
Shared genetic contribution to type 1 and type 2 diabetes risk 1 
Anthony Aylward*,1, Joshua Chiou*,2, Mei-Lin Okino3, Nikita Kadakia3, Kyle J Gaulton#,3  2 

 3 

1. Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, 4 

9500 Gilman Drive, La Jolla, CA 92093, USA 5 

2. Biomedical Sciences Graduate Program, University of California, San Diego, 9500 Gilman 6 

Drive, La Jolla, CA 92093, USA 7 

3. Department of Pediatrics, University of California San Diego, La Jolla CA 8 

 9 

* These authors contributed equally to this work 10 

# Corresponding author: kgaulton@ucsd.edu 11 

 12 

Abstract 13 

The role of shared genetic risk in the etiology of type 1 diabetes (T1D) and type 2 diabetes (T2D) 14 

and the mechanisms of these effects is unknown. In this study, we generated T1D association 15 

data of 15k samples imputed into the HRC reference panel which we compared to T2D 16 

association data of 159k samples imputed into 1000 Genomes. The effects of genetic variants on 17 

T1D and T2D risk at known loci and genome-wide were positively correlated, which we replicated 18 

using data from the UK Biobank and clinically-defined diabetes in the WTCCC. Increased risk of 19 

T1D and T2D was correlated with higher fasting insulin and fasting glucose level and decreased 20 

birth weight, among T1D- and T2D-specifc correlations, and T1D and T2D associated variants 21 

were enriched in regulatory elements for pancreatic, insulin resistance (adipose, CD19+ B cell), 22 

and developmental (CD184+ endoderm) cell types. We fine-mapped causal variants at known 23 

T1D and T2D loci and found evidence for co-localization at five signals, four of which had same 24 

direction of effect, including CENPW and GLIS3. Shared risk variants at GLIS3 and other signals 25 

were associated with measures of islet function, while CENPW was associated with early growth, 26 

and we identified shared risk variants at GLIS3 in islet accessible chromatin with allelic effects on 27 

islet regulatory activity. Our findings support shared genetic risk involving variants affecting islet 28 

function as well as insulin resistance, growth and development in the etiology of T1D and T2D.  29 

 30 

 31 

 32 

 33 
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Introduction 35 

 36 

Diabetes affects over 400 million individuals worldwide and contributes to substantial morbidity 37 

and mortality1. Type 1 diabetes (T1D) is an autoimmune disease resulting in destruction of 38 

pancreatic beta cells, whereas type 2 diabetes (T2D) is a metabolic disease of insulin resistance 39 

and beta cell dysfunction2. Genetics plays a major role in both forms of diabetes, where 58 risk 40 

signals have been identified for T1D3 and over 100 for T2D4,5. Roughly half of the genetic risk for 41 

T1D can be attributed to the HLA locus, and many known T1D risk loci affect immune function2. 42 

Conversely, the majority of known T2D risk loci appear to affect pancreatic islet and insulin 43 

resistance tissues such as adipocytes and skeletal muscle6–10. Outside of known loci there are 44 

many additional genetic factors influencing diabetes risk8.  Pathophysiological links have been 45 

reported between T1D and T2D suggesting an underlying shared etiology11,12, but the contribution 46 

of genetic variants to this shared etiology and the underlying molecular and physiological 47 

mechanisms are unknown.  48 

 49 

Multiple genomic loci that affect risk of both T1D and T2D have been identified. One example is 50 

the CTRB1 locus, where risk variants are correlated with chymotrypsin expression in the pancreas 51 

and pancreatic islets and GLP-1 mediated insulin secretion13. Another example is GLIS3, a gene 52 

that causes monogenic neonatal diabetes14. A linkage study in non-obese diabetic (NOD) mice 53 

identified an effect of the GLIS3 locus on T1D progression, suggesting an underlying pancreatic 54 

beta cell phenotype12. This study further argued that beta cell ‘fragility’ involving the unfolded 55 

protein response leading to pronounced cell death underlies shared T1D and T2D risk15. 56 

However, the specific causal variants at shared risk loci, including whether the signals are the 57 

same or distinct, and the mechanisms of how they alter genomic and cellular functions to influence 58 

disease risk are unknown. Furthermore, shared loci appear to have both opposite (CTRB1) and 59 

same (GLIS3) direction of effect on T1D and T2D risk, and thus the broader relationship between 60 

genetic effects on T1D and T2D is unclear.    61 

      62 

Genome-wide association data of variant genotypes imputed into comprehensive reference 63 

panels enables understanding broad relationships to other traits and functional annotations16–18. 64 

In addition, these data enable fine-mapping of causal variants and mechanisms underlying 65 

diabetes risk at specific loci8.  Previous fine-mapping studies of T1D and T2D loci resolved sets 66 

of causal variants at many risk signals and annotations enriched in these causal variant sets3,19. 67 

These studies revealed that the majority of risk signals for diabetes map in regulatory elements 68 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/285304doi: bioRxiv preprint 

https://doi.org/10.1101/285304
http://creativecommons.org/licenses/by-nc-nd/4.0/


active in specific cell-types and thus likely affect gene regulation in these cells3,8,19. Projects such 69 

as ENCODE and the NIH Epigenome Roadmap have annotated regulatory elements in hundreds 70 

of human cells and tissues20,21, while other studies have provided detailed regulatory maps of 71 

specific tissues such as islets and adipocytes6,22. Epigenomic annotations broadly enriched for 72 

disease signals can further be used to prioritize potential functions of causal variants overlapping 73 

these annotations for experimental validation19.  74 

 75 

Here, we studied genetic risk of T1D and T2D using comprehensive genome-wide association 76 

data for both traits. We identified positive correlations both genome-wide and at known loci 77 

between variant effects on T1D and T2D risk. Increased risk of T1D and T2D was correlated with 78 

higher fasting insulin and glucose level and decreased birth weight, among other traits, and 79 

variants with T1D and T2D association were enriched in pancreatic islet, adipocyte, CD19+ B cell, 80 

and CD184+ endoderm regulatory elements. We identified evidence of co-localized signals for 81 

T1D and T2D at five loci, four of which had the same direction of effect. Shared signals at GLIS3 82 

and other loci were associated with quantitative measures of beta cell function, while CENPW 83 

was associated with early growth phenotypes.  We fine-mapped casual variants at shared signals 84 

and identified variants at GLIS3 in islet accessible chromatin with allelic effects on enhancer 85 

activity.  Together our results provide evidence for shared risk underlying T1D and T2D involving 86 

variants with effects on pancreatic islets and well as insulin resistance, growth, and development.  87 

 88 

Results 89 

 90 

We generated genome-wide association data for T1D using publicly-available genotype data of 91 

T1D case and control samples of European ancestry (see Methods, Figure S1).  We imputed 92 

genotypes from each study into 39M variants in the Haplotype Reference Consortium (HRC) 93 

panel23. Imputed genotypes passing quality filters (r2>.3) were tested for T1D association 94 

separately for different genotyping platforms using firth-biased regression including sex and the 95 

top 3 principal components as covariates. We then performed inverse variance weighted meta-96 

analysis to combine results. We retained imputed variants tested in all samples with minor allele 97 

frequency (MAF) > .005, resulting in 8.5M variants. As expected, given comparable sample size 98 

to previous studies, variants with genome-wide significant association mapped to known loci 99 

(Figure S1).  100 

 101 
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We then determined the relationship between variant effects on T1D and T2D risk by comparing 102 

T1D association statistics with T2D association from the DIAGRAM consortium4. We first 103 

determined shared effects among variants at known risk loci for both traits excluding the MHC 104 

locus. There was an enrichment of nominal T1D association (P<.05) among 93 known T2D index 105 

variants relative to matched background variants (obs=19.1%, exp=7.8%, binomial P=3.2x10-4) 106 

(Figure 1A, Table S1). T2D index variants were also enriched for concordant direction of effect 107 

on T1D (57/94, binomial P=.037), including among those with nominal T1D association (T1D 108 

P<.05) (14/18, binomial P=.031) (Figure 1B, Table S1). We found significant directional 109 

concordance among the 14 variants with both nominal T1D association and same direction of 110 

effect on T2D using summary data from UK Biobank (UKBB) (12/14, binomial P=.013).  Despite 111 

a net sharing in effects, several T2D loci had opposite effects on T1D risk including CTRB1 and 112 

TCF7L2 (Figure 1B). Conversely, there was less evidence for enrichment of nominal T2D 113 

association (obs=12.2%, exp=7.3%, binomial P=.19) or concordant direction of effect (28/57, 114 

binomial P=1) among 57 known T1D variants (Figure 1A, Table S2).   115 

 116 

We then determined the correlation between variant effects genome-wide on T1D and T2D risk. 117 

In these analyses, we used LD-score regression on the set of HapMap3 variants common to T1D 118 

and T2D association datasets (see Methods). We observed evidence for a positive correlation in 119 

the effects of variants genome-wide on T1D and T2D risk (Rg=.14) (Figure 1C). A positive 120 

correlation remained when performing these analyses using summary data of T1D and T2D from 121 

the UK Biobank (T1D/T2D-UKBB Rg=.12, T1D-UKBB/T2D Rg=.23) (Figure 1C). We also 122 

identified positive correlation with T1D risk when using T2D association data imputed from 123 

different reference panels (GoT2D, HM2) (Rg=.18, Rg=.23) and from trans-ethnic cohorts (Rg=.22) 124 

(Figure 1C). To limit the potential effects of misdiagnosed diabetes on these results, we first 125 

generated association data using clinical definitions of T1D and T2D in the WTCCC and observed 126 

a positive correlation when using either T1D or T2D WTCCC dataset (T2D-WTCCC Rg=.14; T1D-127 

WTCCC Rg=.13) (see Methods). Second, we removed obese (BMI>30) samples from T1D 128 

cohorts and the positive correlation with T2D remained (Rg=.14) (Figure 1C). These results 129 

demonstrate evidence for correlated effects of variants genome-wide on risk of T1D and T2D.  130 

 131 

Given evidence for a positive correlation in variant effects on T1D and T2D, we sought to 132 

understand potential mechanisms underlying the shared effects. We first determined the 133 

correlation between T1D and T2D risk and relevant traits using LD score regression24–27. For T2D, 134 

there was a significant correlation between T2D risk and increased HbA1C level (Rg=.64, 135 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/285304doi: bioRxiv preprint 

https://doi.org/10.1101/285304
http://creativecommons.org/licenses/by-nc-nd/4.0/


P=3.1x10-15), fasting glucose level (Rg=.57, P=4.2x10-11), fasting insulin level (Rg=.48, P=2.9x10-136 
9), HOMA-IR (Rg=.55, P=1.9x10-7), and body-mass index (BMI) (Rg=.48, P=3.9x10-36), and 137 

decreased birth weight (Rg=-.28, P=1.2x10-8) (Figure 2A).  There was also evidence for a 138 

correlation between T2D risk and increased proinsulin level (Rg=.22, P=.057) and male pubertal 139 

size (Rg=.12, P=.14) although these estimates were not significant.  For T1D, we observed a 140 

correlation between T1D risk and increased fasting proinsulin (Rg=.23, P=.034) and fasting insulin 141 

level (Rg=.17, P=.047) (Figure 2A). We also observed evidence for a correlation between T1D 142 

risk and decreased birth weight (Rg=-.09, P=.10), increased male pubertal size (Rg=.18, P=.11), 143 

and increased fasting glucose level (Rg=.07, P=.32) although these estimates were not significant. 144 

We did not observe correlation between T1D and BMI (Rg=-0.02, P=.52) or childhood obesity 145 

(Rg=-0.02, P=.75), the latter previously identified as an instrumental variable for T1D risk28.  146 

 147 

We determined the extent to which traits correlated with both T1D and T2D risk might be driven 148 

through variants with shared effects on T1D and T2D.  From genome-wide association data for 149 

T1D and T2D, we extracted variants with the same direction of effect and tested these variants 150 

for correlation to each trait using LD score regression. For both T1D and T2D, we observed 151 

stronger correlations with increased fasting glucose level (T1D shared Rg=.43, T2D shared 152 

Rg=.65), increased fasting insulin level (T1D shared Rg=.55, T2D shared Rg=.68), and decreased 153 

birth weight (T1D shared Rg=.25, T2D shared Rg=.29) among variants with same direction of 154 

effect (Figure 2B). We observed less evidence for pronounced correlation between shared effect 155 

T1D and T2D variants and fasting proinsulin level (T1D shared Rg=.33, T2D shared Rg=.28), and 156 

male pubertal growth (T1D shared Rg=.26, T2D shared Rg=.16) (Figure 2B).  157 

 158 

We next determined functional annotations enriched for T1D and T2D associated variants. We 159 

used annotations of active enhancer and promoter elements in 98 cell types from the Epigenome 160 

roadmap project21 and annotations of protein-coding gene exons and UTRs from GENCODE29. 161 

We tested for enrichment of each annotation for T1D and T2D risk using stratified LD score 162 

regression17. There was evidence for positive enrichment genome-wide of both T1D and T2D 163 

association for variants in pancreatic islet (T1D Z=1.02, T2D Z=2.67), adipose nuclei (T1D Z=.09, 164 

T2D Z=1.52), CD19+ B cell (T1D Z=3.12, T2D Z=.31), CD184+ endoderm (T1D Z=.62, T2D 165 

Z=1.25), and pancreas (T1D Z=.41, T2D Z=.62) regulatory elements (Figure 2C). We also 166 

observed enrichments specific to each trait, most notably T1D association for immune regulatory 167 

elements such as T cell (Z=4.67) and fetal thymus (Z=1.83) (Table S4).  168 

 169 
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Given enrichment of multiple cell-types for both T1D and T2D association, we next tested to what 170 

extent these effects were driven through variants with same direction of effect on T1D and T2D.  171 

We obtained LD-pruned variants nominally associated (P<.05) with both T1D and T2D and with 172 

same direction of effect and tested for enrichment of overlap with each annotation compared to 173 

random sets of matched variants (see Methods).  We observed significant enrichment of overlap 174 

with CD184+ endoderm (Fisher’s P=.017), adipose nuclei (P=.018) and pancreatic islet (P=.040) 175 

regulatory sites (Figure 2D).  We next repeated these analyses instead using variants with 176 

opposite direction of effect on T1D and T2D.  We observed significant overlap of opposite effect 177 

variants with CD184+ endoderm (P=.031) and pancreatic islet regulatory elements (P=.020), 178 

suggesting that these cell-types are enriched in variants with both shared and opposite effects on 179 

T1D and T2D.      180 

  181 

We next used association data to fine-map specific causal variants influencing T1D and T2D.  For 182 

T2D we compiled fine-mapping data of 93 signals from previous studies (see Methods).  As fine-183 

mapping data for all known T1D loci have not been previously reported, we used T1D association 184 

statistics to fine-map 57 T1D risk signals excluding the MHC region. At each locus, we considered 185 

the index variant for the locus and all variants in at least low LD (r2>.1). We then used a Bayesian 186 

approach to calculate the posterior causal probability (PPA) for each variant, and ‘credible sets’ 187 

of variants explaining 99% of the total PPA (see Methods, Figure 3A, Table S5). T1D credible 188 

sets contained a median of 66 variants, and 15 loci had 25 or fewer credible set variants.  We 189 

compared fine-mapping for 34 loci common to our data and Immunochip fine-mapping3, and found 190 

a strong correlation between T1D association for credible set variants (Pearson r=.93).  Credible 191 

set sizes at these 34 loci were larger in our data than for Immunochip (median=37, Immunochip 192 

median=31), likely reflecting increased variant density. We also identified high probability variants 193 

not covered in Immunochip credible sets for example at CTSH (rs12592898, PPA=.19). 194 

 195 

Given fine-mapping of known T1D and T2D signals, we next determined genomic annotations of 196 

candidate causal variants at these signals.  For each signal, we calculated the cumulative PPA of 197 

variants overlapping T1D/T2D enriched annotations including pancreas, adipose, endoderm and 198 

immune cell regulatory elements as well as protein-coding exons.  We then grouped signals 199 

based on the resulting cumulative PPA values for each annotation (see Methods).  For T1D, 200 

signals mapped into distinct groups of immune cell regulatory elements (31 signals), pancreas 201 

regulatory elements (6 signals), and coding exons (4 signals) as well as 15 un-annotated signals 202 

(Figure 3B).  For T2D, signals also mapped into distinct groups including pancreas regulatory 203 
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elements (21 signals), adipose regulatory elements (15 signals), and coding exons (4 signals) 204 

(Figure S2). T1D pancreas signals were associated with T2D risk (median -log10(P)=1.37), 205 

whereas other T1D groups did not show evidence for T2D association (Figure 3C).  Among T1D 206 

signals in the pancreas group were those with known T2D association such as GLIS3 and CTRB1, 207 

as well as others with nominal T2D association such as ERBB3.         208 

 209 

Several loci have been reported to influence risk of both T1D and T2D, but whether risk signals 210 

have shared or distinct causal variants is unknown.  We cataloged 144 loci with known association 211 

to either form of diabetes and tested for shared causal variants using Bayesian co-localization 212 

(see Methods, Table S6). There was co-localization of risk signals (Pshared>.50) at three known 213 

T1D and T2D loci CENPW (Pshared=.88), CTRB1 (Pshared=.88), and GLIS3 (Pshared=.62) as well as 214 

evidence for putative co-localization of signals at known T2D loci BCL11A (Pshared=.73) and 215 

THADA (Pshared=.68) (Figure 4A).  All shared risk signals except for CTRB1 had the same 216 

direction of effect on T1D and T2D risk.  At RASGRP1, which has reported association to both 217 

T1D and T2D, we found no evidence for either state (Pdistinct=.03, Pshared=.02) (Table S5).  At 218 

several loci including MTMR3 and ZMIZ1, there was evidence for two distinct T1D and T2D 219 

signals (Pdistinct>.5) (Figure 4A). We fine-mapped causal variants at co-localized signals by 220 

combining T1D and T2D evidence (see Methods).  There was a reduction in credible set size at 221 

shared loci, including fewer than 10 variants at GLIS3 (9 vars) and CTRB1 (8 vars) (Figure 4B, 222 

Figure S3, Table S7).  We further confirmed evidence (CLPP>.01) for shared causal variants at 223 

the GLIS3 and CTRB1 signals using eCAVIAR (see Methods, Figure S3, Table S7).        224 

 225 

To understand mechanisms of how the shared T1D and T2D signals influence diabetes risk, we 226 

examined quantitative trait associations at shared signals24,30–32.  At GLIS3, risk alleles were 227 

associated with increased fasting glucose level (rs10758593 Z=4.51) and decreased HOMA-B 228 

(Z=-4.54) as well as decreased birth weight (Z=-2.27) (Figure 4C).  At CTRB1, risk alleles for T2D 229 

were nominally associated with higher fasting glucose (rs8056814 Z=2.27) and decreased birth 230 

weight (Z=-3.78).  At CENPW, risk alleles were also nominally associated with higher fasting 231 

glucose (rs4565329 Z=2.32) and decreased birth weight (Z=2.97), as well as increased male 232 

pubertal size (Z=3.14), height (Z=13), and earlier age of menarche (Z=-8.9).  Among putative 233 

shared signals, variants at THADA were associated with increased fasting glucose level (Z=3.65) 234 

and decreased HOMA-B (Z=-4.23).     235 

  236 
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Multiple shared T1D and T2D signals likely affect beta cell function, and thus we annotated 237 

variants in islet regulatory sites at these signals.  We used accessible chromatin sites merged 238 

from ATAC-seq in six islet samples33,34 (Table S8), chromatin states created from islet histone 239 

modification ChIP-seq data6,35, islet transcription factor (TF) ChIP-seq sites6, and TF footprints 240 

generated in islet ATAC-seq using CENTIPEDE33 (see Methods).  At GLIS3, rs4237150 241 

(PPA=.20), rs10116772 (PPA=.15) and rs10814915 (PPA=.007) mapped in islet accessible 242 

chromatin, active enhancer, and disrupted TF footprints, as well as islet TF ChIP-seq for 243 

rs4237150 (Figure 4D, Table S7).  At CTRB1, rs8056814 (PPA=.91) also mapped in islet 244 

accessible chromatin, active enhancer and disrupted TF footprints (Figure S4, Table S7).   245 

 246 

We tested these shared variants at GLIS3 and CTRB1, and another nearby GLIS3 candidate 247 

variant rs6476839, for effects on islet regulatory activity.  We cloned sequence surrounding 248 

variant alleles into reporter vectors in both forward and reverse orientations, and transfected 249 

constructs into the islet cell line MIN6.  As rs10116772 and rs10814915 were within 3bp, we 250 

cloned these variants in the same construct.  At GLIS3, there was a significant allelic difference 251 

in enhancer activity in both orientations for rs4237150 (Two-sided t-test Fwd P=1.2x10-4; Rev 252 

P=.024), as well as evidence in one orientation only for the rs10116772+rs10814915 and 253 

rs6476839 constructs (Figure 4E).  We further identified evidence for allelic imbalance in islet 254 

ChIP-seq reads from samples estimated to be heterozygous for these GLIS3 variants (see 255 

Methods; Figure S5).  At CTRB1, we observed significant allelic difference in repressor activity 256 

for rs8056814 (Fwd P=.017; Rev P=6.7x10-4; Figure S4).   257 

 258 

Discussion 259 

 260 

Comparison of variant effects on T1D and T2D genome-wide, across known loci, and at individual 261 

loci provide evidence for shared genetic risk underlying the two major forms of diabetes. A recent 262 

study determined that a subset of patients with later-onset T1D are misdiagnosed with T2D36. 263 

This is unlikely to explain a positive correlation between T1D and T2D given that we observed no 264 

enrichment of T2D association or concordance in effect direction among known T1D variants, 265 

even among large effect T1D variants, and the correlation remained when using clinically defined 266 

T2D in the WTCCC with no T1D relatives, negative anti-GAD, and >1 year from diagnosis to 267 

insulin treatment. Misdiagnosis of T2D as T1D is also an unlikely explanation of the positive 268 

correlation as it remains when using clinically defined T1D in the WTCCC with onset <17, insulin 269 
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treatment from diagnosis for >6 months, and no monogenic diabetes, or when removing obese 270 

individuals from T1D cohorts. Furthermore, we found little evidence for directional consistency 271 

among largest effect T2D variants. 272 

 273 

Reports have argued that islet dysfunction underlies shared etiology of T1D and T2D12. Our 274 

findings support a role for shared variants at GLIS3 in islet function, where risk alleles were 275 

associated with increased fasting glucose level and decreased beta cell function.  In addition, 276 

multiple shared risk variants at GLIS3 had allelic effects on islet enhancer activity and one was 277 

predicted to bind the glucocorticoid receptor, which is involved in diabetes-relevant inflammatory 278 

response37.  The mechanism of how these variants influence diabetes risk through regulation of 279 

GLIS3 and/or other genes in islets remains to be uncovered.  Putative shared risk signals at 280 

THADA were associated with increased glucose level and decreased beta cell function, in line 281 

with a previous report38, and variants at BCL11A have been reported to affect beta cell function38.  282 

Candidate genes at these loci are involved in apoptotic and stress-related processes39,40 and 283 

therefore altered activity could contribute to a fragile beta cell phenotype.  Genome-wide, T1D 284 

and T2D associated variants were enriched in islet regulatory elements and correlated with 285 

increased fasting glucose level.  Given the role of islet stress response in shared risk, studies 286 

mapping the islet epigenome and gene expression in diabetogenic stress conditions will help 287 

uncover additional relevant islet regulatory programs. 288 

 289 

Shared variants at the CTRB1 locus have opposite effects on T2D and T1D risk and have allelic 290 

effects on islet regulatory activity, in line with a previous report correlating risk variants with 291 

CTRB1/2 expression in pancreas and pancreatic islets13.  The variant affects a site with apparent 292 

repressive activity in islets.  Other loci have evidence for opposite effects on T1D and T2D such 293 

as TCF7L2, where T2D risk variants affect islet regulatory activity7, ZZEF1, and a recently 294 

identified association at HLA-DRB55.  Heterogeneity in effect direction at specific loci has been 295 

observed in other contexts, for example, between T2D and cardiovascular disease and T2D and 296 

birth weight5,26.  We further observed enrichment of nominally associated variants with opposite 297 

effects on T1D and T2D in islet regulatory elements, suggesting the potential of a broader 298 

mechanistic role for aspects of pancreatic and islet function in opposed risk of T1D and T2D.  The 299 

specific mechanisms, however, of how CTRB1, TCF7L2 and other loci encode opposing risk is 300 

currently unclear and may involve multiple genes and other cell types.    301 

    302 
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Another shared mechanism of T1D and T2D pathogenesis is through obesity and insulin 303 

resistance. The ‘accelerator’ hypothesis posits that weight gain and insulin resistance exacerbate 304 

beta cell stress and T1D progression in a manner similar to T2D pathogenesis11. We identified 305 

support for this hypothesis through a correlation between increased fasting insulin level and T1D 306 

and T2D risk. We also identified enrichment of T1D and T2D variants for adipose and B cell 307 

regulatory elements, cell types both involved in insulin resistance. We did not find significant 308 

correlation between T1D risk and BMI, or association with large effect obesity loci such as FTO. 309 

A recent study identified a causal relationship between childhood obesity and T1D risk, supporting 310 

a role for adolescent growth in T1D pathogenesis28, though we did not observe a genome-wide 311 

correlation.  There was, however, a positive correlation with male pubertal phenotypes, in line 312 

with increased prevalence of T1D in males in early adulthood41, and risk variants at the CENPW 313 

locus were associated with male pubertal growth, height and age of menarche31,32. This supports 314 

a role for insulin resistance and growth in the shared etiology of T1D and T2D. 315 

 316 

We also observed evidence for correlations with other traits, such as between increased T1D and 317 

T2D risk and decreased birth weight and increased proinsulin level.  Previous studies have 318 

reported a correlation between low birth weight and increased T2D risk26,42, although the potential 319 

link between birth weight and T1D risk is unclear43.  Furthermore, variants in endoderm regulatory 320 

sites were enriched for T1D and T2D association, suggesting potential shared effects on 321 

developmental regulatory processes.  Proinsulin is an autoantibody in T1D and higher proinsulin 322 

level could contribute to increased risk of developing T1D44. Conversely, impaired insulin 323 

processing is observed in beta cell dysfunction and thus could also represent a consequence of 324 

disease progression45. Additional studies will be needed to determine causal relationships 325 

between proinsulin level or birth weight and diabetes risk and the direction of these relationships.  326 

 327 

In total, our findings support shared risk involving variants affecting islet function as well as insulin 328 

resistance, growth and development, in the etiology of T1D and T2D. Further studies will help 329 

establish the cellular mechanisms of these effects and their role in diabetes pathogenesis.  330 

 331 

Methods 332 

 333 
T1D sample collection  334 

For the type 1 diabetes GWAS, we compiled publicly available genotype-level data for case and 335 

control samples from the T1DGC (dbGAP: phs000180.v3.p2), GoKIND/GAIN (dbGAP: 336 
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phs000018.v2.p1), DCCT-EDIC (dbGAP: phs000086.v3.p1), WTCCC146, and WTCCC2, which 337 

were either genotyped on Affymetrix or Illumina platforms (Table S1). Because the GoKIND/GAIN 338 

dataset contained family trios, we extracted only the proband samples. From the WTCCC1 339 

samples, we used the T1D cohort as cases and the 1958 Birth Cohort (58BC), UK National Blood 340 

Service (NBS), and bipolar disorder (BP) cohorts as controls. Unlike a previous study for T1D47, 341 

we did not include type 2 diabetes or hypertension from WTCCC1 as controls. From the WTCCC2 342 

samples, we used control cohorts from the UK National Blood Service.  343 

 344 

T1D quality control and imputation 345 

We used the recommended individual and variant exclusion lists where available for 58BC, NBS, 346 

WTCCC1 T1D and BP. We used phenotype files for GoKIND/GAIN and DCCT-EDIC to exclude 347 

samples that were not reported of Caucasian ancestry. We used PLINK48 (https://www.cog-348 

genomics.org/plink2) to perform PCA with 1000 Genomes Project (1KGP) samples to identify and 349 

remove outliers that did not overlap European 1KGP samples on PC1 and PC2. We used PLINK 350 

to calculate identity-by-descent (IBD) values between individuals. Pairs of individuals with at least 351 

second-degree relationships (IBD>.2) were pruned in a manner such that only one related 352 

individual was retained. For the NBS samples that overlapped between Affymetrix and Illumina 353 

platforms, we prioritized the samples genotyped on the Illumina platform. For each cohort, we 354 

filtered out variants with less than 95% call rate, less than 1% minor allele frequency (MAF), and 355 

extreme Hardy-Weinberg equilibrium values (P<1x10-5). We also removed individuals with more 356 

than 5% missing genotypes. We then combined cohorts that were genotyped on similar platforms. 357 

After filtering steps, the total number of individuals available was 15,043, including 8,967 cases 358 

and 6,076 controls (Table S3). We imputed 347,083 (Affymetrix) and 500,096 (Illumina) 359 

autosomal variants separately into the HRC panel r1.1 using the Michigan Imputation Server49, 360 

resulting in data for 39,117,105 variants. We excluded variants after imputation that had an 361 

imputation quality (R2) less than 0.3, leaving 23,385,104 (Affymetrix) and 25,294,976 (Illumina) 362 

well-imputed variants.  363 

 364 

T1D genome-wide association and meta-analysis  365 

We used the firth bias-corrected logistic likelihood ratio test as implemented in EPACTS 366 

(https://genome.sph.umich.edu/wiki/EPACTS) to test variants for association to T1D separately 367 

for Affymetrix and Illumina combined cohorts. We used PLINK to LD prune genotyped variants to 368 

create a set of independent variants. We then used PLINK to perform principal component 369 

analysis (PCA) and extracted the top 3 principal components (PCs). We used sex and the top 3 370 
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PCs as covariates, set a lower MAF threshold of 0.005, and used genotype dosages for 371 

association testing. For triallelic SNPs and cases where multiple variants mapped to the same 372 

genomic coordinates, we kept the variant with the highest MAF. We then used inverse-variance 373 

meta-analysis as implemented in METAL50 on association results for 8,720,060 (Affymetrix) and 374 

8,778,018 (Illumina) variants, keeping variants that were tested on both platforms. We further 375 

removed genotyped variants that had an empirical R2 (ER2<.8) for either cohort and all variants 376 

in at least moderate LD (r2>.5) with these variants. A total of 8,491,085 variants remained for 377 

downstream analyses. 378 

 379 

To address the potential for misdiagnosed T2D cases in the T1D GWAS, we used phenotype 380 

data to remove 278 T1D cases with body-mass index (BMI)>30 from the DCCT and 381 

GoKIND/GAIN cohorts. We then re-ran the GWAS meta-analyses using the above methods. 382 

 383 

WTCCC genome-wide association 384 

We collected genotype data for a case cohort of T2D, and control cohorts from NBS and 58BC 385 

from the WTCCC1 study46. We used sample exclusion lists to remove duplicate, related, or non-386 

Caucasian ancestry samples and SNP exclusion lists to remove poorly genotyped variants. Prior 387 

to imputation, we also filtered out variants with less than 95% call rate, less than 1% MAF, and 388 

extreme Hardy-Weinberg equilibrium values (P<1e-5). We imputed 412,388 genotyped variants 389 

from 1,924 T2D case samples and 2,939 control samples together into the HRC panel r1.1 using 390 

the Michigan imputation server. After excluding variants with R2 < 0.3, we retained 22,520,888 391 

well-imputed variants. We filtered out artifacts by excluding genotyped variants with ER2<0.8 and 392 

all variants in at least moderate LD (r2>.5) with these variants. We used the firth bias-corrected 393 

logistic likelihood ratio test as implemented in EPACTS to test variants with MAF > 0.005 for 394 

association, using the top 3 PCs as covariates. We finally extracted summary statistics for 395 

1,173,418 variants in common with the pre-computed European LD score reference panel.  396 

 397 

Genetic enrichment analyses 398 

We tested for enrichment of nominal association and concordance in effects among known T1D 399 

and T2D risk loci. 400 

 401 

For T2D loci, we collected published credible sets of 49 signals on the Metabochip19, 41 additional 402 

signals in GoT2D,8 and 17 additional signals in DIAGRAM 1000G4. We removed all secondary 403 

association signals to retain only the primary signal at each locus. For the 93 resulting primary 404 
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association signals, we then obtained the variant with the highest posterior probability. Where the 405 

most likely causal variant was not present in T1D association data, we used the next most likely 406 

causal variant. For each variant, we obtained the p-value for T1D association and direction of T1D 407 

effect for the T2D risk allele. We tested for enrichment of variants with nominal association (P<.05) 408 

by comparing to the expected percentage obtained from sets of matched variants from SNPsnap51 409 

using a binomial test.  410 

 411 

We then determined concordance in T1D effect direction on T2D variants by calculating the 412 

number of variants with same effect direction and applying a binomial test.  We further determined 413 

the concordance in effect direction in T1D association data in the UK Biobank (ICD10 code E10 414 

from https://sites.google.com/broadinstitute.org/ukbbgwasresults/home) using a binomial test.   415 

 416 

For T1D loci, we obtained the variant with the highest posterior probability in fine-mapping of 57 417 

loci described the sections below.  Where the top variant was not present in T2D association data 418 

we used the next most probable variant. For each variant, we obtained the p-value for T2D 419 

association and direction of T2D effect for the T1D risk allele.  We tested for enrichment of nominal 420 

association (P<.05) by comparing to the expected percentage obtained from sets of matched 421 

variants from SNPsnap51 using a binomial test. 422 

 423 

We then determined concordance in T2D effect direction on T1D variants by calculating the 424 

number of variants with same effect direction and applying a binomial test.   425 

 426 

Genetic correlation analyses 427 

We tested for genetic correlation between T1D and T2D, and related glycemic and anthropometric 428 

traits, using LD score regression16,52. 429 

 430 

We collected quantitative trait data for fasting insulin level, fasting glucose level, HOMA-B, HOMA-431 

IR, HbA1C, and proinsulin level from the MAGIC consortium27,30,53, body-mass index (BMI) from 432 

the GIANT consortium54, and pubertal height (12M, 10F), birth weight and childhood obesity from 433 

the EGG consortium26,55. For the UK Biobank, we obtained summary statistic data of 337k 434 

samples using T1D and T2D phenotypes defined from ICD10 codes E10 (T1D) and E11 (T2D) 435 

available at sites.google.com/broadinstitute.org/ukbbgwasresults/home. For T2D we obtained 436 

data from the GoT2D, HapMap2, and trans-ethnic GWAS studies from the DIAGRAM consortium 437 

website.   438 
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 439 

For each trait, we formatted summary statistics to retain only variants in HapMap3 and correctly 440 

orient variant alleles. We then ran LD score regression on the resulting formatted files using 441 

default LD scores.         442 

 443 

Genomic enrichment analyses 444 

We considered active enhancer and promoter site annotations for 98 cell types from the 445 

Epigenome Roadmap project21, along with annotations for coding exons from GENCODE29. We 446 

used stratified LD-score regression17 to identify annotations that were enriched for signal in T1D 447 

and T2D association data. Stratified LD-score regression is a multiple regression, where the chi-448 

squared statistics for a trait are regressed on LD-scores computed using variants from each of a 449 

set of functional annotations, and the estimated parameters quantify the relative contribution of 450 

each annotation to the total heritability.  451 

 452 

For the five cell-types with positive enrichment for both T1D and T2D association (pancreatic 453 

islets, pancreas, adipose, CD19+ B cells, and CD184+ endoderm), we tested whether these 454 

annotations were enriched in variants with shared or opposite effects on T1D and T2D.  We 455 

identified variants with P<.05 for both T1D and T2D association and in 1000 Genomes phase 3 456 

data. For each of these variants i, we computed zi,T1D = b i,T1D / SE i,T1D and z i,T2D = b i,T2D / SE i,T2D. 457 

We sorted them by the value of | zi,T1D + zi,T2D | for LD-pruning purposes. After sorting, we pruned 458 

these variants using the SNPclip tool of LDlink54 using EUR populations, a R2>0.1 and MAF>0.01, 459 

resulting in 3856 and 2254 independent shared and opposite variants, respectively. We then 460 

generated sets of randomized, matched SNPs using SNPsnap55. We tested shared and opposite 461 

variants for enriched overlap compared to the average overlap across matched variant sets using 462 

a one-sided Fisher exact test. 463 

 464 

Fine-mapping of causal variant sets 465 

We used effect and standard error estimates to calculate a Bayes Factor56 for each variant. We 466 

obtained 58 known loci for T1D from Immunobase and excluded the MHC locus (Table S2). We 467 

extracted the previously reported index variants and used PLINK to calculate r2 values between 468 

57 index variants and all common variants (MAF>.5) within a 5 MB window as done in a previous 469 

study8. We defined credible sets of variants for each locus as variants with r2>.1 with the index 470 

variant. For each locus, we calculated the posterior probability of association (PPA) for each 471 

variant by dividing the Bayes Factor for each variant by the sum of Bayes Factors for the entire 472 
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locus. We then calculated the 99% credible set by taking the set of variants for each locus that 473 

added up to 99% PPA. We compared our T1D credible sets to previously published Immunochip 474 

credible sets3 by extracting 34 common loci between both studies. From the Immunochip study, 475 

we extracted only the primary signals. To directly compare p-values, we filtered for variants 476 

covered by both studies with non-missing p-values and calculated the Pearson correlation. To 477 

identify high probability variants not in Immunochip credible sets, we extracted variants from the 478 

34 loci that were not in the Immunochip primary signal credible set and sorted by PPA. 479 

 480 

Genomic annotations at fine-mapped signals 481 

We considered active regulatory site annotations for cell-types enriched for T1D/T2D association  482 

along with annotations for coding exons and UTR regions from GENCODE29.  For T1D we used 483 

fine-mapping data from 57 signals as described above.  For T2D we used published fine-mapping 484 

data for 93 primary signals from Metabochip, GoT2D and DIAGRAM 1000G studies.  At each 485 

signal, we calculated a cumulative posterior causal probability (PPA) for each annotation as the 486 

sum of PPA values for variants overlapping that annotation.  We then assigned T1D/T2D signals 487 

to groups based on the highest cumulative PPA value across annotations, considering signals 488 

with a cumulative PPA value less than .1 for all annotations as ‘un-annotated’.  For each T1D 489 

group we then calculated the median association of signals in the group with T2D, and for each 490 

T2D group we calculated the median association with T1D. 491 

 492 

Risk signal co-localization 493 

We used a Bayesian co-localization method to determine loci at which T1D and T2D association 494 

data showed evidence of a causal variant shared by both traits57. At a given locus, the method 495 

takes as inputs Bayes Factors of association from two datasets and a specification of the prior 496 

probability that each is causal for one or both traits. From these a posterior probability (PP) is 497 

computed for each of five hypotheses: 498 

 499 

H0: The locus contains no variant causal for either trait 500 

H1: The locus contains a variant causal for trait 1 but none causal for trait 2 501 

H2: The locus contains a variant causal for trait 2 but none for trait 1 502 

H3: The locus contains a variant causal for trait 1 and an independent variant causal for trait 2 503 

H4: The locus contains a variant causal for both H1 and H2. 504 

 505 
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We used the default prior assumption that all variants at a locus are equally likely to be causal. 506 

This model has two important limitations: It assumes each locus has at most one causal variant, 507 

and the distinction between H3 and H4 may be confounded by cases of high LD. We considered 508 

the prior probability that a variant is associated with T1D or T2D as 1x10-4 and the prior probability 509 

that a variant is associated with both traits as 1x10-5.  510 

 511 

We collected 93 T2D loci and 56 T1D loci, of which five have overlapping coordinates (CENPW, 512 

GLIS3, RASGRP1, CTRB1, MTMR3), for a total of 144 loci (Supplemental Table 3). At each 513 

locus, we obtained a reported index variant and then extracted all variants in a 500kb window. 514 

For each variant, we calculated a Bayes Factor for T1D and T2D separately using the approach 515 

of Wakefield56. We then applied the co-localization test to compare T1D and T2D Bayes Factors, 516 

and considered loci with H4 > .50 as shared. For loci with evidence for a shared risk variant, we 517 

then fine-mapped variants causal for the shared signal.  For each locus, we multiplied T1D and 518 

T2D Bayes Factors at each variant, and then calculated the posterior causal probability (PPA) as 519 

the Bayes Factor divided by the sum of all variant Bayes Factors across the locus.  We further 520 

calculated a cumulative PPA (cPPA) as the sum of PPA values for variants overlapping an 521 

annotation at a given locus.    522 

 523 

To validate loci with evidence for a shared causal variant we further applied eCAVIAR, a co-524 

localization method capable of modeling multiple causal variants58.  For each locus, we chose a 525 

window of 100 variants on either side of the variant with the strongest combined T1D and T2D 526 

evidence.  We provided Z-scores of T1D and T2D association together with pairwise LD statistics 527 

of European samples in 1000 Genomes Project v3 data for all variants within the window to 528 

eCAVIAR using default settings. For each variant in the window, eCAVIAR computed a co-529 

localization posterior probability (CLPP), the probability that the variant is causal for the local 530 

signal in both traits. We considered loci to be co-localized using this approach with at least one 531 

variant with CLPP > 0.01 as recommended in the original study.  532 

 533 

For quantitative trait association at shared risk variants, we obtained the most likely causal variant 534 

from combined T1D and T2D evidence. We extracted summary statistics for each trait and 535 

calculated a signed Z-score for the risk allele using effect size and standard error estimates.   536 

 537 

Islet ATAC-seq and chromatin states 538 
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We utilized ATAC-seq data generated from four primary pancreatic islet samples as described in 539 

a separate study59. For each sample, we trimmed adaptor sequences from the reads with 540 

trim_galore (https://github.com/FelixKrueger/TrimGalore). The resulting sequences were aligned 541 

to sex-specific hg19 reference genomes using bwa mem60. We filtered reads to retain those in 542 

proper pairs and with mapping quality score greater than 30. We then removed duplicate and 543 

non-autosomal reads. We called sites individually for each sample with MACS261 at a q-value 544 

threshold of .05 with the following options “—no-model”, “—shift -100”, “—extsize 200”. We 545 

removed sites that overlapped genomic regions blacklisted by the ENCODE consortium20. We 546 

merged sites from these 4 samples and two previously generated in islets33 with bedtools62 to 547 

obtain a comprehensive set of ATAC-seq peaks in human islets.  548 

 549 

We used islet chromatin states described separately34.  In brief, we used previously published 550 

data6,35 from ChIP-seq assays generated in islets and for which there was matching input 551 

sequence from the same sample. For each assay and input, we aligned reads to the human 552 

genome hg19 using bwa samse and bwa aln60 with a flag to trim reads at a quality threshold of 553 

less than 15. We converted the alignments to bam format and sorted the bam files. We then 554 

removed duplicate reads, and further filtered reads that had a mapping quality score below 30. 555 

Sequence data from the same assay in the same sample were then pooled.  We defined 556 

chromatin states from ChIP-seq data using ChromHMM63 with a 9 state model. We assigned the 557 

resulting states names based on the resulting patterns. 558 

 559 

ATAC-seq footprint analysis 560 

To identify haplotype-aware motifs within ATAC-seq footprints overlapping accessible chromatin 561 

sites, we searched accessible chromatin sites from four ATAC-seq samples for instances of motifs 562 

from JASPAR, SELEX, ENCODE and de novo motifs identified in our data64. We used 563 

vcf2diploid65 (https://github.com/abyzovlab/vcf2diploid) to create individual-specific diploid 564 

genomes by mapping our phased, imputed genotypes onto hg19 using only SNPs and ignoring 565 

indels. Then, we used fimo66 to scan the personalized genomes for our compiled database of 566 

motifs, limiting the sequences scanned to those derived from islet accessible chromatin. For fimo, 567 

we used the default parameters for p-value threshold (1x10-4) and a background GC content of 568 

40.9% based on hg19. 569 

 570 

CENTIPEDE67 was used to discover footprint sites for each motif, using the discovered motif 571 

instances within ATAC-seq peaks. For each motif, we used the make_cut_matrix utility from 572 
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atactk (https://github.com/ParkerLab/atactk) to calculate a cut-site matrix that contained counts of 573 

the number of Tn5 integrations within a window defined by ±100 bp from each motif occurrence 574 

for both forward and reverse strands. This cut-site matrix was provided as input to CENTIPEDE 575 

along with regions for each motif occurrence to model the posterior probability that a given motif 576 

occurrence was bound by a TF. We defined footprints for a given motif as regions that had a 577 

posterior probability ≥ 0.99. We combined footprints from our samples with a previously published 578 

set of footprints in pancreatic islets33. 579 

 580 

We further identified variants predicted to disrupt each footprint4. We calculated the entropy score 581 

for a variant position in a footprint using the position frequency matrix for each motif. For each 582 

base at a given position bp and the frequency of the base at that position f, we calculated the 583 

entropy as: 584 

!"#$%&' = 	∑ +(-&) ×	 log3 +(-&)45 . 585 

 586 

A footprint was considered disrupted if a variant fell in a conserved position in the motif 587 

(Entropy<1.0).  588 

 589 

Luciferase reporter assays 590 

To test for allelic differences in enhancer activity at rs4237150, rs10116772 and rs8056814, we 591 

cloned sequences containing the alt or ref allele in forward and reverse orientation upstream of 592 

the minimal promoter of firefly luciferase vector pGL4.23 (Promega) using KpnI and SacI 593 

restriction sites.  594 

 595 

Primer sequences were: 596 

rs4237150  597 

Fwd: TTACGCGGTACCACACACTTCTGTAAATCAGGTCAG, TCATAGGAGCTCGAAGCAGTTTGTTTGCTGGC 598 

Rev: TTACGCGAGCTCACACACTTCTGTAAATCAGGTCAG, TCATAGGGTACCGAAGCAGTTTGTTTGCTGGC 599 

rs6476839  600 

Fwd: GTCGGTACCTCGCAATTCAATCAAGGACA, GCTGAGCTCCAGGCACATGTTTGCACTTT 601 

Rev: GTCGAGTCGTCGCAATTCAATCAAGGACA, GCTGGTACCCAGGCACATGTTTGCACTTT 602 

rs10116772+rs10814915  603 

Fwd: GTCGGTACCTTCATTAATGCCGCCTTTTC, GCTGAGCTCTGAATTGCGAAATGTGCTTC 604 

Rev: GTCGAGTCGTTCATTAATGCCGCCTTTTC, GCTGGTACCTGAATTGCGAAATGTGCTTC 605 

rs8056814  606 
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Fwd: TAAGCAGGTACCTGGGTGACAGAGTGAGACTCC, TGCTTAGAGCTCGGTGTTTCCGCCTAACACTG  607 

Rev:TAAGCAGAGCTCTGGGTGACAGAGTGAGACTCC,TGCTTAGGTACCGGTGTTTCCGCCTAACACTG 608 

 609 

MIN6 beta cells were seeded into 6 (or 12)-well trays at 1 million cells per well. At 80% confluency, 610 

cells were co-transfected with 400ng of the experimental firefly luciferase vector pGL4.23 611 

containing the alt or ref allele in either orientation or an empty vector and 50ng of the vector pRL-612 

SV40 (Promega) using the Lipofectamine 3000 reagent. All transfections were done in triplicate. 613 

Cells were lysed 48 hours after transfection and assayed for Firefly and Renilla luciferase 614 

activities using the Dual-Luciferase Reporter system (Promega). Firefly activity was normalized 615 

to Renilla activity and compared to the empty vector and normalized results were expressed as 616 

fold change compared to empty vector control per allele. A two-sided t-test was used to compare 617 

the luciferase activity between the two alleles in each orientation.  618 

 619 

Allelic imbalance analysis 620 

We collected ChIP-seq data from assays in primary islet cells from multiple sources6,35,68–71. We 621 

aligned sequence data using bwa samse60, filtered out mitochondrial reads, and removed 622 

duplicates using Picard software. For each sample we applied QuASAR72 to obtain estimated 623 

genotypes. A total of 6 samples were determined to be heterozygous at rs4237150 with probability 624 

of being homozygous < 10-4. For these samples we also inferred heterozygosity at rs10116772, 625 

due to high linkage and by imputation into 1000 Genomes v3 variants via the Michigan Imputation 626 

Server49.  Across these 6 samples, a total of 8 datasets had more than 5 reads overlapping 627 

rs4237150 – FOXA2 (1), H3K27ac (3), PDX1 (2), NKX6-1 (2).   We applied WASP73 to each 628 

dataset to correct for reference mapping bias. We then pooled read counts for risk and protective 629 

alleles at rs4237150 and rs10116772 and applied a two-sided binomial test for allelic imbalance. 630 
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Figure legends 674 

 675 

Main Figures 676 

 677 

Figure 1.  Shared effects of genetic variants on T1D and T2D risk.  (A) Known T2D risk 678 

variants are significantly enriched for nominal T1D association (P<.05), whereas known T1D risk 679 

variants do not show evidence for enrichment of nominal T2D association.  **P<.001 (B) Known 680 

T2D risk variants with nominal T1D association have concordant direction of effect on T1D risk 681 

(14/18, red=known T1D locus; **index variant T1D P<5x10-4).  Values are T1D effect size and 682 

SE.  (C) Variants genome-wide have correlated effects on T1D and T2D risk using multiple 683 

datasets for each disease (UKBB – UK Biobank, WTCCC – Wellcome Trust Case Control 684 

Consortium, T2D TE – Mahajan et al, T2D HM2 – Morris et al 2012, T2D GoT2D – Fuchsberger 685 

et al 2016, T1D BMI<30 – T1D association data removing obese case samples).  Values are 686 

heritability estimates and SE.       687 

 688 

Figure 2.  Mechanisms of variant effects on T1D and T2D risk.  (A) Increased T1D risk (left)  689 

is correlated with increased fasting insulin level and proinsulin level (*P<.05), in addition to 690 

increased male pubertal growth and fasting glucose level, and decreased birth weight; Increased 691 

T2D risk (right) is correlated with increased HbA1C, fasting glucose, fasting insulin, HOMA-IR, 692 

BMI and childhood obesity, and decreased birth weight (**P<1x10-4).  Values are heritability 693 

estimates and SE.  (C) Variants with same direction of effect on T1D and T2D risk have stronger 694 

correlation with increased fasting insulin, glucose and proinsulin level, and decreased birth weight. 695 

(**P<1x10-4, *P<.05).  Values are heritability estimates and SE. (D)  Variants with T1D and T2D 696 

association are enriched for pancreatic islet, adipose, CD19+ B cell, and CD184+ endoderm 697 

regulatory sites. (blue = pancreatic, green = immune).  (E) Variants with both nominal association 698 

(P<.05) and shared direction of effect on T1D and T2D risk are significantly enriched in endoderm, 699 

islet and adipose regulatory sites. (*P<.05).  Values are percent overlap and CI.   700 

 701 

Figure 3.  Fine-mapping and functional annotation of known T1D loci.  (A) Fine-mapping of 702 

causal variant sets at 57 known T1D risk signals.  (left) number of 99% credible set variants at 703 

each locus and (right) causal probabilities (PPA) of credible set variants at each locus.  (B) 704 

Cumulative PPA values of 57 T1D signals in cell-type regulatory site and coding annotations.  705 

T1D signals mapped into four primary groups including immune cell regulatory sites (31 signals), 706 

pancreas regulatory sites (6 signals), and coding exons (4 signals).  (C)  T1D signals within 707 
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different groups had distinct patterns of association with T2D, where T1D pancreas signals had 708 

the strongest evidence for T2D association.   709 

 710 

Figure 4.  Shared T1D and T2D risk variants affect islet regulatory activity.  (A) Five loci have 711 

evidence for a shared signal (Pshared>.50) influencing both T1D and T2D risk, and two have 712 

evidence for distinct signals (Pdistinct>.50) (dark grey = Pshared, grey = Pdistinct) (C) Number of 99% 713 

credible set variants at shared T1D and T2D risk loci.  After combining T1D and T2D evidence 714 

the GLIS3 and CTRB1 signals have <10 variants. (C) Quantitative trait association at shared T1D 715 

and T2D signals.  Values represent signed z-scores for the risk allele of the most likely causal 716 

variant (blue = positive, red = negative).  For CTRB1 z-scores are signed to the T2D risk allele. 717 

(D) Shared risk variants rs4237150, rs10116772, and rs10814915 at GLIS3 are in islet active 718 

enhancer and accessible chromatin, and rs4237150 is also in islet TF ChIP-seq (states: dark blue 719 

= active enhancer, light blue = weak enhancer, red = active promoter)  (E) Variants at GLIS3 have 720 

allelic effects on enhancer activity in islet cells.  Values are mean and SD. (N=3; *P<.05, ** P<.01).  721 

 722 
Supplemental Figures 723 

 724 
Supplemental Figure 1.  Genome-wide association study of T1D case and control samples. 725 

(A) Principal component plots showing the ancestry of samples genotyped on Affymetrix and 726 

Illumina arrays as compared to the super populations of the 1000 Genomes Project after QC 727 

measures. EUR = European, AFR = African, AMR = Americas, EAS = East Asian, and SAS = 728 

South Asian. (B) Manhattan plot plotting chromosomal positions (hg19) and the negative log10- 729 

P-values, with known T1D loci highlighted in red. 730 

 731 

Supplemental Figure 2.  Genomic annotations and T1D association and fine-mapped T2D 732 

loci.  (A) Cumulative PPA values of 93 primary T2D signals in cell-type regulatory site and coding 733 

annotations.  T2D signals mapped into six groups including pancreatic regulatory sites (21 734 

signals), adipose regulatory sites (15 signals), and coding exons (4 signals) in addition to un-735 

annotated signals.  (B)  T2D signals within different groups had distinct patterns of association 736 

with T1D, where T2D pancreas signals had the strongest T1D association.   737 

 738 
Supplemental Figure 3.  Shared T1D and T2D signals at the GLIS3 and CTRB1 loci.  (top) 739 

P-values of variant associations with T1D (red) and T2D (blue) at the GLIS3 and CTRB1 loci. 740 

Causal probability of variants at the shared GLIS3 and CTRB1 signals by (middle) combining T1D 741 
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and T2D evidence in Bayesian fine-mapping, and (bottom) modeling shared causal variants using 742 

eCAVIAR.  Variants at each signal have high causal probabilities in both analyses.       743 

 744 

Supplemental Figure 4.  Allelic imbalance in islet regulatory activity at GLIS3.  Read counts 745 

in samples heterozygote for rs4237150 and rs10116772 in pancreatic islet FOXA1, NKX6.1, 746 

PDX1 and H3K27ac ChIP-seq assays (risk allele counts = light grey, protective allele = dark grey).  747 

The risk allele had increased read counts in all assays.  P-values for binomial tests are listed 748 

below each assay.         749 

 750 
Supplemental Figure 5.  Shared variant at CTRB1 affects islet regulatory activity.  (A) Plot 751 

of candidate causal variants at the shared CTRB1 signal.  Variant rs8056814 has a high 752 

probability (PPA=.90) of being causal for T1D and T2D risk, and maps in an islet accessible 753 

chromatin site and an islet active enhancer upstream of CTRB1.  (B) Luciferase reporter assay of 754 

sequence surrounding rs8056814 alleles in the islet cell line MIN6.  All constructs had reduced 755 

activity compared to the empty vector.  The T2D risk allele of rs8056814 has increased activity 756 

compared to the T2D protective allele.  Values are fold change and SD. (N=3; *P<.05, **P<.001).           757 
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CBA

Figure 1. Genetic variants have shared effects on T1D and T2D risk.
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Figure 2.  Mechanisms of shared variant effects on T1D and T2D risk. 
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Figure 3.  Fine-mapping and functional annotation of known T1D risk loci
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Figure 4.  Shared T1D and T2D risk variants at GLIS3 affect regulatory activity in islets. 
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Supplemental Figure 1. Genome-wide association study of T1D case and control samples
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Supplemental Figure 2.  Genomic annotations and T1D association at fine-mapped T2D loci
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Supplemental Figure 3.  Loci with shared T1D and T2D risk variants
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Supplemental Figure 4.  Shared T1D and T2D islet regulatory variant at the CTRB1 locus
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Supplemental Figure 5. Allelic imbalance in islet regulatory activity at GLIS3
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