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Abstract

Immune reactions in the tumor micro-environment are one of the cancer hallmarks and emerging
immune therapies have been proven effective in many types of cancer. To investigate cancer genome-
immune interactions and the role of immuno-editing or immune escape mechanisms in cancer
development, we analyzed 2,834 whole genomes and RNA-seq datasets across 31 distinct tumor types
from the Pan-Cancer Analysis of Whole Genomes (PCAWG) project with respect to key immuno-
genomic aspects. We show that selective copy number changes in immune-related genes could
contribute to immune escape. Furthermore, we developed an index of the immuno-editing history of
each tumor sample based on the information of mutations in exonic regions and pseudogenes. Our
immuno-genomic analyses of pan-cancer analyses have the potential to identify a subset of tumors
with immunogenicity and diverse background or intrinsic pathways associated with their immune
status and immuno-editing history.
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Introduction

Genomic ingtability and inflammation or immune responses in the tumor microenvironment are major
underlying hallmarks of cancer (Hanahan and Weinberg, 2011), and the interaction between the
cancer genome and immune reactions could have important implications for the early and late phases
of cancer development. The immune systemis alarge source of genetic diversity in humansand
tumors (Lefranc et al., 1999). Human leukocyte antigen (HLA), the vast number of unique T- and B-
cell receptor genes, and somatic alterations in tumor cell genomes enabl e the differentiation between
self and non-self (tumor) via neoantigen (NAG) presentation, which contributes to positive or
negative immune reactions related to cancer (Linnemann et al., 2015; Tran et al., 2014; Kreiter et al.,
2015; Yarchoan et al., 2017). A variety of immune cells can infiltrate tumor tissues and suppress or
promote tumor growth and expansion after the initial oncogenic process (Grivennikov et al., 2010).
Such cancer immuno-editing processes (Schreiber et al., 2011) sculpt the tumor genome viathe
detection and elimination of tumor cellsin the early phase and are also related to the phenotype and
biology of developed cancer. However, it is not clear how the immune microenvironment helps tumor
cellswith or without genetic alterations of immune molecules escape immuno-editing, and methods to
observe the immuno-editing history in clinical human tumors are needed.

Emerging therapies targeting immune checkpoint or immune-escape molecules are effective
against several types of advanced cancer (Sharmaet al., 2011; Pardoll, 2012; Mahoney et al., 2015;
Zaretsky et al., 2016; Anagnostou et al., 2017); however, most cancers are still resistant to these
immunotherapies. Even after successful treatment, tumors often acquire resistance via another
immune escape mechanism or by acquiring genomic mutations in intrinsic immuno-signaling
pathways, such as the IFN gamma pathway or MHC (HLA) presentation pathway, related to NAG
(Gao et al., 2016; Shin et al., 2017). Tumor aneuploidy is also correlated with immune escape and the
response to immunotherapy (Dovoli et al., 2017); hence, a comprehensively understand cancer
immunology and its diversity, whole genome analysis is necessary. We here analyzed the whole
genome sequencing (WGS) of 2,834 donors and RNA-seq data from Pan-Cancer Analysis of Whole
Genomes (PCAWG) project (Campbell et al., PCAWG marker paper) with respect to key
immunogenomic aspects using computational approaches (Hackl et al., 2016). Our results
demonstrate that diverse genomic alterations in specific tumor types, variation in immune
microenvironments, and variation in oncogenic pathways are related to immune escape, and we
further observed immune editing during cancer development. To illustrate the history of immuno-
editing history for each cancer genome and to explore underlying molecular pathways involved, we
defined immuno-editing indexes (1EIs) by comparing exonic NAGs to virtual NAGsin pseudogenes.

Results and Discussion

Somatic alterations in immune-related genes may contribute to cancer development and progression
or immune escape in certain solid tumors and hematopoietic tumors. To investigate the extent of such
genomic alterations, we compiled alist of 267 immune-related genes (Supplementary Table 1) that
could be assigned to four categories. the immune escape pathway, antigen presentation pathways for
HLA class| and HLA class 11, and the cytokine signaling and apoptotic pathways, including genes
involved in the IFN gamma pathway. An analysis of PCAWG consensus variant calls (Campbell et
a., PCAWG marker paper) demonstrated that most tumor samples have at least one somatic alteration
in these immune-related genes (Figur e 1a). Although copy number alterations (CNAS) were the most
frequently detected type of somatic alteration, many point mutations and structural variants (SVs)
were also detected in the immune-related genes including HLA-A, HLA-B, HLA-C and B2M, Beta-2
microglobulin (Supplementary Figure 1a).
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We also investigated SV's (Zhang et al., PCAWG marker paper) in immune-rel ated genes.
Although SV s are relatively rare compared to CNAS, they may have a large impact on the expression
and function of affected genes, as exemplified by arecent report of the 3'-untranslated region of
CD274/PD-L1 (Kataokaet al., 2016). For each immune-related gene, we compared mRNA
expression levels between SV-positive and SV-negative cases. For ten immune-related genes
(CD274/PD-L1, PDCD1LG2/PD-L2, MARCHY, IL22, SEC61G, CCND1, CCT2, INHBC, AKT3, and
SOCSY), we detected a satistically significant association between the occurrence of SVsand the
upregulation of expression (g-value < 0.05; Figure 1b and Supplementary Figure 1b).
PDCD1LG2/PD-L2 can interact with PD-1 and PD-L1, resulting in inhibitory signals that modulate
the magnitude of T-cell responses (Latchman et a., 2001; Rozali et al., 2012). MARCH9, an E3
ubiquitin ligase, downregulates MHC class |1 molecules in the plasma membrane (Janke et al., 2012),
and SEC61G isinvolved in the translocation of HLA class| proteinsto the endoplasmic reticulum for
clearance (Albring et al., 2004). These findings indicate that SV's could affect HLA complexes and
their expression or activity/clearance as well as immune checkpoint molecules, which may facilitate
the immune escape of tumor cells.

Asshown in Figure 1a, CNAs are the most frequently observed alterations in immune-related
genes. Cancers harboring many CNAs tended to show lessimmune involvement and worse responses
to immunotherapies (Davoli et a., 2017), and this can potentially be explained by CNAsin immune-
related genes. We next compared the copy numbers of immune-related genes with the ploidy levels of
tumorsto differentiate between selective increases in copy number or changes in ploidy or averaged
changes of chromosomes. We first focused on interleukin-10 (1L10), an immune suppressor gene
(Itakura et al., 2011). IL10 expresses not only immune cells, but also tumors; the functions of IL10
produced from tumor cells were mainly reported in melanoma (Wiguna and Walden, 2015). We then
examined the differences between copy number of IL10 and ploidy level for each donor of multiple
tumor types (Figure 1c). In Liver-HCC, Breast-AdenoCA, Skin-Melanoma, and Lung-AdenoCA
samples, the IL10 copy number was specifically increased, rather than the ploidy level, in almost all
tumors. Since IL10 functions as a repressor of immune cells, the amplification or gain of IL10 is
possibly related, in part, to the immune escape mechanism. However, in Kidney-ChRCC, no
significant selective amplification was observed.

We analyzed other immune-related genes and tumor types, including MSI (microsatellite
instability)-positive tumors (Fujimoto, PCAWG-7, et al., in preparation) with strong immunogenicity
(Leet al., 2015) dueto high numbers of NAGs. For each immune-related gene, we used t-teststo
evaluate whether the copy number differencesfrom the ploidy level are significant or not in each
tumor type. The results are summarized as alandscape of selective copy number changesin Figure
1d (showing the mean copy number changes against the ploidy value) and Supplementary Figure 2
(showing the statistical significance of selective copy number changes). TGFB2 and 1L10 are located
on chromosome 1q and both function as suppressors of immune cells (Wiguna and Walden, 2015;
Yang et a., 2015), and the selective copy number gains for these immune genes are likely to be
related to tumor-immune system interactions (Figur e 1d). Recently, a molecule inhibiting TGFB2 and
PD-L1 simultaneously is reported its efficacy (Lan et al., 2018; Strauss et al., 2018). It might be
important to know an immune escape mechanism related to TGFB2. SEC61G and MARCH9, both of
which exhibited significant overexpression related to SV's (Figure 1b), showed different patterns from
those of TGFB2 and IL10. MARCH9 showed statistical significance in some tumor types; considering
the mean value of the differencesin each tumor type, selective copy number gain was detected in
CNS-GBM and Bone-Leiomyo. Additionally, SEC61G was selectively amplified in CNS-GBM and
Head-SCC. Interestingly, donors with SV-related overexpression and donors with selective copy
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number gains were highly correlated; however, selective copy number gain could only partially
explain the overexpression of these genes for the donors without SV's (Supplementary Figure 3).

In Skin-Melanoma, the copy numbers of genes on chromosome 6, including HLAS, were
significantly greater than the ploidy level (p = 2.26E-10 for HLA-A), which could paradoxically
increase immune pressure. However, the copy number of IL10 was also significantly (p = 8.1E-10)
and selectively increased, potentially contributing to escape from immune pressure. By contrast, in
Kidney-ChRCC and Panc-Endocrine samples, the copy numbers of HLAs compared with the ploidy
level show the opposite tendency, and IL10 follows this. Since HLAs are not selectively increased, the
copy number gain for IL10 may be unnecessary for immune escape. In Lymph-NOS and Myeloid-
MDS, copy numbers of almost all immune genes were consistent with ploidy and were not selectively
changed (minimum p = 0.498 and 0.184 for Lymph-NOS and Myeloid-MDS, respectively). MSI
tumors showed weak selective copy number increases for genesin the cluster including 1L10 (p =
0.000644); however, significant results were not obtained for other immune-related genes. In these
tumor types, there may exist different immune escape systems, other than the selective copy number
gain of these immune genes.

We identified two possible explanations for copy number gains, i.e., they occurred during the
process of ploidy formation or they occurred by a selective process during tumorigenesis. We
analyzed the differences between copy number and ploidy and, interestingly, found that genomic
regions containing genes that function as suppressors of the immune system, such as TGFB2 and
IL10, are selectively increased in many types of tumors. Copy number gains of these immune-related
genes could arise and be selected during the establishment of immune escape. Therefore, selective
copy number gains may be involved in the history of immune escape. Since TGFB2 and IL10 could
play important roles in immune escape based on their function, our findings indicate that selective
copy number gain is aremarkable system in the mechanism of immune escape. However, no selective
copy number gains were observed in immune checkpoint genes, i.e., PD-L1 and PD-L2, which
function as part of the immune escape mechanism, further supporting the diversity of immune escape
mechanisms.

During tumorigenesis, mutant peptides derived from nonsynonymous somatic mutations are
presented by HLA moleculesto T cells (Figure 2a) (Robbins et al., 2013; Carreno et a., 2015).
Although these NAGs serve to eliminate tumor cells, some cells escape this immune surveillance and
eventually contribute to the formation of clinical tumors (Figur e 2b) (Burnet, 1970; Dunn et al .,
2002). To estimate the strength of immune surveillance or immune pressure experienced by tumor
cellsin each sample, we developed a novel approach to measure the strength of immune pressure
using pseudogenes as an internal control of each tumor (Figur e 2a) (see Methods); those are not
tranglatable. First, we identified predicted NAGs from somatic substitutions in exonic regions of
whole genome sequences and compared them to those similarly derived from pseudogenes
(Supplementary Figure 4). In this process, we used the HLA types(class | and II, shown in
Supplementary Figure 5) determined by our new pipeline, referred to as ALPHLARD (see
Methods). The accumulation of somatic mutationsin exonic regions versus virtual somatic mutations
in pseudogenes during tumorigenesis is schematically represented in Figure 2b. If tumor cells grew
under strong immune pressure, the difference between predicted NAGs in exonic and pseudogene
regions would be large. This difference is expected to be small if tumor cellsimmediately escape from
immune pressure in the carcinogenic process (Figure 2¢). We defined the immuno-editing index (1EI)
according to this concept (see Methods). The virtual neoantigen ratio Re for mutations in pseudogene
regions and the neoantigen ratio Re for exonic regions can be plotted (Figure 2d) to determine the


https://doi.org/10.1101/285338

bioRxiv preprint doi: https://doi.org/10.1101/285338; this version posted July 12, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

immune pressure for each tumor sample. |El is defined asthe log-ratio of Rp to Re. We used |EI to
characterize the histories of different donors, including immuno-edited and i mmuno-editing-resi stant
tumors.

In subsequent analyses, we investigated the history of immune pressures for multiple tumor types,
asrevealed by |EI. The distributions of immune pressure for four cancers are shown in Figure 2e. The
percentage of | El-positive samples, i.e., immune-editing-resistant tumors, in each tumor is shown in
Figure 2f. MSI-positive tumors show immuno-edited tumor characteristics, suggesting that MSI-
positive tumors were continuously being under strong negative selection from the immune system.
Bladder-TCC, Stomach-AdenoCA, Lymph-BNHL and Head-SCC samples showed immuno-editing-
resisant tendencies, indicating that mutations generating NA Gs were removed by negative selection
during tumorigenesis.

We compared the |El values with the ploidies using pan-cancer data and observed a significant
negative correlation (Pearson's correlation coefficient, r = -0.13, p = 0.0051) (Figure 2g). Among the
11 tumor types, the strongest correlation was observed in Lung-AdenoCA (r = -0.66, p = 0.00028),
and multiple tumor types, including ColoRect-AdenoCA, Eso-AdenoCA, and Skin-Melanoma,
showed weak negative correlations, although these were not statistically significant. The negative
correlation between 1EI and ploidy can likely be attributed to the scenario in which a copy number
gain leadsto high expression of NAGs and thus high immune pressure.

We next examined the immune characteristics or signatures related to the difference in immune
escape histories (as determined by IEl). Differentially expressed genes between | El-positive and -
negative tumors were analyzed to find acquired phenotypes or micro-environmental characterigtics
that promote tumor cell escape from immune pressure. Using four signaturesrelated to immune
characterigtics, i.e., HLA class|, cytotoxic, immune checkpoint, and cell component, we divided
samplesinto two groups, referred to as hot (inflamed; presence of infiltrating immune cells) and cold
(non-inflamed) tumors, and we further used gene set enrichment analyses (GSEA) to elucidate the
pathways associated with I1El stratification (Supplementary Figure 6). The genes related to each of
above four signatures are listed in Supplementary Table 2. Interestingly, we found distinct patterns
of gene set enrichment in the high-expression and low-expression groups (Supplementary Figure 7).
In the high-expression groups, multiple gene sets, e.g., interferon gamma response and inflammatory
response genes, were commonly enriched in most tumor types (Supplementary Figure 7). In
contrast, in the low-expression groups, most gene sets were differentially enriched in atumor-specific
manner. Thus, immune escape pathways preventing immune-cell infiltration are diverse and specific
to each tumor type.

Furthermore, we specifically examined the degree of enrichment of four specific gene sets with
respect to |El (for gene sets of interferon gammaresponse, EMT (epithelial to mesenchymal
transition) (Terry et al., 2017), TGF beta signaling (Yang et al., 2015), and WNT/B-catenin signaling
(Spranger et al., 2014; Pai et al., 2017) (Figure 3a). The interferon gamma response gene set was
enriched in inflamed tumors of all tumor types, as expected, as the expression levels of these genes
are higher in inflamed tumors than in non-inflamed tumors. Using | El, this trend was maintained in
Head-SCC, Lung-AdenoCA, Lung-SCC, and Lymph-BNHL samples; in these tumor types, those
genes are more highly expressed in the | El-positive group than in the | El-negative group. However, in
Skin-Melanoma, the enrichment of this gene set was not significant, while these genes were
significantly underrepresented in four tumor types (Bladder-TCC, ColoRect-AdenoCA, Stomach-
AdenoCA, and Uterus-AdenoCA). This suggests that the diversity of immuno-editing histories
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depends on the tumor type. For the EMT gene set, the four immune signatures are also highly
consistent in some types of tumors, such as Bladder-TCC, Lung-SCC, and Skin-Mdanoma, and EMT
may have important roles in the immune microenvironment in these tumors (Hugo et al., 2016; Chae
et al., 2018). For the TGFB signaling gene set, diverse associations with the four immune signatures
were detected. WNT/B-catenin signaling was inversely related to these immune signatures and 1EI in
several tumor types, such as Skin-Melanoma. In Lung-AdenoCA, Lung-SCC, Lymph-BNHL, and
Skin-Melanoma, the trends in IEI seemed to be consistent with the four immune signatures.

Further investigations of infiltrated immune cells are important to understand immune escape
mechanisms. Based on the predicted composition of infiltrated immune cells and the expression of
CD45, a pan-lymphocyte marker, we evaluated the activity of infiltrated immune cells
(Supplementary Figure 8). We focused on the activity of M2 macrophages (y-axis) asimmune
suppressive cells and CD8" T-cells (x-axis) as immune effector cells, and obtained a flow cytometry-
like plot for each tumor type (Figure 3b). We focused on eight types of tumors, Breast-AdenoCA ,
Cervix-SCC, ColoRect-AdenoCA , Liver-HCC, Lung-AdenoCA, Lung-SCC, Skin-Melanoma, and
Uterus-AdenoCA, for finding associations of the immune cell infiltrations to the selective copy
number gain and 1EI. Lung-AdenoCA and Lung-SCC with selective copy number gains of TGFB2
(red circlesin the upper panels of Figure 3b) showed high activity of M2 macrophages and low
activity of CD8" T-cells (statistical significance for repression of CD8" T-cell in selective copy
number gain tumors: p = 0.0291 and 0.0244 for the lung AdenoCA and SCC, respectively); in
ColoRect-AdenoCA, the selective copy number gain of TGFB2 was not observed in most samples,
and only a small fraction of CD8" T-cell infiltrated tumors with a selective copy number gain of
TGFB2 (p = 0.00453). By contrast, in ColoRect-AdenoCA, infiltrating CD8" T-cells seemed to be
repressed in |El-positive tumors (lower panels of Figure 3b, p = 6.58E-4 for |El-positive tumors’
CD8+ T-cell repression). In Uterus-AdenoCA, IEI positive tumors also showed a small fraction of
CD8+ T-cells (p= 0.00208). These analyses indicated that selective copy number changes and
immune escape higtories (1El) of each tumor can reflect the immune cell composition and immune
microenvironment within tumors.

Finally, we performed a survival analysis of donors partitioned by IEI valuesfor the above eight
types of tumors and found that Lung-AdenoCA cancer donors with | El-positive tumors (immuno-
editing resistant tumor) exhibited a much worse overall survival than that of donors with |EI-negative
tumors. In Lung-AdenoCA, |El showed a possible separation (p = 0.011, Figur e 3c), whereas those
for the other aforementioned gene set signatures were not significant. We also analyzed the
relationship between selective copy number gain (IL10 and TGFB2) and overall survival and showed
three examples using Liver-HCC, Lung-AdenoCA, and Cervix-SCC. For these tumor types, tumors
with selective copy number gains of 1L10 or TGFB2 showed worse overall survival than that of the
tumors without these copy number gains (p = 0.0551 (IL10) for Liver-HCC, p= 0.1 (TGFB2) for
Lung-AdenoCA, and p = 0.0202 (IL10 and TGFB2) for Cervix-SCC).

Conclusion

We derived immuno-genomic profiles, including somatic mutations in immune genes, HLA
genotypes, NAGs, and immune micro-environmental landscapes, from pan-cancer whole genome and
RNA sequence data. We observed that tumors acquired many types of immune escape mechanisms by
selective copy number gains of immune-related genes, failure of the antigen presentation system, and
aterations in immune checkpoint molecules in atumor-specific manner. The history of immuno-
editing, as estimated using pseudogenes as sites free of immune pressure, indicated associations
between tumorigenesis and immune escape across various tumor types. Furthermore, the micro-
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environmental landscape related to immune characteristics revealed diverse background or intrinsic
pathways controlling the non-inflamed subset of each tumor type. This provides essential information
for identifying therapeutic targets. These analyses revealed the impact of the immune micro-
environment on the immune resi stance and/or immune escape of tumors.
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Figure Legends

Figure 1: Mutation landscape of immune-related genes. (a) Frequency and types of somatic
mutations in immune genes. Single nucleotide variants (SNV's), insertions and deletions (indels),
structural variants (SV's), and copy number alterations (CNAS) were examined in immune genes and
donors for multiple types of tumors, where ‘truncation’ represents ‘stop gain SNV’ and ‘frameshift
indel,” and ‘in-frame’ means ‘ nonsynonymous SNV’ and ‘in frame indel.’ (b) Overexpression of
immune-related genes and its association with SV sin each tumor type. Red and blue dots represent
tumor samples with and without SV's, respectively. (¢) Copy number of IL10 offset by tumor ploidy.
Tumor samples are colored red and blue to indicate whether the copy number is above or below the
ploidy level, respectively. (d) Selective copy number changes of immune-related genesin each tumor
type. Red and blue represent an excess or deficiency in the gene copy number compared to the tumor
ploidy level, respectively. The color of the el ement represents the mean value of the differences
between copy number and ploidy.

Figure 2: Analysisof immuno-editing history. (a) Overview of the presentation of neoantigens
generated from nonsynonymous mutations in exonic regions. Pseudogene regions are not trandlated
and mutationsthat accumulate in pseudogenes are not presented by the HLA complex. (b)
Relationship between accumulated mutations in exonic regions and pseudogenes in the immuno-
editing history. Although CTLs (cytotoxic T-cells) eliminate tumor cells by recognizing these NAGs,
some tumor cells escape thisimmune surveillance mechanism and eventually contribute to the
formation of aclinical tumor. () In immuno-editing-resistant tumors, the tumor cellsimmediately
escaped from immune pressure in the carcinogenic process, and the difference between NAGsin
exonic and pseudogene regions was expected to be small. (d) Immuno-pressure plot of (virtual)
neoantigens in exonic regions and psueodogenes. The x-axis represents the virtual neoantigen ratio Rp
for mutations in pseudogene regions and the y-axis shows the neoantigen ratio Re in exonic regions.
IEI (immuno-editing index) was defined asthe log ratio of Rp to Re and was used to characterize the
immune-editing history of each donor, with immuno-edited and immuno-editing-resistant tumors. (€)
Immuno-pressure plots of four cancer types. M Sl-positive tumors show the most immuno-edited
tumor characteristics; in other cancers, many tumors showed an immuno-editing-resi stant tendency.
(f) The proportion of immuno-editing-resistant tumors. (g, h) Tumor ploidy and I El for a pan-cancer
analysis (g; n = 433) and lung adenocarcinoma (h; n = 25). Each dot represents a tumor sample.

Figure 3: Immune signatures and their associations with genomic alterations and immuno-
editing history. (a) GSEA infour gene sets (‘interferon gammaresponse,” ‘EMT,” TGF-beta
signaling,” and ‘WNT/B-catenin signaling’) was used to determine the degree of enrichment of the
four immune signatures and | El. The color of each pair of tumor type and gene set represents the
GSEA score (Supplementary Figure 6) (b) Flow cytometry-like plots representing the estimated
activity of infiltrated CD8+ T-cells (x-axis) and M2 macrophages (y-axis). The dotted red line and
circle represent the mean value for each axis and a sample, respectively. (c) Kaplan—-Meier curves for
overall survival show ahigh IEI and selected copy humber gains of 1L10 and TGFB2.
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Supplementary Table 1: List of analyzed immune-related genes.
Supplementary Table 2: Genesinvolved in four immune signatures.

Supplementary Figure 1: Identified somatic mutationsin HLA and B2M genes (a) and
structural variant-related overexpression of ten immune-related genes (b).

Supplementary Figure 2: Statistical significance of selective copy number changes. The color of
each element represents the score of the statistical test, defined by —sign(t-statistic)*log10(p-value).
The function sign(a) takes +1 if ais positive, otherwise -1.

Supplementary Figure 3: Selective copy humber gain and structural variation can explain RNA
overexpression.

Supplementary Figure 4. Distributions of neoantigensfor each tumor type. (a) Class| and (b)
classll.

Supplementary Figure 5: Distributions of determined HLA types from whole genome sequence
data.

Supplementary Figure 6: Overview of GSEA based on immune signatures, using the cytotoxic
signature and lung cancer samples. The samples are clustered based on the expression of genes
listed in Supplementary Table 2 and the expression of genes in two groups of samples were compared
using two-sided t-tests. The enrichment of gene sets defined by MSigDB was evaluated by GSEA.
The score isdefined in the same way as selective copy number changes, using the sign of the
enrichment score and its p-value.

Supplementary Figure 7: For | El (positive and negative) and four immune signatur esfor tumor
immuno-types (hot and cold), GSEA resultsfor all gene setsand tumor types are summarized.

Supplementary Figure 8. Analysis of infiltrated cellsand their predicted activities. Using the
results of CIBERSORT and the expression of CD45 for each sample, we estimated the activity of
infiltrated immune cells, including CD8+ T-cells, CD4+ T-cells, NK-cells, M2 macrophages, B-cells,
etc. An example of a scatter plot (x-axis and y-axis indicate the predicted activity of CD8+ T-cellsand
M2 macrophages, respectively) is shown at the bottom, where a circle represents a sample.

Supplementary Figure 9: CIBERSORT deconvolution for the comparison between microarray
data and RNA-Seq data usng 166 TCGA LAML-US samples. Pearson’s correlation coefficients
were used to measure concordance.
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METHODS

Genomic alterationsin immune-related genesin pan-cancer datasets

Datasets of somatic point mutations, structural variants (SV's), and copy number alterations were
generated as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) project. Overall, 2834
samples with whole genome data are represented in the PCAWG datasets, spanning a range of cancer
types (bladder, sarcoma, breast, liver-biliary, cervix, leukemia, colorectal, lymphoma, prostate,
esophagus, stomach, central nervous system, head/neck, kidney, lung, melanoma, ovary, pancreas,
thyroid, and uterus). The consensus somatic SVs, CNASs, and SNVsin PCAWG samples were
determined by three different data centers using different algorithms; calls made by at least two
algorithms were used in downstream analyses. To determine copy number, the calls made by the
Sanger group were used (Yang et al., PCAWG Tech paper)

HL A genotyping and mutations from whole genome sequences
For HLA genotyping using whole genome sequencing data, a Bayesian method known as
ALPHLARD was used; this method was designed to perform accurate HLA genotyping from short-
read data and to predict the HLA sequences of the sample. The latter function enablesthe
identification of somatic mutations by comparisons of the HLA sequences of the tumor sample with
those of the matched-normal sample. The statistical formulation for the posterior probability can be
described as follows:

P(E,S, 11X) o< P(X|S,DP(DP(R,S),
where R = (Ry, Ry) isthe pair of HLA types (reference sequences), S=(S,,S) isthe pair of HLA
sequences of the samples, X = (X, X2,...) iSthe set of sequencereads, and | = (I, |,...) isthe set of
variablestaking 1 or 2 (the jth element, |; indicates the jth read x; is generated from). On the right-
hand side of the above equation, the left term indicates the likelihood of the sequence reads when the
HLA sequences and the reference sequences are fixed. The middle and the right terms are the priors.
The parameters, HLA sequences, and HLA types, were determined using the MCMC procedure with
parallel tempering.

Immune signatures from RNA-seq data
To invegtigate the microenvironment related to the immune characteristics of tumors, the following
immune-related signatures were prepared (Supplementary Table 2):

Cytotoxic (Rooney et al., 2015)

Immune checkpoints (Mahoney et a., 2015; Smyth et al., 2015)

HLA pathway class| (Neefjeset a., 2011)

Cell component
Using a signature, two subsets of samples were defined, a subgroup of samples with immune
characterigtics indicating the focused signature, and a subgroup lacking these characterigtics. By
comparing RNA expression levels in these subgroups, enriched gene sets or pathways were identified
as related microenvironments.

Immuno-signature-based GSEA

For each cancer type, the samples were divided into two groups based on gene expression patterns of
an immuno-signature set, e.g., cytotoxic signature set, and a GSEA was conducted for gene sets using
MSigDB by comparing whole gene expression values between the two groups of samples. To obtain
the two groups, hierarchical clustering was applied to the gene expression matrix for immuno-
signature genes of the samples and the dendrogram for the samples was cut at the root. The group
with a higher mean expression value for immuno-signature genes than that in the other group was
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labeled “High,” while the other was labeled “Low.” In this study, as described above, we considered
four immuno-signature sets. For an immuno-signature set, the above GSEA was applied for each
cancer type and the enrichment results for MSigDB gene sets were compiled into heatmaps. In a
heatmap, each cell correspondsto a pair of an MSigDB gene set and cancer type, and has the value of,
where the nominal p-value and isan indicator variable; if the gene set is enriched in “High” group and
otherwise (Supplementary Figure 6).

Immune cell components

For CIBERSORT implementation, FPKM values were used after upper-quartile normalization as
input gene expression values (FPKMs are in linear space, without log-transformation) and the default
LM22 was used as the signature gene matrix. Twenty-two leukocyte fractions were imputed from
CIBERSORT. Originally, CIBERSORT was proposed for RNA expression data obtained by
microarray. However, it has been reported that CIBERSORT can be applied to bulk tumor RNA-seq
(Tuong et al., 2016; Mehnert et al., 2016) and single-cell RNA-seq (Baron et al., 2016). The
correlation between results obtained using microarray data and RNA-seq datafrom 166 LAML-US
tumors was independently evaluated; the observed correlation coefficient was 0.93, which was
significantly high. Therefore, CIBERSORT was applied to RNA-seq data (Supplementary Figure 9).

Neo-antigen prediction

From PCAWG preliminary consensusfiles, 2,786 annotated .tsv files were generated using
ANNOV AR and exclusion samples were removed according to release_may2016.v1.3.tsv. Next,
focusing on nonsynonymous mutations in exonic regions, the corresponding mutant/wild-type
peptides of length 8-11-mer including an amino-acid substitution were constructed using the UCSC
Ref Seg mRNA and refFlat data (http://hgdownload.soe.ucsc.edu/downloads.html). Next, binding
affinities (1Csp) of all generated peptides were predicted using netMHCpan3.0 (Nielsen and Andreatta,
2016) for HLA class| and netMHClIpan3.1 (Andreatta et al., 2015) for HLA classI. Finally,
neoantigens were counted for each patient by considering that mutant peptides with 1Cso values of less
than 500 as neoantigens. Here, nepantigens were counted as the number of mutations that can
generate neoantigens, thus, each mutation was counted once, even if it generated more than one
neoantigen for one or more HLAS. Note that mutations in which annotated information was not
consistent with UCSC Ref Seg mRNA and refFlat data were skipped as database mismatches. The
ratio of the number of non-skipped nonsynonymous mutations to the number of all observed
nonsynonymous mutations was defined as the concordance rate. Although this value wasnearly 1 in
all cases (greater than 0.99, on average), it was used as atuning parameter, as described below.

I mmuno-editing index
To evaluate the sample-specific immuno-editing history, an immuno-editing index (IEl) describing
the degree of accumulated immune suppression was established. |EI compares the ratio of the number
of neoantingens to the number of nonsynonymous mutations in exonic regions and in the control
regions, which are not affected by immune pressure. Pseudogene regions were used asinternal
controlsfor atumor and only pseudogene mutations whose genomic positions were downstream of
the stop codon were extracted according to PseudoPipe v.74
(http://www.pseudogene.org/pseudopipe/). In this concept, the following assumptions were made: (i)
nonsynonymous mutations in exonic regions can be suppressed by immune pressure if their mutant
peptides can bind to HLAs and (ii) synonymous mutationsin exonic regions and
nonsynonymous/synonymous mutations in pseudogene regions are not affected by immune pressure.
Under these assumptions, the number of nonsynonymous mutations in exonic regions can be lower
than the number of ideal nonsynonymous mutations in exonic regions, indicating the hypothetical
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number of nonsynonymous mutations under non-immune pressure. Several quantities were defined as
follows:

Number of honsynonymous mutations used to evaluate neoantigens (not skipped by
database mismatch) in exonic regions = #nonsynkE

Number of synonymous mutations in exonic regions = #synE
Number of predicted neoantigensin exonic regions = #NagE

Number of nonsynonymous mutations used to evaluate neoantigens (not skipped by
database mismatch) in pseudogene regions = #nonsynP

Number of synonymous mutations in pseudogene regions = #synP
Number of predicted neoantigens in pseudogene regions = #NagP
Concordance rate of mutation annotationsin exonic regions = Caxon

Concordance rate of mutation annotations in pseudogene regions = cpseudo

The number of honsynonymous mutations in exonic region was adjusted to obtain the number of ideal
nonsynonymous mutations (#nonsynk) using the above quantities as follows:
Cexon #nonsynP

#InonsynE = ———— X #synE X
Cpseudo #synP

Here, #lnonsynE was set to #NagE if #lnonsynE was |ess than #NagE.
|El was calculated as the modified log ratio in terms of the numbers of neoantingens and
nonsynonymous mutations, and isequal to the sum of the numbers of neoantingens and non-

neoantingens between exonic and pseudogene regions as follows:

#NagE + C
/ #InonsynkE + C

log
#NagP + C ’
g /#nonsynP +C

where C isaregularized constant, set to 0.5 for the analysis.

IEI =

Pseudogene selection

PseudoPipe (build 74) (Zhang et al., 2006) was used as a pseudogene database for the following
analysis, which includes the region and the parental gene of each pseudogene, among other
information. Firgt, pseudogene mutations in each sample were extracted from the V CF file based on
pseudogene regions described in PseudoPipe. Next, each pseudogene in PseudoPipe was aligned to
the parental gene using Clustal Omega (version 1.2.1) (Sieverset a., 2011) with default settings. Each
pseudogene mutation was converted to a parental gene mutation located at the same position as that of
the pseudogene mutation in the alignment. Note that pseudogene mutations were excluded in the
following neo-antigen analysis if the position corresponded to an intron of the parental gene or if the
bases differed at the position in the alignment of the pseudogene and the parental gene. Thus, except
for the above cases, pseudogene mutations were treated as if they were exonic mutations. An
immuno-editing history analysis was applied to the converted mutations and the results were used as
an internal control. Mutations in pseudogene regions were used directly, without information for
parental genes. However, the amino acid composition in pseudogene regions with parental genesis
considered similar to that in exonic regions. Additionally, in pseudogene regions, many stop codons
are present and a method was determined to handle these. Therefore, pseudogene regions with
parental genes were used as a suitable internal control to evaluate the strength of immune pressure.
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Supplementary Figure 1
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Supplementary Figure 5
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Supplementary Figure

Immuno-editing Index (IEI) HLA class | Cytotxic
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Supplementary Figure 8
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Supplementary Figure 9
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Supplementary Table 1
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Supplementary Table 2

HLA class | Cytotxic Immune checkpoints Cell component
HLA-A GZMA PDCD1 PTPRC
HLA-B GZMB CTLA4 CD2
HLA-C GZMH HAVCR2 CD3G
B2M GZMK LAG3 CD3E
PSMB8 GZMM BTLA CD4
PSMB9 PRF1 TIGIT CD5
PSMB10 GNLY CD9%6 CD7
TAP1 NKG7 CD200R1 CD8A
TAP2 FASLG LILRB1 KLRK1
TAPBP IFNG LILRB2 KLRB1
NLRC5 CD160 KLRD1
CD19
MS4A1
ITGAX
ITGAM
CD14

CD33
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