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Abstract 
Immune reactions in the tumor micro-environment are one of the cancer hallmarks and emerging 
immune therapies have been proven effective in many types of cancer. To investigate cancer genome-
immune interactions and the role of immuno-editing or immune escape mechanisms in cancer 
development, we analyzed 2,834 whole genomes and RNA-seq datasets across 31 distinct tumor types 
from the Pan-Cancer Analysis of Whole Genomes (PCAWG) project with respect to key immuno-
genomic aspects. We show that selective copy number changes in immune-related genes could 
contribute to immune escape. Furthermore, we developed an index of the immuno-editing history of 
each tumor sample based on the information of mutations in exonic regions and pseudogenes. Our 
immuno-genomic analyses of pan-cancer analyses have the potential to identify a subset of tumors 
with immunogenicity and diverse background or intrinsic pathways associated with their immune 
status and immuno-editing history.   
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Introduction 
Genomic instability and inflammation or immune responses in the tumor microenvironment are major 
underlying hallmarks of cancer (Hanahan and Weinberg, 2011), and the interaction between the 
cancer genome and immune reactions could have important implications for the early and late phases 
of cancer development. The immune system is a large source of genetic diversity in humans and 
tumors (Lefranc et al., 1999). Human leukocyte antigen (HLA), the vast number of unique T- and B-
cell receptor genes, and somatic alterations in tumor cell genomes enable the differentiation between 
self and non-self (tumor) via neoantigen (NAG) presentation, which contributes to positive or 
negative immune reactions related to cancer (Linnemann et al., 2015; Tran et al., 2014; Kreiter et al., 
2015; Yarchoan et al., 2017). A variety of immune cells can infiltrate tumor tissues and suppress or 
promote tumor growth and expansion after the initial oncogenic process (Grivennikov et al., 2010). 
Such cancer immuno-editing processes (Schreiber et al., 2011) sculpt the tumor genome via the 
detection and elimination of tumor cells in the early phase and are also related to the phenotype and 
biology of developed cancer. However, it is not clear how the immune microenvironment helps tumor 
cells with or without genetic alterations of immune molecules escape immuno-editing, and methods to 
observe the immuno-editing history in clinical human tumors are needed. 

 
Emerging therapies targeting immune checkpoint or immune-escape molecules are effective 

against several types of advanced cancer (Sharma et al., 2011; Pardoll, 2012; Mahoney et al., 2015; 
Zaretsky et al., 2016; Anagnostou et al., 2017); however, most cancers are still resistant to these 
immunotherapies. Even after successful treatment, tumors often acquire resistance via another 
immune escape mechanism or by acquiring genomic mutations in intrinsic immuno-signaling 
pathways, such as the IFN gamma pathway or MHC (HLA) presentation pathway, related to NAG 
(Gao et al., 2016; Shin et al., 2017). Tumor aneuploidy is also correlated with immune escape and the 
response to immunotherapy (Dovoli et al., 2017); hence, a comprehensively understand cancer 
immunology and its diversity, whole genome analysis is necessary. We here analyzed the whole 
genome sequencing (WGS) of 2,834 donors and RNA-seq data from Pan-Cancer Analysis of Whole 
Genomes (PCAWG) project (Campbell et al., PCAWG marker paper) with respect to key 
immunogenomic aspects using computational approaches (Hackl et al., 2016). Our results 
demonstrate that diverse genomic alterations in specific tumor types, variation in immune 
microenvironments, and variation in oncogenic pathways are related to immune escape, and we 
further observed immune editing during cancer development. To illustrate the history of immuno-
editing history for each cancer genome and to explore underlying molecular pathways involved, we 
defined immuno-editing indexes (IEIs) by comparing exonic NAGs to virtual NAGs in pseudogenes.  

 
Results and Discussion 
Somatic alterations in immune-related genes may contribute to cancer development and progression 
or immune escape in certain solid tumors and hematopoietic tumors. To investigate the extent of such 
genomic alterations, we compiled a list of 267 immune-related genes (Supplementary Table 1) that 
could be assigned to four categories: the immune escape pathway, antigen presentation pathways for 
HLA class I and HLA class II, and the cytokine signaling and apoptotic pathways, including genes 
involved in the IFN gamma pathway. An analysis of PCAWG consensus variant calls (Campbell et 
al., PCAWG marker paper) demonstrated that most tumor samples have at least one somatic alteration 
in these immune-related genes (Figure 1a). Although copy number alterations (CNAs) were the most 
frequently detected type of somatic alteration, many point mutations and structural variants (SVs) 
were also detected in the immune-related genes including HLA-A, HLA-B, HLA-C and B2M, Beta-2 
microglobulin (Supplementary Figure 1a). 
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We also investigated SVs (Zhang et al., PCAWG marker paper) in immune-related genes. 
Although SVs are relatively rare compared to CNAs, they may have a large impact on the expression 
and function of affected genes, as exemplified by a recent report of the 3′-untranslated region of 
CD274/PD-L1 (Kataoka et al., 2016). For each immune-related gene, we compared mRNA 
expression levels between SV-positive and SV-negative cases. For ten immune-related genes 
(CD274/PD-L1, PDCD1LG2/PD-L2, MARCH9, IL22, SEC61G, CCND1, CCT2, INHBC, AKT3, and 
SOCS7), we detected a statistically significant association between the occurrence of SVs and the 
upregulation of expression (q-value < 0.05; Figure 1b and Supplementary Figure 1b). 
PDCD1LG2/PD-L2 can interact with PD-1 and PD-L1, resulting in inhibitory signals that modulate 
the magnitude of T-cell responses (Latchman et al., 2001; Rozali et al., 2012). MARCH9, an E3 
ubiquitin ligase, downregulates MHC class II molecules in the plasma membrane (Janke et al., 2012), 
and SEC61G is involved in the translocation of HLA class I proteins to the endoplasmic reticulum for 
clearance (Albring et al., 2004). These findings indicate that SVs could affect HLA complexes and 
their expression or activity/clearance as well as immune checkpoint molecules, which may facilitate 
the immune escape of tumor cells. 
  

As shown in Figure 1a, CNAs are the most frequently observed alterations in immune-related 
genes. Cancers harboring many CNAs tended to show less immune involvement and worse responses 
to immunotherapies (Davoli et al., 2017), and this can potentially be explained by CNAs in immune-
related genes. We next compared the copy numbers of immune-related genes with the ploidy levels of 
tumors to differentiate between selective increases in copy number or changes in ploidy or averaged 
changes of chromosomes. We first focused on interleukin-10 (IL10), an immune suppressor gene 
(Itakura et al., 2011). IL10 expresses not only immune cells, but also tumors; the functions of IL10 
produced from tumor cells were mainly reported in melanoma (Wiguna and Walden, 2015).  We then 
examined the differences between copy number of IL10 and ploidy level for each donor of multiple 
tumor types (Figure 1c). In Liver-HCC, Breast-AdenoCA, Skin-Melanoma, and Lung-AdenoCA 
samples, the IL10 copy number was specifically increased, rather than the ploidy level, in almost all 
tumors. Since IL10 functions as a repressor of immune cells, the amplification or gain of IL10 is 
possibly related, in part, to the immune escape mechanism. However, in Kidney-ChRCC, no 
significant selective amplification was observed.  

 
We analyzed other immune-related genes and tumor types, including MSI (microsatellite 

instability)-positive tumors (Fujimoto, PCAWG-7, et al., in preparation) with strong immunogenicity 
(Le et al., 2015) due to high numbers of NAGs. For each immune-related gene, we used t-tests to 
evaluate whether the copy number differences from the ploidy level are significant or not in each 
tumor type. The results are summarized as a landscape of selective copy number changes in Figure 
1d (showing the mean copy number changes against the ploidy value) and Supplementary Figure 2 
(showing the statistical significance of selective copy number changes). TGFB2 and IL10 are located 
on chromosome 1q and both function as suppressors of immune cells (Wiguna and Walden, 2015; 
Yang et al., 2015), and the selective copy number gains for these immune genes are likely to be 
related to tumor-immune system interactions (Figure 1d). Recently, a molecule inhibiting TGFB2 and 
PD-L1 simultaneously is reported its efficacy (Lan et al., 2018; Strauss et al., 2018). It might be 
important to know an immune escape mechanism related to TGFB2. SEC61G and MARCH9, both of 
which exhibited significant overexpression related to SVs (Figure 1b), showed different patterns from 
those of TGFB2 and IL10. MARCH9 showed statistical significance in some tumor types; considering 
the mean value of the differences in each tumor type, selective copy number gain was detected in 
CNS-GBM and Bone-Leiomyo. Additionally, SEC61G was selectively amplified in CNS-GBM and 
Head-SCC. Interestingly, donors with SV-related overexpression and donors with selective copy 
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number gains were highly correlated; however, selective copy number gain could only partially 
explain the overexpression of these genes for the donors without SVs (Supplementary Figure 3).  

   
In Skin-Melanoma, the copy numbers of genes on chromosome 6, including HLAs, were 

significantly greater than the ploidy level (p = 2.26E-10 for HLA-A), which could paradoxically 
increase immune pressure. However, the copy number of IL10 was also significantly (p = 8.1E-10) 
and selectively increased, potentially contributing to escape from immune pressure. By contrast, in 
Kidney-ChRCC and Panc-Endocrine samples, the copy numbers of HLAs compared with the ploidy 
level show the opposite tendency, and IL10 follows this. Since HLAs are not selectively increased, the 
copy number gain for IL10 may be unnecessary for immune escape. In Lymph-NOS and Myeloid-
MDS, copy numbers of almost all immune genes were consistent with ploidy and were not selectively 
changed (minimum p = 0.498 and 0.184 for Lymph-NOS and Myeloid-MDS, respectively). MSI 
tumors showed weak selective copy number increases for genes in the cluster including IL10 (p = 
0.000644); however, significant results were not obtained for other immune-related genes. In these 
tumor types, there may exist different immune escape systems, other than the selective copy number 
gain of these immune genes. 
  

We identified two possible explanations for copy number gains, i.e., they occurred during the 
process of ploidy formation or they occurred by a selective process during tumorigenesis. We 
analyzed the differences between copy number and ploidy and, interestingly, found that genomic 
regions containing genes that function as suppressors of the immune system, such as TGFB2 and 
IL10, are selectively increased in many types of tumors. Copy number gains of these immune-related 
genes could arise and be selected during the establishment of immune escape. Therefore, selective 
copy number gains may be involved in the history of immune escape. Since TGFB2 and IL10 could 
play important roles in immune escape based on their function, our findings indicate that selective 
copy number gain is a remarkable system in the mechanism of immune escape. However, no selective 
copy number gains were observed in immune checkpoint genes, i.e., PD-L1 and PD-L2, which 
function as part of the immune escape mechanism, further supporting the diversity of immune escape 
mechanisms. 
 

During tumorigenesis, mutant peptides derived from nonsynonymous somatic mutations are 
presented by HLA molecules to T cells (Figure 2a) (Robbins et al., 2013; Carreno et al., 2015). 
Although these NAGs serve to eliminate tumor cells, some cells escape this immune surveillance and 
eventually contribute to the formation of clinical tumors (Figure 2b) (Burnet, 1970; Dunn et al., 
2002). To estimate the strength of immune surveillance or immune pressure experienced by tumor 
cells in each sample, we developed a novel approach to measure the strength of immune pressure 
using pseudogenes as an internal control of each tumor (Figure 2a) (see Methods); those are not 
translatable. First, we identified predicted NAGs from somatic substitutions in exonic regions of 
whole genome sequences and compared them to those similarly derived from pseudogenes 
(Supplementary Figure 4). In this process, we used the HLA types (class I and II, shown in 
Supplementary Figure 5) determined by our new pipeline, referred to as ALPHLARD (see 
Methods). The accumulation of somatic mutations in exonic regions versus virtual somatic mutations 
in pseudogenes during tumorigenesis is schematically represented in Figure 2b. If tumor cells grew 
under strong immune pressure, the difference between predicted NAGs in exonic and pseudogene 
regions would be large. This difference is expected to be small if tumor cells immediately escape from 
immune pressure in the carcinogenic process (Figure 2c). We defined the immuno-editing index (IEI) 
according to this concept (see Methods). The virtual neoantigen ratio RP for mutations in pseudogene 
regions and the neoantigen ratio RE for exonic regions can be plotted (Figure 2d) to determine the 
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immune pressure for each tumor sample. IEI is defined as the log-ratio of RP to RE. We used IEI to 
characterize the histories of different donors, including immuno-edited and immuno-editing-resistant 
tumors. 
 

In subsequent analyses, we investigated the history of immune pressures for multiple tumor types, 
as revealed by IEI. The distributions of immune pressure for four cancers are shown in Figure 2e. The 
percentage of IEI-positive samples, i.e., immune-editing-resistant tumors, in each tumor is shown in 
Figure 2f. MSI-positive tumors show immuno-edited tumor characteristics, suggesting that MSI-
positive tumors were continuously being under strong negative selection from the immune system. 
Bladder-TCC, Stomach-AdenoCA, Lymph-BNHL and Head-SCC samples showed immuno-editing-
resistant tendencies, indicating that mutations generating NAGs were removed by negative selection 
during tumorigenesis.  

 
We compared the IEI values with the ploidies using pan-cancer data and observed a significant 

negative correlation (Pearson's correlation coefficient, r = -0.13, p = 0.0051) (Figure 2g). Among the 
11 tumor types, the strongest correlation was observed in Lung-AdenoCA (r = -0.66, p = 0.00028), 
and multiple tumor types, including ColoRect-AdenoCA, Eso-AdenoCA, and Skin-Melanoma, 
showed weak negative correlations, although these were not statistically significant. The negative 
correlation between IEI and ploidy can likely be attributed to the scenario in which a copy number 
gain leads to high expression of NAGs and thus high immune pressure.  

 
We next examined the immune characteristics or signatures related to the difference in immune 

escape histories (as determined by IEI). Differentially expressed genes between IEI-positive and -
negative tumors were analyzed to find acquired phenotypes or micro-environmental characteristics 
that promote tumor cell escape from immune pressure. Using four signatures related to immune 
characteristics, i.e., HLA class I, cytotoxic, immune checkpoint, and cell component, we divided 
samples into two groups, referred to as hot (inflamed; presence of infiltrating immune cells) and cold 
(non-inflamed) tumors, and we further used gene set enrichment analyses (GSEA) to elucidate the 
pathways associated with IEI stratification (Supplementary Figure 6). The genes related to each of 
above four signatures are listed in Supplementary Table 2. Interestingly, we found distinct patterns 
of gene set enrichment in the high-expression and low-expression groups (Supplementary Figure 7). 
In the high-expression groups, multiple gene sets, e.g., interferon gamma response and inflammatory 
response genes, were commonly enriched in most tumor types (Supplementary Figure 7). In 
contrast, in the low-expression groups, most gene sets were differentially enriched in a tumor-specific 
manner. Thus, immune escape pathways preventing immune-cell infiltration are diverse and specific 
to each tumor type.  

 
Furthermore, we specifically examined the degree of enrichment of four specific gene sets with 

respect to IEI (for gene sets of interferon gamma response, EMT (epithelial to mesenchymal 
transition) (Terry et al., 2017), TGF beta signaling (Yang et al., 2015), and WNT/β-catenin signaling 
(Spranger et al., 2014; Pai et al., 2017) (Figure 3a). The interferon gamma response gene set was 
enriched in inflamed tumors of all tumor types, as expected, as the expression levels of these genes 
are higher in inflamed tumors than in non-inflamed tumors. Using IEI, this trend was maintained in 
Head-SCC, Lung-AdenoCA, Lung-SCC, and Lymph-BNHL samples; in these tumor types, those 
genes are more highly expressed in the IEI-positive group than in the IEI-negative group. However, in 
Skin-Melanoma, the enrichment of this gene set was not significant, while these genes were 
significantly underrepresented in four tumor types (Bladder-TCC, ColoRect-AdenoCA, Stomach-
AdenoCA, and Uterus-AdenoCA). This suggests that the diversity of immuno-editing histories 
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depends on the tumor type. For the EMT gene set, the four immune signatures are also highly 
consistent in some types of tumors, such as Bladder-TCC, Lung-SCC, and Skin-Melanoma, and EMT 
may have important roles in the immune microenvironment in these tumors (Hugo et al., 2016; Chae 
et al., 2018). For the TGFβ signaling gene set, diverse associations with the four immune signatures 
were detected. WNT/β-catenin signaling was inversely related to these immune signatures and IEI in 
several tumor types, such as Skin-Melanoma. In Lung-AdenoCA, Lung-SCC, Lymph-BNHL, and 
Skin-Melanoma, the trends in IEI seemed to be consistent with the four immune signatures.     
  

Further investigations of infiltrated immune cells are important to understand immune escape 
mechanisms. Based on the predicted composition of infiltrated immune cells and the expression of 
CD45, a pan-lymphocyte marker, we evaluated the activity of infiltrated immune cells 
(Supplementary Figure 8). We focused on the activity of M2 macrophages (y-axis) as immune 
suppressive cells and CD8+ T-cells (x-axis) as immune effector cells, and obtained a flow cytometry-
like plot for each tumor type (Figure 3b). We focused on eight types of tumors, Breast-AdenoCA , 
Cervix-SCC, ColoRect-AdenoCA , Liver-HCC, Lung-AdenoCA, Lung-SCC, Skin-Melanoma, and 
Uterus-AdenoCA, for finding associations of the immune cell infiltrations to the selective copy 
number gain and IEI. Lung-AdenoCA and Lung-SCC with selective copy number gains of TGFB2 
(red circles in the upper panels of Figure 3b) showed high activity of M2 macrophages and low 
activity of CD8+ T-cells (statistical significance for repression of CD8+ T-cell in selective copy 
number gain tumors: p = 0.0291 and 0.0244 for the lung AdenoCA and SCC, respectively); in 
ColoRect-AdenoCA, the selective copy number gain of TGFB2 was not observed in most samples, 
and only a small fraction of CD8+ T-cell infiltrated tumors with a selective copy number gain of 
TGFB2 (p = 0.00453). By contrast, in ColoRect-AdenoCA, infiltrating CD8+ T-cells seemed to be 
repressed in IEI-positive tumors (lower panels of Figure 3b, p = 6.58E-4 for IEI-positive tumors’ 
CD8+ T-cell repression). In Uterus-AdenoCA, IEI positive tumors also showed a small fraction of 
CD8+ T-cells (p= 0.00208). These analyses indicated that selective copy number changes and 
immune escape histories (IEI) of each tumor can reflect the immune cell composition and immune 
microenvironment within tumors.  

 
Finally, we performed a survival analysis of donors partitioned by IEI values for the above eight 

types of tumors and found that Lung-AdenoCA cancer donors with IEI-positive tumors (immuno-
editing resistant tumor) exhibited a much worse overall survival than that of donors with IEI-negative 
tumors. In Lung-AdenoCA, IEI showed a possible separation (p = 0.011, Figure 3c), whereas those 
for the other aforementioned gene set signatures were not significant. We also analyzed the 
relationship between selective copy number gain (IL10 and TGFB2) and overall survival and showed 
three examples using Liver-HCC, Lung-AdenoCA, and Cervix-SCC. For these tumor types, tumors 
with selective copy number gains of IL10 or TGFB2 showed worse overall survival than that of the 
tumors without these copy number gains (p = 0.0551 (IL10) for Liver-HCC, p = 0.1 (TGFB2) for 
Lung-AdenoCA, and p = 0.0202 (IL10 and TGFB2) for Cervix-SCC).  
 
Conclusion 
We derived immuno-genomic profiles, including somatic mutations in immune genes, HLA 
genotypes, NAGs, and immune micro-environmental landscapes, from pan-cancer whole genome and 
RNA sequence data. We observed that tumors acquired many types of immune escape mechanisms by 
selective copy number gains of immune-related genes, failure of the antigen presentation system, and 
alterations in immune checkpoint molecules in a tumor-specific manner. The history of immuno-
editing, as estimated using pseudogenes as sites free of immune pressure, indicated associations 
between tumorigenesis and immune escape across various tumor types. Furthermore, the micro-
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environmental landscape related to immune characteristics revealed diverse background or intrinsic 
pathways controlling the non-inflamed subset of each tumor type. This provides essential information 
for identifying therapeutic targets. These analyses revealed the impact of the immune micro-
environment on the immune resistance and/or immune escape of tumors. 
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Figure Legends 
 
Figure 1: Mutation landscape of immune-related genes. (a) Frequency and types of somatic 
mutations in immune genes. Single nucleotide variants (SNVs), insertions and deletions (indels), 
structural variants (SVs), and copy number alterations (CNAs) were examined in immune genes and 
donors for multiple types of tumors, where ‘truncation’ represents ‘stop gain SNV’ and ‘frameshift 
indel,’ and ‘in-frame’ means ‘nonsynonymous SNV’ and ‘in frame indel.’ (b) Overexpression of 
immune-related genes and its association with SVs in each tumor type. Red and blue dots represent 
tumor samples with and without SVs, respectively. (c) Copy number of IL10 offset by tumor ploidy. 
Tumor samples are colored red and blue to indicate whether the copy number is above or below the 
ploidy level, respectively. (d) Selective copy number changes of immune-related genes in each tumor 
type. Red and blue represent an excess or deficiency in the gene copy number compared to the tumor 
ploidy level, respectively. The color of the element represents the mean value of the differences 
between copy number and ploidy. 
 
Figure 2: Analysis of immuno-editing history. (a) Overview of the presentation of neoantigens 
generated from nonsynonymous mutations in exonic regions. Pseudogene regions are not translated 
and mutations that accumulate in pseudogenes are not presented by the HLA complex. (b) 
Relationship between accumulated mutations in exonic regions and pseudogenes in the immuno-
editing history. Although CTLs (cytotoxic T-cells) eliminate tumor cells by recognizing these NAGs, 
some tumor cells escape this immune surveillance mechanism and eventually contribute to the 
formation of a clinical tumor. (c) In immuno-editing-resistant tumors, the tumor cells immediately 
escaped from immune pressure in the carcinogenic process, and the difference between NAGs in 
exonic and pseudogene regions was expected to be small. (d) Immuno-pressure plot of (virtual) 
neoantigens in exonic regions and psueodogenes. The x-axis represents the virtual neoantigen ratio RP 
for mutations in pseudogene regions and the y-axis shows the neoantigen ratio RE in exonic regions. 
IEI (immuno-editing index) was defined as the log ratio of RP to RE and was used to characterize the 
immune-editing history of each donor, with immuno-edited and immuno-editing-resistant tumors. (e) 
Immuno-pressure plots of four cancer types. MSI-positive tumors show the most immuno-edited 
tumor characteristics; in other cancers, many tumors showed an immuno-editing-resistant tendency.  
(f) The proportion of immuno-editing-resistant tumors. (g, h) Tumor ploidy and IEI for a pan-cancer 
analysis (g; n = 433) and lung adenocarcinoma (h; n = 25). Each dot represents a tumor sample. 
 
 
Figure 3: Immune signatures and their associations with genomic alterations and immuno-
editing history. (a) GSEA in four gene sets (‘interferon gamma response,’ ‘EMT,’ TGF-beta 
signaling,’ and ‘WNT/β-catenin signaling’) was used to determine the degree of enrichment of the 
four immune signatures and IEI. The color of each pair of tumor type and gene set represents the 
GSEA score (Supplementary Figure 6) (b) Flow cytometry-like plots representing the estimated 
activity of infiltrated CD8+ T-cells (x-axis) and M2 macrophages (y-axis). The dotted red line and 
circle represent the mean value for each axis and a sample, respectively. (c) Kaplan–Meier curves for 
overall survival show a high IEI and selected copy number gains of IL10 and TGFB2.   
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Supplementary Table 1: List of analyzed immune-related genes.  
 
Supplementary Table 2: Genes involved in four immune signatures.  
 
Supplementary Figure 1: Identified somatic mutations in HLA and B2M genes (a) and 
structural variant-related overexpression of ten immune-related genes (b). 
 
Supplementary Figure 2: Statistical significance of selective copy number changes. The color of 
each element represents the score of the statistical test, defined by –sign(t-statistic)*log10(p-value). 
The function sign(a) takes +1 if a is positive, otherwise -1.  
 
Supplementary Figure 3: Selective copy number gain and structural variation can explain RNA 
overexpression.  
 
Supplementary Figure 4: Distributions of neoantigens for each tumor type. (a) Class I and (b) 
class II.  
 
Supplementary Figure 5: Distributions of determined HLA types from whole genome sequence 
data.  
 
Supplementary Figure 6: Overview of GSEA based on immune signatures, using the cytotoxic 
signature and lung cancer samples. The samples are clustered based on the expression of genes 
listed in Supplementary Table 2 and the expression of genes in two groups of samples were compared 
using two-sided t-tests. The enrichment of gene sets defined by MSigDB was evaluated by GSEA. 
The score is defined in the same way as selective copy number changes, using the sign of the 
enrichment score and its p-value.  
 
Supplementary Figure 7: For IEI (positive and negative) and four immune signatures for tumor 
immuno-types (hot and cold), GSEA results for all gene sets and tumor types are summarized. 
 
Supplementary Figure 8: Analysis of infiltrated cells and their predicted activities. Using the 
results of CIBERSORT and the expression of CD45 for each sample, we estimated the activity of 
infiltrated immune cells, including CD8+ T-cells, CD4+ T-cells, NK-cells, M2 macrophages, B-cells, 
etc. An example of a scatter plot (x-axis and y-axis indicate the predicted activity of CD8+ T-cells and 
M2 macrophages, respectively) is shown at the bottom, where a circle represents a sample. 
 
Supplementary Figure 9: CIBERSORT deconvolution for the comparison between microarray 
data and RNA-Seq data using 166 TCGA LAML-US samples. Pearson’s correlation coefficients 
were used to measure concordance. 
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METHODS 
 
Genomic alterations in immune-related genes in pan-cancer datasets 
Datasets of somatic point mutations, structural variants (SVs), and copy number alterations were 
generated as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) project. Overall, 2834 
samples with whole genome data are represented in the PCAWG datasets, spanning a range of cancer 
types (bladder, sarcoma, breast, liver-biliary, cervix, leukemia, colorectal, lymphoma, prostate, 
esophagus, stomach, central nervous system, head/neck, kidney, lung, melanoma, ovary, pancreas, 
thyroid, and uterus). The consensus somatic SVs, CNAs, and SNVs in PCAWG samples were 
determined by three different data centers using different algorithms; calls made by at least two 
algorithms were used in downstream analyses. To determine copy number, the calls made by the 
Sanger group were used (Yang et al., PCAWG Tech paper) 
  
HLA genotyping and mutations from whole genome sequences 
For HLA genotyping using whole genome sequencing data, a Bayesian method known as 
ALPHLARD was used; this method was designed to perform accurate HLA genotyping from short-
read data and to predict the HLA sequences of the sample. The latter function enables the 
identification of somatic mutations by comparisons of the HLA sequences of the tumor sample with 
those of the matched-normal sample. The statistical formulation for the posterior probability can be 
described as follows: 

���, �, �|�	 
 ���|�, �	���	���, �	, 
where R = (R1, R2) is the pair of HLA types (reference sequences), S = (S1,S2) is the pair of HLA 
sequences of the samples, X = (x1, x2,...) is the set of sequence reads, and I = (I1, I2,...) is the set of 
variables taking 1 or 2 (the jth element, Ij indicates the jth read xj is generated from). On the right-
hand side of the above equation, the left term indicates the likelihood of the sequence reads when the 
HLA sequences and the reference sequences are fixed. The middle and the right terms are the priors. 
The parameters, HLA sequences, and HLA types, were determined using the MCMC procedure with 
parallel tempering.  
 
Immune signatures from RNA-seq data 
To investigate the microenvironment related to the immune characteristics of tumors, the following 
immune-related signatures were prepared (Supplementary Table 2): 

·         Cytotoxic (Rooney et al., 2015) 
·         Immune checkpoints (Mahoney et al., 2015; Smyth et al., 2015)  
·         HLA pathway class I (Neefjes et al., 2011) 
·         Cell component 

Using a signature, two subsets of samples were defined, a subgroup of samples with immune 
characteristics indicating the focused signature, and a subgroup lacking these characteristics. By 
comparing RNA expression levels in these subgroups, enriched gene sets or pathways were identified 
as related microenvironments. 
  
Immuno-signature-based GSEA  
For each cancer type, the samples were divided into two groups based on gene expression patterns of 
an immuno-signature set, e.g., cytotoxic signature set, and a GSEA was conducted for gene sets using 
MSigDB by comparing whole gene expression values between the two groups of samples. To obtain 
the two groups, hierarchical clustering was applied to the gene expression matrix for immuno-
signature genes of the samples and the dendrogram for the samples was cut at the root. The group 
with a higher mean expression value for immuno-signature genes than that in the other group was 
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labeled “High,” while the other was labeled “Low.” In this study, as described above, we considered 
four immuno-signature sets. For an immuno-signature set, the above GSEA was applied for each 
cancer type and the enrichment results for MSigDB gene sets were compiled into heatmaps. In a 
heatmap, each cell corresponds to a pair of an MSigDB gene set and cancer type, and has the value of, 
where the nominal p-value and is an indicator variable; if the gene set is enriched in “High” group and 
otherwise (Supplementary Figure 6). 
 
 Immune cell components 
For CIBERSORT implementation, FPKM values were used after upper-quartile normalization as 
input gene expression values (FPKMs are in linear space, without log-transformation) and the default 
LM22 was used as the signature gene matrix. Twenty-two leukocyte fractions were imputed from 
CIBERSORT. Originally, CIBERSORT was proposed for RNA expression data obtained by 
microarray. However, it has been reported that CIBERSORT can be applied to bulk tumor RNA-seq 
(Tuong et al., 2016; Mehnert et al., 2016) and single-cell RNA-seq (Baron et al., 2016). The 
correlation between results obtained using microarray data and RNA-seq data from 166 LAML-US 
tumors was independently evaluated; the observed correlation coefficient was 0.93, which was 
significantly high. Therefore, CIBERSORT was applied to RNA-seq data (Supplementary Figure 9). 
 
Neo-antigen prediction 
From PCAWG preliminary consensus files, 2,786 annotated .tsv files were generated using 
ANNOVAR and exclusion samples were removed according to release_may2016.v1.3.tsv. Next, 
focusing on nonsynonymous mutations in exonic regions, the corresponding mutant/wild-type 
peptides of length 8–11-mer including an amino-acid substitution were constructed using the UCSC 
RefSeq mRNA and refFlat data (http://hgdownload.soe.ucsc.edu/downloads.html). Next, binding 
affinities (IC50) of all generated peptides were predicted using netMHCpan3.0 (Nielsen and Andreatta, 
2016) for HLA class I and netMHCIIpan3.1 (Andreatta et al., 2015) for HLA class II. Finally, 
neoantigens were counted for each patient by considering that mutant peptides with IC50 values of less 
than 500 as neoantigens. Here, neoantigens were counted as the number of mutations that can 
generate neoantigens; thus, each mutation was counted once, even if it generated more than one 
neoantigen for one or more HLAs. Note that mutations in which annotated information was not 
consistent with UCSC RefSeq mRNA and refFlat data were skipped as database mismatches. The 
ratio of the number of non-skipped nonsynonymous mutations to the number of all observed 
nonsynonymous mutations was defined as the concordance rate. Although this value was nearly 1 in 
all cases (greater than 0.99, on average), it was used as a tuning parameter, as described below. 
 
 Immuno-editing index 
To evaluate the sample-specific immuno-editing history, an immuno-editing index (IEI) describing 
the degree of accumulated immune suppression was established. IEI compares the ratio of the number 
of neoantingens to the number of nonsynonymous mutations in exonic regions and in the control 
regions, which are not affected by immune pressure. Pseudogene regions were used as internal 
controls for a tumor and only pseudogene mutations whose genomic positions were downstream of 
the stop codon were extracted according to PseudoPipe v.74 
(http://www.pseudogene.org/pseudopipe/). In this concept, the following assumptions were made: (i) 
nonsynonymous mutations in exonic regions can be suppressed by immune pressure if their mutant 
peptides can bind to HLAs and (ii) synonymous mutations in exonic regions and 
nonsynonymous/synonymous mutations in pseudogene regions are not affected by immune pressure. 
Under these assumptions, the number of nonsynonymous mutations in exonic regions can be lower 
than the number of ideal nonsynonymous mutations in exonic regions, indicating the hypothetical 
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number of nonsynonymous mutations under non-immune pressure. Several quantities were defined as 
follows: 

・   Number of nonsynonymous mutations used to evaluate neoantigens (not skipped by 

database mismatch) in exonic regions = #nonsynE 

・   Number of synonymous mutations in exonic regions = #synE 

・   Number of predicted neoantigens in exonic regions = #NagE 

・   Number of nonsynonymous mutations used to evaluate neoantigens (not skipped by 

database mismatch) in pseudogene regions = #nonsynP 

・   Number of synonymous mutations in pseudogene regions = #synP 

・   Number of predicted neoantigens in pseudogene regions = #NagP 

・   Concordance rate of mutation annotations in exonic regions = ����� 

・   Concordance rate of mutation annotations in pseudogene regions = ������� 

The number of nonsynonymous mutations in exonic region was adjusted to obtain the number of ideal 
nonsynonymous mutations (#InonsynE) using the above quantities as follows: 

#�������� 

�����

�������
 �  #���� � 

#�������

#����
. 

Here, #InonsynE was set to #NagE if #InonsynE was less than #NagE.  
IEI was calculated as the modified log ratio in terms of the numbers of neoantingens and 
nonsynonymous mutations, and is equal to the sum of the numbers of neoantingens and non-
neoantingens between exonic and pseudogene regions as follows:  

��� 
 log

#���� � �
#�������� � ��

#���� � �
#������� � ��

, 

where C is a regularized constant, set to 0.5 for the analysis. 
 
Pseudogene selection 
PseudoPipe (build 74) (Zhang et al., 2006) was used as a pseudogene database for the following 
analysis, which includes the region and the parental gene of each pseudogene, among other 
information. First, pseudogene mutations in each sample were extracted from the VCF file based on 
pseudogene regions described in PseudoPipe. Next, each pseudogene in PseudoPipe was aligned to 
the parental gene using Clustal Omega (version 1.2.1) (Sievers et al., 2011) with default settings. Each 
pseudogene mutation was converted to a parental gene mutation located at the same position as that of 
the pseudogene mutation in the alignment. Note that pseudogene mutations were excluded in the 
following neo-antigen analysis if the position corresponded to an intron of the parental gene or if the 
bases differed at the position in the alignment of the pseudogene and the parental gene. Thus, except 
for the above cases, pseudogene mutations were treated as if they were exonic mutations. An 
immuno-editing history analysis was applied to the converted mutations and the results were used as 
an internal control. Mutations in pseudogene regions were used directly, without information for 
parental genes. However, the amino acid composition in pseudogene regions with parental genes is 
considered similar to that in exonic regions. Additionally, in pseudogene regions, many stop codons 
are present and a method was determined to handle these. Therefore, pseudogene regions with 
parental genes were used as a suitable internal control to evaluate the strength of immune pressure.  
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Supplementary Figure 9
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Supplementary Table 1

ADORA2A CASP8 CXCL8 HRAS KRAS PTEN TNFRSF14
AIFM1 CASP9 CYCS ICOS LAG3 PTGS1 TNFRSF18
ALOX12B CCL2 DFFA ICOSLG LAP3 PTGS2 TNFRSF1A
ALOX15B CCL22 DFFB IDO1 LGALS1 PVR TNFRSF1B
APAF1 CCL28 EBAG9 IDO2 LGALS3 PVRIG TNFRSF21
ARG1 CCL3 ENDOG IFI30 LGALS9 RAET1E TNFRSF25 
ARG2 CCL5 ENTPD1 IFNA1 LGMN RAET1G TNFRSF4
B2M CD113 ERAP1 IFNA17 LILRB1 RAET1L TNFRSF6B 
B3GAT1 CD160 ERAP2 IFNA2 LILRB2 RFX5 TNFRSF9
BAD CD200 FADD IFNA7 LNPEP RFXANK TNFSF10
BAX CD200R1 FADD IFNA8 LTA RFXAP TNFSF10
BCL10 CD226 FAS IFNAR1 MARCH1 RIPK1 TNFSF12
BCL2 CD244 FASLG IFNAR2 MARCH4 RIPK3 TNFSF14
BCL2L1 CD27 FASLG IFNB1 MARCH8 SCAF11 TNFSF15
BCL6 CD274 FURIN IFNG MARCH9 SEC61A1 TNFSF18
BID CD276 GZMA IFNGR1 MCL1 SEC61A2 TNFSF4
BIRC2 CD28 GZMB IL10 MFGE8 SEC61B TNFSF9
BIRC3 CD40 GZMH IL13 MICA SEC61G TPP2
BIRC5 CD40LG GZMK IL33 MICB SERPINB9 TRADD
BIRC6 CD47 GZMM IL4 MLKL SIRPA TRAF2
BIRC7 CD48 HAVCR2 IL6 MYC SOCS1 TSLP
BIRC8 CD70 HHLA2 JAK1 NECTIN2 STAT1 ULBP1 
BTLA CD74 HLA-A JAK2 NLN TAP1 ULBP2
BTN1A1 CD80 HLA-B JAK3 NLRC5 TAP2 ULBP3
BTN2A2 CD86 HLA-C KIR2DL1 NOS1 TAPBP VEGFA
BTN3A1 CD96 HLA-DMA KIR2DL3 NOS2 TAPBPL VTCN1
BTNL2 CEACAM1 HLA-DMB KIR2DL4 NOS3 TDO2 XIAP
C10orf54 CFLAR HLA-DOA KIR2DS1 NRAS TGFB1
CADM1 CIITA HLA-DOB KIR3DL1 NRDC TGFB2
CALR CRTAM HLA-DPA1 KIR3DL2 NT5E TGFB3
CANX CSF1 HLA-DPB1 KIR3DL3 PDCD1    THOP1
CASP1 CSF2 HLA-DQA1 KIR3DL4 PDCD1LG2  TIGIT
CASP10 CSF3 HLA-DQA2 KIR3DS1 PDIA3 TMIGD2
CASP12 CTLA4 HLA-DQB1 KLRB1 PRF1 TNF
CASP2 CTNNB1 HLA-DRA KLRC1 PSMB10 TNF
CASP3 CTSL HLA-DRB1 KLRC2 PSMB8 TNFRSF10A
CASP4 CTSS HLA-E KLRD1 PSMB9 TNFRSF10B
CASP5 CXCL12 HLA-F KLRF1 PSME1 TNFRSF10C
CASP6 CXCL17 HLA-G KLRG1 PSME2 TNFRSF10D
CASP7 CXCL5 HLA-G KLRK1 PSME3 TNFRSF12A 
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Supplementary Table 2
HLA class I Cytotxic Immune checkpoints Cell component

HLA-A GZMA PDCD1 PTPRC
HLA-B GZMB CTLA4 CD2
HLA-C GZMH HAVCR2 CD3G
B2M GZMK LAG3 CD3E
PSMB8 GZMM BTLA CD4
PSMB9 PRF1 TIGIT CD5
PSMB10 GNLY CD96 CD7
TAP1 NKG7 CD200R1 CD8A
TAP2 FASLG LILRB1 KLRK1
TAPBP IFNG LILRB2 KLRB1
NLRC5 CD160 KLRD1

CD19
MS4A1
ITGAX
ITGAM
CD14
CD33
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