate of the model is 52%, while gql achieved 50% accuracy (Table S1). We therefore conclude that 235

although gql was unable to accurately characterize behavioural trends in the data (as we will show 236

below), the group differences that were captured by gql were sufficient to guide diagnostic label 237

predictions. 238

4The intercept term was random-effect at the cross-validation fold level; model (gql =1, qlp/rnn =0) was the fixed-effect.
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Table 2. Prediction of diagnostic labels using rnn. Number of subjects for each true- and
predicted-labels. The numbers inside parenthesis are the percentage of number subjects relative to the
total number of subjects in each diagnostic group.

predicted labels
healthy depression bipolar

healthy 22 (64%) 8 (23%) 4 (11%)
depression 13 (38%) 16 (47%) 5 (14%)true

labels
bipolar 9 (27%) 9 (27%) 15 (45%)

Behavioural analysis 239

Subject’s performance 240

Figure 4 shows the probability of selecting the better key (the key with the higher reward probability). 241

Results for subjects are shown by subj in the graph. The probability of selecting the better key was 242

significantly higher than the other key in all groups (healthy [β = 0.270, SE= 0.026, p < 0.001]5, 243

depression [β = 0.149, SE= 0.028, p < 0.001], bipolar [β = 0.119, SE= 0.021, p < 0.001]). Comparing 244

healthy and depression groups, revealed that group by key interaction had a significant effect on the 245

probability of selecting actions [β = −0.120, SE= 0.038, p = 0.002]6. A similar effect was observed when 246

comparing healthy and bipolar groups [β = −0.150, SE= 0.034, p < 0.001]. In summary, these results 247

indicate that all groups were able to direct their actions toward the better choice, however depression 248

and bipolar groups were less able to do so compared to the healthy group. 249

Models’ performance 250

The aim here was to use model simulations to gain insights into the subjects’ learning processes in 251

different groups. For each model, three different instances were trained using subjects’ actions in each 252

group (estimated parameters for gql, qlp and ql models are shown Tables S4, S3 and S2 respectively). 253

For the case of rnn, the number of cells, optimization iterations and model initialisation were based on 254

the numbers obtained using cross-validation (see above). Negative log-likelihood for each model is 255

reported in Table S5 (see Table S7 for the effect of the initialisation of the network on the negative 256

log-likelihood of trained rnn. See Table S6 for negative log-likelihood when a separate model is fitted to 257

each subject in the case of baseline models). 258

Models were simulated on-policy (i.e., actions were selected by the model according to the 259

probabilities that the model assigned to each action on each trial) in the task conditions with the same 260

probabilities and for the same number of trials that each subject completed in each block. The results of 261

the simulations are shown in Figure 4 (rnn, gql, ql, qlp). In the case of rnn, similar to the subjects’ 262

data, the probability of selecting the better key was significantly higher than the other key in all the 263

three groups (healthy [β = 0.192, SE= 0.011, p < 0.001], depression [β = 0.058, SE= 0.014, 264

p < 0.001], bipolar [β = 0.074, SE= 0.011, p < 0.001]). Therefore, although the structure of rnn is 265

initially unaware that the objective of the task is to collect rewards, its actions were directed toward the 266

better key by following the strategy that it had learned from subjects’ actions. A similar pattern was 267

5The intercept term was random-effect at the subject level; key (low reward probability=0, high reward probabilities=1)
was the fixed-effect; dependent variable was the probability of selecting the key.

6The intercept term was the random-effect at the subject level; and key (low reward probability=0, high reward
probabilities=1), groups (healthy, depression/bipolar) and their interaction were fixed-effects; dependent variable was
the probability of selecting the key.
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Figure 4. Probability of selecting the key with the higher reward probability (averaged over subjects).
Each dot represents a subject and error-bars represent 1SEM.

observed for gql, qlp and ql models, which is not surprising as the structure of these models includes 268

value representations which can be used for reward maximization. 269

Immediate effect of reward on choices 270

Figure 5 shows the effect of earning a reward in the previous trial on the probability of staying on the 271

same action in the next trial. For the subjects (subj), earning a reward significantly decreased the 272

probability of staying on the same action in healthy and depression groups, but not in bipolar 273

group (healthy [β = 0.112, SE= 0.019, p < 0.001]7, depression [β = 0.111, SE= 0.029, p < 0.001], 274

bipolar [β = 0.030, SE= 0.035, p = 0.391]). As the figure shows, the same pattern was observed in rnn 275

(healthy [β = 0.082, SE= 0.006, p < 0.001], depression [β = 0.089, SE= 0.013, p < 0.001], bipolar 276

[β = 0.001, SE= 0.010, p = 0.887]), but stay probabilities had opposite directions in ql and qlp, i.e., the 277

probability of staying on the same action was higher after earning reward (for the case of qlp; healthy 278

[β = −0.028, SE= 0.004, p < 0.001], depression [β = −0.039, SE= 0.006, p < 0.001], bipolar 279

[β = −0.054, SE= 0.007, p < 0.001]), which differs from subjects’ data. 280

This pattern is expected from baseline reinforcement-learning models, i.e., ql and qlp, as in these 281

models, earning rewards increases the value of the taken action, which raises the probability of taking 282

that action in the next trial. Indeed, such a learning process is embedded in the parametric forms of ql 283

and qlp models, and cannot be reversed no matter what values are assigned to the free-parameters of 284

these models. As such, we designed gql as a baseline model with more relaxed assumptions and a higher 285

capacity compared to qlp and ql, which enabled it to produce the same pattern as the subjects’ choices, 286

similar to rnn. Despite this, gql provided a lower performance in terms of predicting subjects’ choices 287

compared to rnn, which shows there are behavioural trends that this model failed to represent, even 288

though it was able to capture high-level behavioural statistics. Furthermore, it is not immediately clear 289

how actions were directed toward the better key, and at the same time the probability of switching to 290

the other action after earning rewards is higher, as it seems to imply actions will be diverted from the 291

better key. In the next section, we aim to show how these two observations can be explained using 292

off-policy model simulations. 293

7The intercept was random-effect at the subject level; whether reward was earned in the previous trial was the fixed-effect.
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Figure 5. Probability of staying on the same action based on whether previous trial was rewarded
(Reward) or no reward was earned (No reward), averaged over subjects. Each dot represents a subject
and error-bars represent 1SEM.

Off-policy simulations 294

In this section we aim to use off-policy simulations of the models to uncover the learning and 295

action-selection processes behind subjects’ choices. Off-policy means that actions are not selected by the 296

model in the simulation, but they are fixed and fed into the model, and the model is used only for 297

making prediction about the next action. In this way we can control what inputs the model receives and 298

thus examine how they affect predictions. 299

Simulations of the models (rows) are shown in Figure 6 for healthy group, in which each panel 300

shows a separate simulation across 30 trials (horizontal axis). For trials 1-10, the action that was fed to 301

the model was R, and for trials 11-30 it was L (the action fed into the model at each trial is shown in the 302

ribbons below each panel). The rewards associated with these trials varied among simulations (the 303

columns) and are shown by black crosses (x) in the graphs (see Section S2 for more details on how 304

simulation parameters were chosen). 305

Focusing on the rnn model, we can see that in the first 10 trials the predicted probability of taking R 306

is higher than L; this then reverses in the next 20 trials. This shows that perseveration (i.e., sticking 307

with the previously taken action) is an element in action selection, and is also consistent with the fact 308

that the qlp model (which has a parameter for perseveration) performs better than the ql model in the 309

cross-validation statistics (see Figure 3)8. We make four further sets of observations regarding how 310

choices are affected by the history of previous rewards and actions. 311

8It is visible in Figure 4 that the probability of staying on an action is above 50%, irrespective of whether a reward
was earned in the previous trial or not. This, however, does not provide any evidence for perseveration, as trials are not
statistically independent. For example, in late training trials, a subject might have discovered which action returns more
reward on average, and therefore stays on an action irrespective of reward, without necessarily relying on perseveration.
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Figure 6. Off-policy simulations of all models for group healthy. Each panel shows a
simulation for 30 trials (horizontal axis), and the vertical axis shows the predictions of each model on
each trial. The ribbon below each panel shows the action which was fed to the model on each trial. In
the first 10 trials, the action that the model received was R and in the next 20 trials it was L. Rewards
are shown by black crosses (x) on the graphs. See text for the interpretation of the graph. Note that the
models’ prediction for each trial is before seeing which action and reward was fed to the model on that
trial.

The immediate effect of reward on choices. Focusing on rnn simulations in Figure 6, an 312

observation is that earning a reward (shown by black crosses) causes a ‘dip’ in the probability of staying 313

on an action, which shows the tendency to switch to the other action. This is consistent with the 314

observation made in Figure 5 that the probability of switching increases after reward. We see a similar 315

pattern in gql, but in ql and qlp models the pattern is reversed, i.e., the probability of choosing an 316

action increases after a reward due to the increases in action values (the effects are rather small for qlp 317

and may not be clear for this model), which is again consistent with the observation in Figure 5. The 318

reason that gql is able to produce different predictions to that of ql and qlp is that in this model, the 319

contribution of action values to choices can be negative, i.e., higher values can lead to lower a probability 320

of staying on an action (see Section S1 for more explanation). 321

The effect of previous rewards on choices. The next observation is with respect to the effect of 322

previous rewards on the probability of switching after a reward. First we focus on the rnn model and on 323

the trials shown by red arrows in Figure 6. The red arrows point to the same trial number, but the 324

number of rewards earned prior to the trial is different. As the figure shows, the probability of switching 325

after reward is lower in the right-panel compared to the left and middle panels. The only difference 326

between simulations is that in the right panel, two more rewards were earned before the red arrow. 327

Therefore, the figure shows that although the probability of switching is higher after reward, it gets 328
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Figure 7. Off-policy simulations of rnn for all groups. Each panel shows a simulation for 30
trials (horizontal axis), and the vertical axis shows the predictions of each model on each trial. The
ribbon below each panel shows the action which was fed to the model on each trial. In the first 10 trials,
the action that the model received was R and in the next 20 trials it was L. Rewards are shown by
black crosses (x) on the graphs. See text for the interpretation of the graph. Note that the simulation
conditions is same as the one shown in Figure 6, and the first row here (healthy group) is same as the
first row shown in Figure 6 which is shown here again for the purpose of comparison with other groups.

smaller as more rewards are earned from an action. Indeed, this strategy makes subjects switch more 329

from the inferior action as rewards are sparse on that action, and switch less from the superior action, as 330

it is more frequently rewarded. This can reconcile the observations made in Figures 5, 4 that more 331

responses were made on the better key, and at the same time, the probability of switching after reward 332

was higher. As shown in Figure 6, gql model produced a pattern similar to rnn, which is because this 333

model tracks multiple values for each action (see Section S1 for details). Figure 7 shows the same 334

simulations using rnn for all the groups (see Figures S5, S6, S7 for gql, qlp and ql models 335

respectively). Comparing the predictions at the red arrows for depression and bipolar groups, we see 336

a pattern similar to healthy group, although the differences are smaller in the bipolar group (see 337

Figure S9 for the effect of the initialisation of the model). 338

The above observations are consistent with the pattern of choices in empirical data as shown in 339

Figure 8-left panel, which depicts the probability of staying on an action after earning reward as a 340

function of how many rewards were earned after switching to the action (a similar graph using on-policy 341

simulation of rnn is shown in Figure S11). In all the three groups, the probability of staying on an 342

action (after earning a reward) was significantly higher when more than two rewards were earned 343

previously (>2) compared to when no reward was earned (healthy [β = 0.148, SE= 0.037, p < 0.001]9, 344

depression [β = 0.188, SE= 0.045, p < 0.001], bipolar [β = 0.150, SE= 0.056, p = 0.012]), which is 345

consistent with the behaviour of both rnn and gql. 346

9The intercept was random-effect at the subject level; whether zero rewards or more than two rewards were earned
previously was fixed-effect.
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Figure 8. The effect of history of previous rewards and actions on future choices of the
subjects. (Left-panel) Probability of staying on an action after earning reward as a function of number
of actions taken since switching to the current action (averaged over subjects). Each red dot represents
the data for each subject. (Right-panel) Probability of staying on an action as a function of number of
actions taken since switching to the current action. The red line was obtained using Loess regression
(Local Regression), which is a non-parametric regression approach. The grey area around the red line
represents 95% confidence interval. Error-bars represent 1SEM.

The effect of repeating an action on choices. In the previous section we investigated the effect of 347

previous rewards on choices. In this section we elaborate on how the history of previous actions affects 348

current choices. Focusing on rnn simulations in the left-panel of Figure 6, an observation is that after 349

switching to action L (after trial 10) the probability of staying on the action gradually decreases, i.e., 350

although there is a high chance the next action will be similar to the previous one, subjects developed a 351

tendency to make a switch the longer they stayed with an action. To compare this pattern with 352

empirical data, we calculated the probability of staying on an action as a function of how many times the 353

action was taken since switching, which is shown in Figure 8:right-panel10(similar graphs for rnn 354

on-policy simulations is shown in Figure S11). As the figure shows, for the healthy group, the chance 355

of staying on an action decreases as the action is taken more times [β = −0.005, SE= 0.001, p = 0.006]11, 356

which is consistent with the behaviour of rnn. With regard to the baseline models, going back to 357

Figure 6, we do not see a similar pattern, although in gql there is a small decrement in the probability 358

of staying on an action after earning the first reward. 359

Symmetric oscillations between actions. Next, we focus on rnn simulations for groups 360

depression and bipolar in Figure 7. In the depression group, the probability of staying on an action 361

is almost flat with a slight decrement in the middle. For the bipolar group, there is a dip around 10 362

trials after switching to action L (which will be around trial 20), and then the policy becomes flat. 363

Referring to the empirical data, as shown in Figure 8:right-panel, the effect of number of actions in stay 364

probabilities is not monotonic. In particular, as shown in Figure 8:right-panel, for depression and 365

bipolar groups the probability of staying on an action immediately after switching to the action is 366

around 50% - 60% (shown by the bar at x = 0 in Figure 8:right-panel), i.e., there is a 40% - 50% chance 367

that the subject immediately switches back to the previous action. Based on this, we expect to see a ‘dip’ 368

10To be consistent with off-policy simulations, only trials in which (i) subjects did not earn a reward on that trial, (ii)
subjects did not earn reward since switching to the current action, were included in the graph.

11The intercept was random-effect at the subject level; the number of times that an action was repeated since switching to
the action was fixed-effect (between zero to 15 times). The dependent variable was the probability of staying on an action.
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in the simulations of depression and bipolar groups in Figure 7 just after switching to L action, which 369

is not the case, pointing to an inconsistency between model predictions and empirical data. 370

To look closer at the above effect, we define a run of key presses as a sequence of presses on a certain 371

key in a row, without switching to the other action12. Figure 9 shows the relationship between 372

consecutive run lengths, i.e., the length of the current run of actions as a function of the length of the 373

previous run of actions (see Figures S13, S14, and S15 for the similar graphs using on-policy simulations 374

of rnn, gql with N = 2 and gql with N = 10, respectively). The dashed line in the figure indicates the 375

points at which the current run length is the same the previous run length. Being close to this line 376

implies that subjects are performing symmetric oscillations between the two actions, i.e., going back and 377

forth between the two actions while performing an equal number of presses on each key. In particular, as 378

the graph shows in the bipolar group, and to an extent the in depression group, a run of short length 379

will trigger another run with a similar length. This implies that, if for example by chance a subject 380

performs a run of length 1, it will initiate a sequence of oscillations between the two actions, which will 381

keep the stay probabilities low during short runs, consistent with what we see at x = 0 in 382

Figure 8:right-panel. This effect cannot be seen in the simulations that we showed in Figure 7, because 383

the length of the previous run before switching to action L was 10 (there were 10 R actions), and 384

therefore we do not expect the next run to be of length 1, neither do we expect to see a dip in policies 385

just after the first switch. 386

As shown in Figure S10, majority of runs are of length 1 in the depression, and bipolar groups 387

(around 17%, 37%, and 45% of runs are of length 1 in the healthy, depression, and bipolar groups 388

respectively). Given this, and the specific pattern of oscillations in the depression and bipolar groups, 389

the next question is whether in the models a run of length 1 will trigger the oscillations, similar to the 390

empirical data. We used a combination of off-policy and on-policy model simulations to answer this 391

question. That is, during the off-policy phase we forced the model to make an oscillation between the 392

two actions, and then after that we let the model select actions. We expect to see that in the healthy 393

group, the model will converge to one of the actions, but in depression and bipolar groups, we expect 394

to see the initial oscillations trigger further switches. Simulations are presented in Figure 10, in which 395

the sequence of actions fed to the model for the first 9 trials is (off-policy trials): 396

R, R, R, R, R, R, L, R, L, 397

in which there are two oscillations at the tail of the sequence (R, L, R, L,). The rest of actions (trials 398

10-20) were selected based on which action the model assigns the highest probability13. As the 399

simulation shows, at the beginning the probability that the model assigns to action R is high, but then 400

after feeding the oscillations, the model predicts that the future actions will be oscillating in depression 401

and bipolar groups, but not in healthy group, consistent with what we expect to observe. 402

Therefore, rnn is able to produce symmetric oscillations and its behaviour is consistent with the 403

subjects’ actions. As Figure 10 shows, besides rnn, gql was also able to produce length 1 oscillations to 404

some extent (as shown for bipolar group), which can be the reason that the prediction accuracy 405

achieved by this model is significantly better than qlp in bipolar and depression groups (Figure 3) in 406

12For example, if the executed actions are L, R, R, L, then the length of the first of run is 1 (L), the length of second run
is 2 (R, R), and the length of the third run is 1 (L).

13Note that in on-policy simulations, typically actions are selected probabilistically according to the probabilities that a
model assigns to each action. However, in the on-policy simulations presented in this section in order to get consistent
results across simulations, actions were not selected probabilistically, but they were chosen based on which actions get the
highest prediction probability.
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Figure 9. Median number of actions executed in a row before switching to another action (run of
actions) in each subject as a function of length of previous run of actions (averaged over subjects). The
dotted line shows the points in which the length of previous and current run are the same. Note that the
use of median instead of average was because we aimed to illustrate most common ‘length of current
run’, instead of average run length in each subject. Error-bars represent 1SEM.

which length 1 oscillations are more common (see Section S2 for more details). However, as shown in 407

Figure S14, gql failed to produce oscillations of longer lengths (even if we increase the capacity of gql 408

by using N = 10; see Figure S15), while rnn was able to do so (Figure S13). This inability in the gql 409

model is particularly problematic in depression and healthy groups, as these two groups tend to 410

match the length of consecutive runs of actions. This could be the reason that in the cross-validation 411

statistics rnn is significantly better than gql in depression and bipolar groups. 412

Summary. Firstly, rnn was able to capture the immediate effect of rewards on actions (i.e., the ‘dip’ 413

after rewards), as well as the effect of previous rewards on choices. gql has the same ability, which 414

enabled it to reproduce behavioural summary statistics shown in Figures 4, 5. Baseline 415

reinforcement-learning models (qlp and ql) failed to capture either trend. Secondly, rnn was able to 416

capture how choices change as an action is chosen repeatedly in a row, and also the symmetric 417

oscillations between the actions, which gql was unable to do so. 418

Discussion 419

Based on recurrent neural networks, we provide a method for learning a computational model that can 420

characterize human learning processes in decision-making tasks. Unlike previous works, the current 421

approach makes minimal assumptions about these learning processes; we showed that this agnosticism is 422

important to be able to explain the data. In particular, subjects apparently used a mixture of different 423

processes to select actions; there were some differences in these processes between healthy and the 424

psychiatric groups. The rnn model was able to learn these processes from data. These processes were to 425

a large extent inconsistent with Q-learning models, and were also rather hidden in the overall 426

performance of the subjects in the task. This is an example of how our proposed framework can 427

outperform previous approaches. Furthermore, we show that the model can be interpreted using 428

off-policy simulations, providing insights into the learning processes used by humans. Finally, as an 429

application of the model in computational psychiatry, we reported the performance of the model in 430

predicting diagnostic labels. 431
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Figure 10. Mixed off-policy and on-policy simulations of the models. Each panel shows a
simulation for 20 trials where the first nine trials is off-policy, and the next trials are on-policy during
which the action with the highest probability is selected. Trials marked with the green ribbons are
off-policy (actions are fed to the model), and the trials marked with the blue ribbons are on-policy
(actions are selected by the model). The ribbon below each panel shows the action that was fed to the
model (for the first 9 trials), and the action that was selected by the model (for the rest of trials). During
off-policy trials, the sequence of actions that was fed to the model was R, R, R, R, R, R, L, R, L. See
the text for the interpretation of the graph.

It might be possible to design different variants of Q-learning models (e.g., based on the analysis 432

presented before) and obtain a more competitive prediction accuracy. For example, although it is 433

non-trivial, one can design a new variant of gql which is able to track the oscillatory behaviour. Our aim 434

here was not to rule out this possibility, but to show that the strength of our analysis lies in its ability to 435

automatically extract learning features – which were initially invisible in task performance metrics – 436

from subjects’ actions through learning to learn, without requiring feature engineering in the models. In 437

this respect, although gql was not used in the previous works, we designed and used it as the baseline 438

model that can correctly capture high-level summary statistics of behaviour (Figures 5, 4), although 439

misses deeper trends that are essential to characterize behaviour, particularly in psychiatric groups. 440

Indeed, our approach inherits this benefit from neural networks which have significantly simplified 441

feature engineering in different domains (Lecun et al., 2015). However, our approach also inherits the 442

black-box nature, i.e., the lack of interpretable working mechanism, of neural networks. This might not 443

be an issue in some applications such as predicting diagnostic label of the subjects; however, it needs to 444

be addressed in other applications in which the target of the study is obtaining an interpretable working 445

mechanism. We did however show that running controlled experiments on the model through the 446

off-policy simulations can provide some insights into the processes behind subjects’ choices. Interpreting 447

neural networks is an active area of research in machine learning (e.g., Karpathy et al., 2015), and the 448

approach proposed here can benefit from further developments in this area. Even as a pure black-box 449

model, the current approach can also contribute to the previous methods of computational modelling by 450

providing a baseline for predictive accuracy. That is, as long as a candidate model does not provide 451

better than or equal performance to rnn models, it means that there are certainly accessible behavioural 452
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trends that have been missed in the model structure. This is particularly important due to the natural 453

randomness in human choices, making it unclear in many scenarios whether the model at hand (e.g., a 454

Q-learning model) has reached the limit of predictability of choices, or whether it requires further 455

improvements. 456

As we showed, off-policy simulations of the model can be used to gain insights into the model’s 457

working mechanism. However, off-policy simulations need to be designed manually to determine the 458

inputs to the model. Here, we designed the initial off-policy simulations based on the specific questions 459

and hypotheses that we were interested in and using overall behavioural statistics (Figure 6; Section S2). 460

However, an important part of the behavioural processes, i.e., the tendency of subjects to oscillate 461

between the actions, was not visible in those simulations, and because of this we designed another set of 462

inputs to investigate the oscillations (Figure 10). This shows that the choices of off-policy simulations 463

affect the interpretation of the model’s working mechanism. As such, although rnn can be trained 464

automatically and without intuition into the behavioural processes behind actions (e.g., Barak, 2017), 465

the other part, i.e., designing off-policy simulations, is not automated and does need manual hypothesis 466

generation. Automating this process requires a method that generates representative inputs (and 467

network outputs) that most discriminately describe the differences between the psychiatric groups. We 468

did not address this limitation in this work, and left it for future research. 469

Recurrent neural networks have been previously used to study reward-related decision-making (Song 470

et al., 2017; Zhang et al., 2018), perceptual decision-making, performance in cognitive tasks, 471

working-memory (Miconi, 2017; Carnevale et al., 2015; Mante et al., 2013; Song et al., 2016; Barak et al., 472

2013; Yang et al., 2017), motor patterns, motor reach and timing (Sussillo et al., 2015; Hennequin et al., 473

2014; Rajan et al., 2016; Laje and Buonomano, 2013). Typically, in these studies a rnn is trained based 474

on the performance of the model in the task, which is different from the current study in which the aim 475

of training is to generate a behaviour similar to the subjects’, even if it leads to poor performance in the 476

task. An exception is for example the study in Sussillo et al. (2015) in which a network was trained to 477

generate outputs similar to electromyographic (EMG) signals recorded in behaving animals during a 478

motor reach task. Interestingly, the study found that even though the model was trained purely based on 479

EMG signals, the internal activity of the model resembled neural responses recorded from the motor 480

cortex of the animals. A similar approach can be employed in future works to investigate whether brain 481

activities during decision-making are related to the network activity. 482

With regard to predicting subjects’ diagnostic labels, it is not surprising that the model was unable 483

to achieve a high level of classification accuracy in predicting diagnostic labels. The reason is that there 484

is a high level of heterogeneity in patients with the same diagnostic label, which for example is reflected 485

in the wide variation in treatments and treatment outcomes in depression (e.g., Rush et al., 2006). Such 486

variations might be reflected in the learning and choice abilities of the subjects, in which case, may be 487

predicted using the model’s inferred labels for each subject. On the other hand, purely as a diagnostic 488

tool the current approach may help clinicians in situations that using questionnaires is not applicable 489

(e.g., due to language/cultural barriers). 490

In the model fitting procedure used here, a single model was fitted to all subjects in each group, 491

despite possible individual differences within a group. This was partly because we were interested in 492

obtaining a single parameter set for making predictions for the held out subject in leave-one-out 493

cross-validation experiments. That is, even if a mixed-effect model was fitted to the data, at the end, a 494

summary of group statistics is required for making predictions about a new subject. In other 495

applications one might be interested in estimating parameters for each individual (either network weights 496
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or parameters of the reinforcement-learning models); in this respect using a hierarchical model fitting 497

procedure would be a more appropriate approach, which has been done previously for the 498

reinforcement-learning models (e.g., Piray et al., 2014) and it would be an interesting future step to 499

develop it for rnn models. 500

Along the same lines, a single rnn model, due to its rich set of parameters, might be able to learn 501

and detect individual differences (e.g., differences in the learning-rates of subjects) at early trials of the 502

task, and then use this information for making predictions for later trials. For example, in the 503

learning-to-learn phase, the model might learn that subjects either have a very high, or a very low 504

learning-rate. Then, when being evaluated in the actual learning task, the model can use its observations 505

from subjects’ choices at early trials to determine whether the learning-rate for that specific subject is 506

high or low, and then utilise that information for making more accurate predictions in latter trials. 507

Determining such individual-specific traits in early trials of the task is presumably not part of the 508

computational processes occurring in the subject’s brain during the task, but it is occurring in the model 509

merely to make more accurate predictions. Therefore, if the network learns to do so, it might not be 510

straightforward to treat such models as the computational models for subject’s choices, but only as the 511

models that are able to make predictions for the choices. 512
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Supporting information 518

S1 Behavioural analysis using gql 519

In gql simulations presented in Figure 6, an observation is that earning a reward (shown by black 520

crosses) causes a ‘dip’ in the probability of staying on an action, which shows the tendency to switch to 521

the other action. This is consistent with the observation made in Figure 5 that the probability of 522

switching increases after rewards. The reason that gql is able to produce different predictions to that of 523

ql and qlp is that in this model, the contribution of action values to choices can be negative, i.e., higher 524

values can lead to a lower probability of staying on an action. Indeed, examining the learned parameters 525

for this model (Table S4) revealed that for each action, values are updated at two different rates, a slow 526

rate (0.145) and a fast rate (0.815), and the coefficient for the values that are updated at the faster rate 527

is negative (−1.002). This implies that after earning a reward the value of the action taken increases 528

quickly, but that increase leads to the lower probability of selecting the action - which makes the ‘dip’ in 529

policies following the rewards. 530

The next observation was with respect to the effect of previous rewards on the probability of 531

switching after a reward. As shown in Figure 6, gql model produced a pattern similar to rnn, and it 532

can be seen that the probability of staying on an action increases after earning a reward, causing the 533

depth of the dip after earning reward to become smaller as more rewards are earned. This ability of gql 534

is because this model tracks two values for each action, one of them updated with a fast learning-rate 535

and the other with a slow learning-rate. The one that updates faster plays a role in the dip following 536

each reward. On the other hand, the value that updates slower (at learning-rate 0.145) has an opposite 537

effect since it contributes to choices with a positive coefficient (4.258), and therefore, with increases in 538

the value after reward the probability of staying with an action increases. Based on this, allowing the 539

model to track two different values for each action is important, and the model will not be able to 540

produce this behaviour if it tracks only one value for each action (N = 1) as shown in Figure S8. 541

S2 The choice of off-policy settings 542

In the simulations shown in Figure 6, action R is fed into the model for the first 10 trials before 543

switching to the other action. This is based on the fact that in the empirical data, the average length of 544

staying with an action (when one reward is earned in the middle of the execution of the action) is 9.8. 545

The first, second and third rewards in Figure 6 are delivered after an action was taken 4, 12, and 17 546

times respectively. This is based on the fact that in the empirical data, the average number of 547

key-presses in order to earn the first, second and third rewards is 4.07, 11.6, and 17.4 respectively. 548

In the simulations shown in Figure 10, the reason for adding leading R before oscillations is to show 549

that the models do not oscillate all the time, but only after they are fed with oscillations. Indeed, qlp is 550

in principle able to produce 1-step oscillations (singe-action runs) by assigning a negative weight to the 551

perseveration parameter, i.e., instead of the model having a tendency to stay on the previously selected 552

action, it will have a tendency not to stay on the selected action. However, under this condition the 553

model will keep oscillating between the actions from trial 1, implying that it can only produce runs of 554

length 1 no matter what the length of the previous run of actions was, which is inconsistent with the 555

empirical data presented in Figure 9. 556
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Figure S1. Cross-validation results for different number of cells and optimization iterations.
(Top-panel) Percentage of actions predicted correctly averaged over leave-one-out cross-validation folds.
(Bottom-panel) Mean nlp averaged over cross-validation folds. Error-bars represent 1SEM.
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Figure S2. Choices in healthy group. Each row shows choices of a subject across different blocks
(12 blocks).
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Figure S3. Choices in depression group. Each row shows choices of a subject across different
blocks (12 blocks).
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Figure S4. Choices in bipolar group. Each row shows choices of a subject across different blocks
(12 blocks).
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Figure S5. Off-policy simulations of gql (N = 2). Each panel shows a simulation for 30 trials
(horizontal axis), and the vertical axis shows the predictions of each model on each trial. The ribbon
below each panel shows the action which was fed to the model on each trial. In the first 10 trials, the
action that the model received was R and in the next 20 trials it was L. Rewards are shown by black
crosses (x) on the graphs. See text for the interpretation of the graph. Note that the simulation conditions
is same as the one depicted in Figures 7 and 6
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Figure S6. Off-policy simulations of qlp. Each panel shows a simulation for 30 trials (horizontal
axis), and the vertical axis shows the predictions of each model on each trial. The ribbon below each
panel shows the action which was fed to the model on each trial. In the first 10 trials, the action that the
model received was R and in the next 20 trials it was L. Rewards are shown by black crosses (x) on the
graphs. See text for the interpretation of the graph. Note that the simulation conditions is same as the
one depicted in Figures 7 and 6
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Figure S7. Off-policy simulations of ql. Each panel shows a simulation for 30 trials (horizontal
axis), and the vertical axis shows the predictions of each model on each trial. The ribbon below each
panel shows the action which was fed to the model on each trial. In the first 10 trials, the action that the
model received was R and in the next 20 trials it was L. Rewards are shown by black crosses (x) on the
graphs. See text for the interpretation of the graph. Note that the simulation conditions is same as the
one depicted in Figures 7 and 6
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Figure S8. Off-policy simulations of gql with N = 1. Each panel shows a simulation for 30
trials (horizontal axis), and the vertical axis shows the predictions of each model on each trial. The
ribbon below each panel shows the action which was fed to the model on each trial. In the first 10 trials,
the action that the model received was R and in the next 20 trials it was L. Rewards are shown by
black crosses (x) on the graphs. See text for the interpretation of the graph. Note that the simulation
conditions is same as the one depicted in Figures 7 and 6
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Figure S9. The effect of the initialisation of the network on the off-policy simulations of
rnn. The simulation conditions are the same as the ones depicted in Figures 7 and 6. Here, 15 different
initial networks were generated and optimised and the policies of the models at each trial were averaged.
The gray ribbon around the policy shows the standard deviation of the policies. Each panel shows a
simulation for 30 trials (horizontal axis), and the vertical axis shows the predictions of each model on
each trial. The ribbon below each panel shows the action which was fed to the model on each trial. In
the first 10 trials, the action that the model received was R and in the next 20 trials it was L. Rewards
are shown by black crosses (x) on the graphs. See text for the interpretation of the graph.

Healthy Depression Bipolar

1 2 3 4 5 6 7 8 91011121314 1 2 3 4 5 6 7 8 91011121314 1 2 3 4 5 6 7 8 91011121314

0

25

50

75

100

run length

p
e

rc
e

n
ta

g
e

 o
f 

ru
n

s

Figure S10. Percentage of each run of actions relative to the total number of runs for each
subject. Percentage of each length of run of actions relative to the total number of run of actions in
each subject (averaged over subjects). Red dots represent data for each subject, and error-bars represent
1SEM.

32/36

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 20, 2018. ; https://doi.org/10.1101/285221doi: bioRxiv preprint 

https://doi.org/10.1101/285221
http://creativecommons.org/licenses/by-nc-nd/4.0/


Healthy Depression Bipolar

0 1 2 >2 0 1 2 >2 0 1 2 >2

0.00

0.25

0.50

0.75

1.00

#previous rewards since  
 switching to the current action

s
ta

y
 p

ro
b

a
b

ili
ty

Healthy Depression Bipolar

0 5 10 15 0 5 10 15 0 5 10 15

0.00

0.25

0.50

0.75

1.00

#previous actions since  
 switching to the current action

s
ta

y
 p

ro
b

a
b

ili
ty

Figure S11. rnn simulations. The graph is similar to Figure 8 but using data from rnn simulations.
(Left-panel) Probability of staying on an action after earning reward as a function of number of actions
taken since switching to the current action (averaged over subjects). Each red dot represents the data for
each subject. (Right-panel) Probability of staying on an actions as a function of number of actions
taken since switching to the current action. The red line was obtained using Loess regression (Local
Regression), which is a non-parametric regression approach. The grey area around the red line represents
95% confidence interval. Error-bars represent 1SEM.
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Figure S12. gql simulations (N = 2). The graph is similar to Figure 8 but using data from gql
simulations with N = 2. (Left-panel) Probability of staying on an action after earning reward as a
function of number of actions taken since switching to the current action (averaged over subjects). Each
red dot represents the data for each subject. (Right-panel) Probability of staying on an actions as a
function of number of actions taken since switching to the current action. The red line was obtained
using Loess regression (Local Regression), which is a non-parametric regression approach. The grey area
around the red line represents 95% confidence interval. Error-bars represent 1SEM.
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Figure S13. rnn simulations. The graph is similar to Figure 9 but using data from rnn simulations.
Median number of actions executed in a row before switching to another action (run of actions) in each
subject as a function of length of previous run of actions (averaged over subjects). The dotted line shows
the points in which the length of previous and current run are the same. Note that the use of median
instead of average was because we aimed to illustrate most common ‘length of current run’, instead of
average run length in each subject. Error-bars represent 1SEM.
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Figure S14. gql simulations (N = 2). The graph is similar to Figure 9 but using data from gql
simulations with N = 2. Median number of actions executed in a row before switching to another action
(run of actions) in each subject as a function of length of previous run of actions (averaged over subjects).
The dotted line shows the points in which the length of previous and current run are the same. Note
that the use of median instead of average was because we aimed to illustrate most common ‘length of
current run’, instead of average run length in each subject. Error-bars represent 1SEM.
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Figure S15. gql simulations (N = 10). The graph is similar to Figure 9 but using data from gql
simulations with N = 10. Median number of actions executed in a row before switching to another action
(run of actions) in each subject as a function of length of previous run of actions (averaged over subjects).
The dotted line shows the points in which the length of previous and current run are the same. Note
that the use of median instead of average was because we aimed to illustrate most common ‘length of
current run’, instead of average run length in each subject. Error-bars represent 1SEM.
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Table S1. Prediction of diagnostic labels using gql (N = 2). Number of subjects for each true-
and predicted-labels. The numbers inside parenthesis are the percentage of number subjects relative to
the total number of subjects in each diagnostic group.

predicted labels
healthy depression bipolar

healthy 29 (85%) 2 (5%) 3 (8%)
depression 16 (47%) 7 (20%) 11 (32%)true

labels
bipolar 12 (36%) 6 (18%) 15 (45%)

Table S2. Estimated parameters for ql model.
α β αβ

healthy 0.0002 616.559 0.162
depression 0.00001 11760.3 0.14

bipolar 0.00002 4025.94 0.12

Table S3. Estimated parameters for qlp model.
α β κ αβ

healthy 0.0008 98.8895 2.0634 0.079
depression 0.00003 2479.31 1.223 0.09

bipolar 0.00008 1113.97 0.680 0.09

Table S4. Estimated parameters for gql model with N = 2.
Φ Ψ B K C

healthy [0.145 0.815] [0.635 0.389] [4.258 -1.002] [3.268 -0.974] [[-14.256 4.243]
[ 17.998 -6.335]]

depression [0.003 0.999] [0.399 0.3199] [8.691 -0.315] [1.709 0.077] [[14.918 6.112]
[ 19.599 -7.292]]

bipolar [0.147 0.654] [0.897 0.999] [4.363 -1.1453] [14.447 -12.501] [[0.174 -15.199]
[ -2.936 15.164]]

Table S5. Negative log-likelihood for each model optimized over all the subjects in each group.
rnn gql qlp ql

healthy 9421.6660 12939.40 14557.44 27616.79
depression 13158.1074 19735.61 23378.65 29862.19

bipolar 12891.3496 19363.08 24859.15 26843.88

Table S6. Negative log-likelihood for each model. For rnn a single model was fitted to the whole group
using ML estimation. For baseline methods (gql, qlp, and ql), a separate model was fitted to each
subject, and the reported number is the some of negative log-likelihoods over the whole group.

rnn gql qlp ql
healthy 9421.6660 9482.846 11529.58 26080.13

depression 13158.1074 14668.763 17837.02 28448.94
bipolar 12891.3496 14157.206 16912.37 25874.56

Table S7. Mean and standard deviation of negative log-likelihood for rnn over 15 different initialisations
of the model and optimised over all the subjects in each group.

mean (standard deviation)
healthy 9450.937 (81.512)

depression 13268.186 (135.499)
bipolar 12885.629 (134.552)
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