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ABSTRACT 

Shotgun proteomics has grown rapidly in recent decades, but a large fraction of tandem mass 

spectrometry (MS/MS) data in shotgun proteomics are not successfully identified. We have 

developed a novel database search algorithm, Open-pFind, to efficiently identify peptides even in 

an ultra-large search space which takes into account unexpected modifications, amino acid 

mutations, semi- or non-specific digestion and co-eluting peptides. Tested on two metabolically 

labeled MS/MS datasets, Open-pFind reported 50.5‒117.0% more peptide-spectrum matches 

(PSMs) than the seven other advanced algorithms. More importantly, the Open-pFind results 

were more credible judged by the verification experiments using stable isotopic labeling. Tested 

on four additional large-scale datasets, 70‒85% of the spectra were confidently identified, and 

high-quality spectra were nearly completely interpreted by Open-pFind. Further, Open-pFind 

was over 40 times faster than the other three open search algorithms and 2‒3 times faster than 

three restricted search algorithms. Re-analysis of an entire human proteome dataset consisting of 

~25 million spectra using Open-pFind identified a total of 14,064 proteins encoded by 12,723 

genes by requiring at least two uniquely identified peptides. In this search results, Open-pFind 

also excelled in an independent test for false positives based on the presence or absence of 

olfactory receptors. Thus, a practical use of the open search strategy has been realized by 

Open-pFind for the truly global-scale proteomics experiments of today and in the future. 
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INTRODUCTION 

Shotgun proteomics has grown rapidly in recent decades, especially for peptide and 

protein identification
1
. Database search, which is based on searching tandem mass spectrometry 

(MS/MS) data against a proteome database, has long been the dominant approach
2
. However, 

more than 50% of MS/MS data acquired in shotgun proteomics have not been successfully 

identified
3
. For example, Chick et al. reported a large-scale dataset consisting of over one million 

spectra, in which only 35.4% were identified via SEQUEST
4
 at a 1% false discovery rate (FDR) 

for proteins
5
. Another dataset, recently proposed by Bekker-Jensen et al., also contained over one 

million spectra, of which only 38.9% were identified via MaxQuant
6
, with a 1% FDR for 

proteins and peptides
7
. 

As shown in a number of studies, restricted proteome search engines cannot identify 

peptides with unexpected modifications, which is a major reason underlying the low 

identification rate
8-11

. Therefore, a feasible solution involves enlarging the search space to 

retrieve more peptide candidates with any type of modification. Chick et al. demonstrated that 

database search using a large mass tolerance window of 500 Da increased the identification rate 

from 35.4% to 45.5%, but it still failed to identify more than 50% of the spectra
5
. In addition, 

database search with such a large mass tolerance window is very time-consuming, and the time 

penalty for the increased search space was approximately 10‒100-fold
5, 12

. Recently, Kong et al. 

proposed a blind search algorithm, MSFragger
12

, that significantly improved the search speed 

compared with that of three other tested algorithms by using the ion index technique
13, 14

. 

In addition to unexpected modifications, several other factors also hinder precise peptide 

identification, including semi- and non-specific digestion, in-source fragmentation and co-eluting 

peptides in mixed spectra
15, 16

. These factors are collectively called the dark matter of shotgun 

proteomics
12, 17

 and are uniformly treated as mass shifts
5, 12

. However, instead of mass shifts, the 

exact peptide forms, including reasonable types of modifications and enzymatic cleavage sites, 

should be determined, which will make the search space significantly larger. For example, 
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peptides that were non-specifically digested in silico by trypsin were observed ~160 times more 

frequently than common tryptic peptides, and modifications exponentially produce 100‒30,000 

additional peptide candidates
18

. Furthermore, searching against such an ultra-large space may 

seriously hamper the accuracy of search engines because correct peptides are difficult to 

distinguish among vast numbers of random peptides. The target-decoy strategy and a few other 

approaches have been widely used for FDR estimation
19-21

; however, these methods are needed 

to independently verify the credibility of the results obtained via open search. These challenging 

problems have discouraged open search in routine use. Instead, restricted search engines are 

preferred in shotgun proteomics, although they usually yield a low identification rate.  

In this study, we developed a novel algorithm, Open-pFind, which adopted a 

comprehensive and ultra-fast open search workflow. The search space of Open-pFind was 

significantly expanded, and key factors that affect the identification rate, including unexpected 

modifications, amino acid mutations, semi-/non-specific digestion and co-eluting peptides, were 

fully considered. The performance of Open-pFind was first evaluated with two metabolically 

labeled datasets. Open-pFind reported 50.5‒117.0% more peptide-spectrum matches (PSMs) 

than seven other database search engines, and more importantly, the results were more credible 

according to isotopic labeling experiments. With four other large-scale MS/MS datasets, the 

identification rate of Open-pFind was stable within a range of 70‒85% and was close to 100% 

for high-quality spectra. Finally, we re-analyzed an entire human proteome dataset consisting of 

~25 million spectra (hereafter referred to as the Kim data)
22

. More than one million peptides 

were identified, which were 86.7% more than those reported previously. A total of 12,723 genes 

were confidently identified within a 1% FDR at the protein level, and over 90% (11,536) were 

supported by at least three peptides, of which no olfactory receptors were found
23

. These results 

demonstrated that open search strategies, as made practical by Open-pFind, will most likely be 

the preferred tools for large-scale MS/MS data analyses in the future. 
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RESULTS 

The workflow of Open-pFind 

The workflow of Open-pFind consists of two steps: open search and restricted search 

(Fig. 1a). First, the MS data are preprocessed by pParse, in which multiple precursor ions 

corresponding to each tandem mass spectrum are calibrated and extracted
24

. Then, the MS/MS 

data are searched against the indexed database via the open search module (Fig. 1b). Next, a few 

key parameters, such as highly abundant modifications, enzymatic specificity and the mass 

deviation distribution of precursor ions, are automatically learned by the reranking procedure, 

which is similar to the widely used Percolator algorithm
19, 25

 but considers more features related 

to open search. Second, MS/MS data are searched again via the restricted module, which is 

similar to regularly used restricted engines, e.g., SEQUEST
4
 and MaxQuant

6, 26
. However, the 

protein database is reduced, and highly abundant modifications are specified automatically; both 

of these processes are based on the information learned in the previous step rather than expert 

experience. The results obtained from both the open and restricted searches are merged and 

reranked again. Finally, PSMs, peptides and proteins are individually filtered according to the 

specified thresholds (e.g., 1% FDR at each level).  

The default sub-workflow of open search in Open-pFind is described as follows (Fig. 1b). 

A number of k-mer sequence tags are extracted from each spectrum and then retrieved in the 

indexed protein database. After finding the proteins matched with the tags, peptide candidates are 

generated by extending the matched tags in the proteins to fit the precursor ion mass, and a 

maximum of one non-zero mass shift was allowed when confirming the N- and C-termini of 

each peptide. The spectrum is then scored with each peptide, while the mass shift between the 

precursor ion and the peptide is treated as a modification. Open-pFind localizes all modifications 

in each peptide by testing all of the valid positions according to Unimod
27

, which is different 

from MSFragger that reports only peptides and unlocalized mass shifts. Finally, a number of 

high-score peptides are retained for each spectrum. A detailed description of the workflow is 
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provided in the Online Methods. 

 

Open-pFind identified the highest number of PSMs, with half obtained from the extended 

search space 

First, we evaluated the performance of Open-pFind with the metabolically labeled dataset 

Dong-Ecoli-QE (Fig. 2a and Supplementary Table 1). Open-pFind was compared with three 

open search engines, PEAKS
28, 29

, MODa
30

 and MSFragger
12

, as well as four restricted search 

engines, Comet
31

, Byonic
32

, MS-GF+
33

 and pFind
34, 35

 (Supplementary Tables 2 and 3).  

Generally, the four open search engines reported more results than the restricted engines 

(Fig. 2b). Open-pFind identified 50.5% more PSMs, 11.3% more peptides (with modifications), 

and 6.9% more peptide sequences (regardless of modifications) than PEAKS, which ranked the 

second. A total of 54.9% of all PSMs identified via Open-pFind were obtained from the restricted 

search space, i.e., corresponding peptides were also identified or at least surveyed by restricted 

search engines (Fig. 2c). In other words, 45.1% of the total PSMs were obtained from the 

extended search space produced by semi-/non-specific digestions, unexpected modification types, 

co-eluting peptides and the combination of these factors (Supplementary Note 1). When the 

PSMs identified by Open-pFind were combined with those of another search engine, Open-pFind 

identifications accounted for over 90% of the total PSMs in nearly every case, and 38‒56% of 

PSMs were uniquely reported by Open-pFind (Fig. 2d and Supplementary Table 4). Two PSMs 

were considered identical if both the peptide sequences (not distinguishing Leu and Ile) and 

modification types were the same.  

 

Metabolically labeled datasets were very helpful when evaluating search engine precision 

Metabolically labeled datasets were designed and used to evaluate search engine 

precision in this study by using the percentage of PSMs with invalid quantitation values (Fig. 2a). 

Generally, if a spectrum is identified as an unlabeled peptide, the corresponding labeled 
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precursor ions (
15

N- or 
13

C-labeled) should be observed in MS1 scans given the experimental 

design. In other words, if the labeled precursor ions of one peptide are not observed, which 

results in an invalid quantitation ratio (referred to as the NaN ratio, which is checked using 

pQuant
36

), the corresponding PSM is more likely to be incorrect. Consequently, the precision of 

the results obtained from different search engines using metabolically labeled datasets is 

evaluated by the percentage of PSMs or peptides associated with a NaN quantitation ratio.  

The proportions of NaN-ratio PSMs (
15

N/
14

N or 
13

C/
12

C) in each part of the results shown 

in Fig. 2d were investigated. For the two blind search algorithms, MODa and MSFragger, only 

mass shifts rather than exact modification types were reported. Therefore, the exact numbers of 

N and C atoms in each peptide cannot be determined, making it impossible to locate the heavily 

labeled peptides in the MS1 spectra. As such, only the results with no modifications and those 

with common modifications (Supplementary Table 3) were used for the comparison shown in Fig. 

2e.  

Generally, among the PSMs identified by any two search engines, no more than 1% of 

them had a NaN ratio according to both metabolic labeling strategies, which was significantly 

less than the percentage of NaN-ratio PSMs in the uniquely identified results reported by one 

search engine. This finding also confirmed the widely accepted fact that PSMs identified 

consistently by different search engines are more credible (Fig. 2e). Among the PSMs uniquely 

identified by Open-pFind, the percentage of NaN-ratio PSMs were approximately 1%, only 

slightly higher than the percentage of NaN-Ratio PSMs in the overlapped results. In contrast, 

among the PSMs uniquely identified by any other search engine, the NaN-ratio PSMs exceeded 

10% in most cases. A similar but wider comparison between any two engines indicated that open 

search engines reported more precise results than the restricted engines in terms of the peptides 

in the restricted search space (Supplementary Fig. 1), a finding that was also confirmed by Kong 

et al
12

. However, if all PSMs with any types of modifications were considered, the percentages of 

NaN-ratio PSMs identified via open search engines sharply increased, especially for the two 
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blind search engines (Supplementary Fig. 2). In this context, it is worth noting that the 

Open-pFind results had the second smallest percentage of NaN-ratio PSMs, second only to pFind, 

indicating that the PSMs from the extended search space were also highly precise. Two 

additional analyses confirmed the above conclusions: one analysis utilized another metabolically 

labeled dataset, Xu-Yeast-QEHF (Supplementary Fig. 3), and the other analysis utilized the same 

dataset, Dong-Ecoli-QE, with three engines: Open-pFind, MaxQuant and SEQUEST-HT 

(Supplementary Note 2). 

The identified proteins were directly inferred from the identified peptides; each peptide 

was uniquely matched to one protein in the database. For the proteins consistently identified by 

eight engines, Open-pFind reported 12.8‒94.3% more peptides on average (Supplementary Table 

5), which is an important characteristic denoting stability and reproducibility in quantitative 

proteomics experiments. The percentage of NaN-ratio proteins was also an important indicator of 

the precision of protein identification. Similar to analysis at the PSM level, very few proteins 

with NaN ratios were found in the consistent results (Supplementary Fig. 4). Comparing the 

proteins uniquely identified by Open-pFind and those consistently identified by Open-pFind and 

another search engine, the percentages of NaN proteins are similar, especially for proteins with at 

least two supporting peptides. In contrast, among the proteins uniquely identified by any of the 

other search engines, the proportions of NaN-ratio proteins were 3‒30 times larger than those 

found in the Open-pFind results. 

 

Learning from the metabolic labeling technique 

The metabolic labeling technique is also helpful in revealing why spectra are 

misidentified via different search engines and for improving search engine precision. Generally, 

a spectrum with a NaN-ratio peptide reported by one search engine may be identified as a 

different normal-ratio peptide by another search engine. As described above, the normal-ratio 

peptide is more likely to be a correct identification. Thus, for the former search engine, this could 
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be used to optimize the scoring function. For all NaN-ratio PSMs from Open-pFind, only less 

than 10% were revived by other engines, i.e., identified as normal-ratio peptides (Supplementary 

Fig. 5). In contrast, Open-pFind revived ~40% of NaN-ratio PSMs reported by other search 

engines.  

For the open search engines, Open-pFind reported an overlapping peptide different from 

the one reported by the other engine for ~90% of the revived spectra (Supplementary Table 6): 

specifically, a peptide identified via Open-pFind appeared in that of the other engine or vice 

versa (e.g., TAEHVAK/EHVAK is a pair of overlapping peptides). In other words, these results 

from the other open search engines were partially correct, while Open-pFind confirmed the exact 

termini of the peptides and modification types, as well as the precise precursor information. For 

example, Open-pFind reported a C-terminal-specific peptide carbamyl-GAAGGIGQALALLLK 

with an N-terminal carbamylation (P1) for the spectrum shown in Supplementary Fig. 6a, while 

MSFragger reported an overlapping tryptic peptide VAVLGAAGGLGQALALLLK with a mass 

shift of –337.3114 Da (P2). However, the actual mass difference of these two peptides (P2 – P1) 

was 339.2522 Da. This result implied that the mass shift of –337.3114 Da reported by 

MSFragger did not represent a real modification because a ~2-Da mass difference existed 

between the initially exported precursor ion and the actual one confirmed by Open-pFind 

(Supplementary Fig. 6b). This finding also demonstrated that exact precursor ions were very 

important for the confirmation of modification types. 

In terms of the restricted search engines, over 90% of peptides reported by MS-GF+ and 

Comet were partially correct, which was similar to the behavior of the open search engines 

(Supplementary Table 6). However, this number was lower for Byonic and pFind. Byonic 

adopted a different protein FDR control strategy that a few low-quality PSMs from reliable 

proteins might be reported (Online Methods). An example in Supplementary Figs. 6c-f shows the 

differences between Open-pFind and the restricted search engines. For the same spectrum, 

Open-pFind reported a tryptic peptide with a deamidation, while MS-GF+ and Comet reported 
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the unmodified form of this peptide, which obviously matched fewer fragment ions. Byonic 

reported a completely different peptide, which matched few peaks in the spectrum. The isotopic 

envelopes of the unlabeled peptide reported by Open-pFind, as well as the corresponding 
15

N- 

and 
13

C-labeled forms shown in MS1, matched the theoretical values precisely. In contrast, the 

monoisotopic precursor ions of the other two identifications had larger mass deviations, which 

resulted in invalid quantitation values (Supplementary Fig. 6f). This example indicated again that 

peptides reported by Open-pFind were more accurate, and more importantly, the metabolic 

labeling technique is extremely helpful when distinguishing correct individual PSMs, which will 

facilitate the improved design of search engines. 

 

Open-pFind yielded a high and stable identification rate with different types of large-scale 

datasets 

Four large-scale, previously published datasets were used in this section: 

Mann-Human-Velos
37

, Gygi-Human-QE
5
, Mann-Mouse-QEHF

38
 and Pandey-Human-Elite

22
 

(Supplementary Table 1). For all of the datasets, Open-pFind yielded the highest identification 

rate (77% on average), while for the seven other search engines the identification rates varied 

from 50‒65% (Fig. 3a). The numbers of target and decoy peptides obtained by Open-pFind with 

lower scores were almost identical (Supplementary Fig. 7), which proved that the algorithm had 

no bias between the target and decoy databases
39

. Similar to the analysis of the Dong-Ecoli-QE 

dataset, 30‒45% of the identifications involved in the extended search space were not identified 

via restricted search engines (data not shown).  

For all four datasets, Open-pFind almost always covered over 90% of any union sets of 

PSMs identified via itself and each of the other search engines (Fig. 3b and Supplementary Table 

4). However, for any two restricted engines, the corresponding percentages varied from 60‒90%. 

Tessier et al. also confirmed this conclusion and proposed that although a few key parameters 

were identical for restricted engines, the real search spaces were still quite different, leading to 
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disagreements among search engines
40

. Therefore, a complete or consistent search space is 

essential in yielding a stable identification rate, in addition to identifying more PSMs and 

peptides. We also compared the results of Open-pFind with those reported in previous studies. 

For example, with the Gygi-Human-QE dataset, Open-pFind covered 92.2% of the results 

reported by Chick et al. and reported 32.1% more PSMs with the same FDR threshold of ~0.1% 

at the PSM level. 

Search engine precision for these four datasets was also evaluated in this study. Although 

these datasets were not metabolically labeled, and thus the quantitative values could not be used 

to evaluate search engine precision, the entrapment strategy
41

 can be applied as an alternative 

approach. The decrease in the identification rate of pFind was 2‒3 times higher than that of 

Open-pFind, suggesting that the designed scheme of Open-pFind was more stable 

(Supplementary Note 3). In addition, although the same FDR threshold was controlled, more 

correct peptides from the authentic database, rather than the entrapment strategy, were obtained 

by Open-pFind.  

 

Nearly 100% of high-quality spectra are identified with a complete search space 

We also investigated why a few spectra remained uninterpretable for Open-pFind. First, 

spectra are classified according to the lengths of their longest tags, which are treated as a feature 

related to spectral quality. For example, a 0-length tag indicates that no mass difference from any 

two peaks is equal to one amino acid residue within a given fragment ion tolerance. A spectrum 

with a longer tag meant that it was more likely to have been formed by a real peptide because 

more fragmentation information was provided. Generally, the identification rates of spectra with 

longer tags were higher for all engines (Figs. 3c-f). For all four datasets, the identification rate of 

Open-pFind was always greater than 90% and even close to 100% for spectra with tags longer 

than ten, suggesting that the search space of Open-pFind is close to complete for routine MS/MS 

data analysis. Additionally, the scoring scheme of Open-pFind effectively distinguishes correct 
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peptides from the random peptides, even in such an ultra-large search space. 

The identification rates of Byonic sharply decreased when spectra with longer tags were 

considered in the Mann-Mouse-QEHF dataset (Fig. 3e), likely because more large-mass peptides 

were present in this dataset, and their precursor ions were not correctly exported. Among all 

PSMs identified via Open-pFind in this dataset, 55.0% of their precursor ions were larger than 

1,500 Da, of which only 50.1% were correctly exported by the vendor’s software. However, in 

the other datasets, the proportion of precursor ions larger than 1,500 Da was markedly less, for 

example, only 38.8% for the Pandey-Human-Elite dataset, and 82.1% of which were extracted 

correctly by the vendor’s software. Spectra with incorrectly assigned precursor ions cannot be 

matched to correct peptides. We also tested pFind using the precursor ions extracted by vendor 

software rather than pParse, and the distribution of identification rates was similar to that of 

Byonic (Supplementary Fig. 8), which again proved that extracting correct precursor ion masses 

was very important for search engine design. 

 

The speed of Open-pFind was comparable to or even faster than that of restricted engines with 

a ~10
5
 times larger search space 

The running times of the eight search engines for all six datasets in Supplementary Table 

1 were comprehensively analyzed. Compared with the three other open search engines, 

Open-pFind was on average more than 40 times faster than MSFragger, MODa and PEAKS (Fig. 

4a and Supplementary Table 7). Restricted search engines were generally faster than the open 

search engines, which was reasonable given the much smaller search space. As shown in Fig. 4b, 

the search space of Open-pFind was five orders of magnitude larger than the space considering 

only fully specific digestion with common modifications. However, Open-pFind was only 

slightly slower than pFind and 2‒3 times as fast as the three other restricted search engines 

(Byonic, Comet and MS-GF+), owing to the efficient tag-based workflow and the reduction of 

the database after open search (Online Methods). For the Xu-Yeast-QEHF dataset, Open-pFind 
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was approximately one time faster than pFind because a six-frame-translated database was used, 

in which most proteins were irrelevant to all spectra. Therefore, removing these proteins 

according to the open search results was beneficial for speeding up the subsequent restricted 

search. 

We further benchmarked the running times of the four open search engines using one raw 

data file of 41,820 spectra from Gygi-Human-QE
5, 12

 using the smaller, reviewed UniProt
42, 43

 

human protein database (approximately one-eighth of the reviewed and unreviewed database of 

proteins) (Supplementary Table 8). Open-pFind was 14.4 and 16.0 times faster than PEAKS and 

MODa, respectively, and twice as fast as MSFragger when the search was restricted to fully 

tryptic peptides. When the search was extended to semi- and non-tryptic peptides were 

considered, the running time of Open-pFind nearly remained the same, whereas those of the 

other three search engines increased to varying degrees. We also tested Open-pFind in the open 

search mode with two unexpected modifications and in the blind search as in MODa and 

MSFragger (Online Methods); the Open-pFind search times were only 1.0‒3.4 times greater than 

those of the default workflow, and the identification rate slightly decreased because more 

irrelevant peptides were randomly matched to the spectra. Another analysis of the T. 

tengcongensis dataset
14, 44

 (Supplementary Table 9) confirmed the same conclusion: Open-pFind 

was at least ten times as fast as the other algorithms. 

 

Comprehensive analysis of the Kim data 

It took Open-pFind 3,674 minutes (~60 h) on a common PC, or 282 min (~5 h) on a 

64-core 64 GB RAM workstation, to search all of the ~25 million spectra in the Kim data
22

. The 

target-decoy database used in this study contained 305,558 of both reviewed and unreviewed 

protein sequences (111.371 MB in total). In other words, Open-pFind processed ~113 spectra per 

second, suggesting that peptide and protein identification is not a bottleneck, even with such an 

ultra-large-scale dataset using a common PC. The average identification rate was 62.5% for all 
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85 samples, and over 70% spectra were identified for the in-gel digested samples analyzed on an 

LTQ Orbitrap Velos MS (Fig. 5a). In addition, all peptides identified in the 85 samples were 

further filtered with a 1% FDR threshold at the peptide level. A total of 548,371 peptide 

sequences (1,259,215 with different modification types) were retained, which was 86.7% greater 

than what was initially reported by Kim et al. (293,700)
22

. 

The results obtained with Open-pFind demonstrated that the characteristics of MS/MS 

data vary according to different methods for sample preparation and LC-MS/MS. In terms of 

modifications, although several common modifications, e.g., carbamidomethylation, oxidation 

and Glnpyro-Glu, were always abundant in all datasets, many unexpected modifications still 

appeared in only one or two types of datasets (Fig. 5b). For example, propionamides of cysteines 

were hardly detected in the bRPLC fractionation samples but appeared in 1.6‒6.4% of all 

peptides from in-gel digested samples, which was consistent with a previous study by Sechi et 

al.
45

. On the other hand, the percentages of fully tryptic peptides were stable among the four 

types of datasets with different experimental conditions (97‒99% in Fig. 5c). In terms of 

co-eluting peptide identification, LTQ Orbitrap Elite tended to produce more mixed spectra than 

LTQ Orbitrap Velos, likely due to its higher sensitivity, allowing less-abundant peptides to be 

detected and identified via Open-pFind (Fig. 5d). The different characteristics of these datasets 

again proved that specifying an exact search space for each individual dataset based on expert 

experience is always difficult, and uniformly considering a complete search space for different 

experimental conditions is essential for today’s search engines. 

Identification results from the extended search space were also valuable for biological 

discoveries. For example, a total of 9,559 semi-tryptic peptides were identified as being located 

in the N-terminal regions of proteins (the N-terminal amino acid of each peptide located between 

the 1
st
 and the 60

th
 amino acid of the corresponding protein), of which 34.1% had complete ion 

series (at least one b or y ion was detected at each peptide linkage), and 66.4% had at most two 

peptide linkages in which both the b and y ions were missing. These semi-tryptic peptides 
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provide valuable clues for identifying signal peptides, and 694 of them were already verified in 

UniProt (Supplementary Table 10). The score distributions of these 9,559 peptides and the total 

548,371 peptides (Supplementary Fig. 9) indicated that although these semi-tryptic peptides were 

from a much larger search space (Fig. 4b), their confidence was still comparable to that of the 

total results. On the other hand, biological modifications and mutations were effectively 

discovered by Open-pFind. For example, Laminin subunit gamma-1 was identified by different 

types of peptides, all of which were supported by over ten PSMs (Fig. 5e). The N-terminal 

cleavage site of QAAMDECTDEGGRPQR was confirmed by the signal peptide recorded in 

UniProt. In addition, two amino acid mutations were discovered by Open-pFind, and one of them, 

the R1121Q, was verified previously (rs20559 in dbSNP
46

). 

Proteins were directly inferred by unique peptides that were not shared with any other 

proteins. The number of proteins supported by at least two unique peptides was 14,064, and the 

estimated FDR was 1% at the protein level, which corresponded to 12,723 genes (Fig. 6a). The 

average protein coverage was ~41.5%, and for 11,500 proteins (81.8% of 14,064) the coverage 

was greater than 10% (Supplementary Table 11). On average, 38 peptides and 26 peptide 

sequences (regardless of modifications) were identified per protein. The number of proteins was 

also consistent with the statement by Ezkurdia et al. that the accurate gene number was 

approximately 12,000
23

. In addition, these authors performed a test that counted olfactory 

receptors, which should not be detected in standard proteomics experiments, and 108 olfactory 

receptors were found in the previously reported results. In contrast, if the two-peptide rule was 

used, the number of olfactory receptors reported by Open-pFind was two, which was only 0.016% 

of the total 14,064 proteins. A manual check further revealed that each of the two olfactory 

receptors was randomly matched with two peptides, each of which was supported by only one 

PSM. No olfactory receptors were found among the 12,239 proteins (11,536 genes) that were 

identified by three or more peptides. In summary, we believe that peptides and proteins are 

comprehensively and precisely identified via Open-pFind, even when analyzing an ultra-large 
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proteome dataset.  

 

DISCUSSION 

Thousands of chemical and biological modifications, as well as unexpected digestion 

types and mixed spectra, have led to low identification rates of MS/MS data. Therefore, an open 

search strategy, in which a more complete search space is considered, has become more 

important. Open-pFind has been proposed as an effective, accurate and fast open search 

algorithm, with the potential to be the most commonly used search engine for routine shotgun 

proteomics. In addition, the tag-based index approach and the two-step workflow are extensively 

applicable for many other types of search engines, e.g., the identification of cross-linked peptides 

or glycopeptides. The open search strategy is also a quality control method to identify missing 

proteins and verify novel coding elements by easily providing competitive peptide identification 

based on the large search space
47

. 

Protein inference, a separate problem downstream of peptide identification, was not 

extensively discussed in this study. Indeed, the protein inference strategies utilized by search 

engines are quite diverse and are difficult to evaluate comprehensively; thus, in this study, we 

used the simple but efficient two-peptide rule
25

. We also compared this rule with the ‘picked’ 

protein FDR approach
48

, designed to infer proteins in large-scale proteomic datasets, using the 

Kim data, and the performance of the two strategies was similar. The number of proteins reported 

by the picked strategy was 16,133, which was slightly larger than the number that was reported 

using the two-peptide rule (14,064), but seven additional olfactory receptors were detected with 

the picked strategy.  

The metabolically labeled datasets proved to be effective when evaluating the accuracy of 

the identification results in this study. Additionally, these datasets may be further used to estimate 

the accuracy of the results, i.e., the percentage of correct PSMs or peptides, based on two simple 

assumptions (Supplementary Note 4). In the Dong-Ecoli-QE dataset, the accuracy of the 
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identified PSMs varied from 95.7‒99.2% for different engines when considering only the 

peptides in the restricted search space (Supplementary Fig. 10). For the separately identified 

results, the estimated accuracy of Open-pFind remained close to 99%, which was significantly 

higher in comparison with the other engines. Generally, if considering only peptides without any 

modifications or with only common modifications, all open search engines reported more precise 

results than those obtained with the restricted engines because the peptides from the restricted 

search space survived in a significantly larger space containing a huge number of competing 

peptide candidates. However, if all identified peptides were considered, the accuracy of the open 

search engines decreased to varying degrees. Open-pFind remained at a high global accuracy of 

98.9%, while the accuracies of the other three open search engines dropped to 93.5% for the best, 

or to 86.6% for the worst. The potential of the metabolic labeling approach must be further 

explored. We suggest that quantitation information should be considered in designing the scoring 

model to improve search engine precision, especially for open search strategies, which will be 

increasingly popular for routine MS/MS data analyses in the future.  
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ONLINE METHODS 

Constructing the tag-index. For each protein in the specified database, all sequence tags with a 

specified length k are generated. For instance, given a protein sequence MAHVAEADK whose 

length is 9, the number of all its 3-mer tags is 7 (MAH, AHV, HVA, VAE, AEA, EAD and ADK). 

The tags extracted from all proteins are sorted according to the lexicographical order and then 

stored in a datasheet. For each tag, its protein ID (from 1 to M where M denotes the number of 

proteins in the database) and start position in the protein (from 1 to L where L denotes the length 

of the protein) are actually recorded rather than the real sequence, which can be compressed into 

only one 32-bit integer. Obviously, all tags are recorded in the datasheet with equal lengths, 

which is convenient for randomly retrieving any one of them. Finally, an index table is 

constructed, so that all occurrences of any one tag can be efficiently retrieved in protein 

databases. For each k-mer tag T with k amino acids a1 a2…ak, the key in the hash table is 

calculated by Formula 1, in which the function ascii is used to get the ASCII code of a given 

character. The time complexity of finding the first valid protein matched with the given tag in the 

datasheet is O(1).  

Key(𝑇) = ∑ (ascii(𝑎𝑖) −  ascii(′𝐴′) × 26𝑘−𝑖−1𝑘
𝑖=1      (1) 

Tag-index based open search. The workflow of the open search module, shown in Fig. 1b, 

adopted a tag-index to accelerate the retrieval of associated peptides. For each spectrum, a 

number of k-mer tags are extracted and then searched against the tag-indexed protein database. 

Generally, the parameter k is chosen as five to balance the search time (mainly correlated to the 

tag frequency, i.e., the number of hits in a given database for each tag) and the storage of the 

index structure (Supplementary Table 12).  

After finding the matched positions in the database, peptide candidates are generated by 

extending each of the matched tags to a full-length peptide sequence. Three types of extension 

procedures are supported in Open-pFind, resulting in three different open search strategies. 

1) A maximum of one unexpected modification in the given modification list (e.g., all 
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modifications in Unimod
27

) is allowed for each peptide, which is the default search mode shown 

in this study. Peptides that fit at least one flanking mass of the tag are considered, and the mass 

shift on the other side is considered a potential modification if the mass appears in the given 

modification list. All modified peptides with different modification site localizations are 

generated and then scored for a given spectrum. For example, given the peptide AEHVASATK 

and phosphorylation as a potential modification, two modified peptides, AEHVApSATK and 

AEHVASApTK, are generated, in which pS and pT denote the phosphorylation sites. Notably, 

there may be no valid modified forms generated for a given peptide due to the absence of any 

proper modification sites. 

2) A maximum of two modifications in the given modification list are allowed for each 

peptide. First, the combinations of any two modifications are enumerated and stored in the 

memory. Each single modification is considered a special combination and stored together with 

the two-modification combinations. Second, all combinations are sorted in a list C according to 

their masses (the mass of one combination is computed by summing the masses of the 

modifications in it). Peptides that fit at least one flanking mass of the tag are considered, and the 

mass shift on the other side is considered to be contributed by a combination in C. Then, the 

combination is decoded, and all valid modified peptides are enumerated, which is similar though 

far more complex than the first strategy that allowed only one unexpected modification in each 

peptide.  

3) Any masses within the given range are considered, i.e., a blind search mode like that of 

MODa and MSFragger, in which no given modification lists are relied upon. Peptides that fit at 

least one flanking mass of the tag are considered, and the mass shift on the other side is 

considered a modification. Then, the modification is tested on all sites in the peptide (except 

those sites within the region matched with the tag) to generate different modified peptides in 

turn.  

Finally, the peptide with the best score is chosen as the final result of the open search for 
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each spectrum. The score function is the same as the previous versions of pFind. Generally, a few 

top peptide candidates (ten by default) are stored for each spectrum according to the settings 

determined by the users. 

Reranking of PSMs. A semi-supervised learning algorithm is used to iteratively separate target 

PSMs from random PSMs based on the linear classification software package LIBLINEAR
49

. 

Six features are extracted from each PSM to train the scoring model, including 1) the original 

score, 2) the peptide length, 3) the ratio of the number of matched ions to that of all theoretical 

fragment ions, 4) the maximum tag length in the peptide, 5) the frequency of the specified 

modifications and 6) the frequency of the digestion type (fully, semi- or non-specific). The 

procedure to compute the last two features is the same as that previously reported by Chi et al
14

.  

For each iteration, positive samples are formed by all target PSMs within the threshold of 1% 

FDR at the peptide level, and the negative samples are formed by all decoy PSMs out of the FDR 

threshold. Then, the model is trained and used to re-compute the score between one spectrum and 

each of its top peptide candidates. The candidates of each spectrum are sorted according to the 

new scores such that the top-ranked peptide may be changed in this step. Finally, new positive 

and negative samples are generated according to the FDR estimation for the new PSMs, and the 

next iteration is started. Generally, a maximum of ten iterations are needed to train a stable 

model.  

The reranking module is used twice in the entire workflow of Open-pFind: after the open 

search and after the restricted search. For the second use, the results of each spectrum from both 

open and restricted searching are merged, sorted by their original scores and then reranked 

uniformly.  

Refined search. Refined search starts after the reranking of the open search results. Generally, 

the module is designed the same as the restricted search engines, e.g., pFind, MaxQuant and 

SEQUEST. However, there are two key differences between the restricted search module of 

Open-pFind and that of other traditional engines. First, after reranking, the protein database is 
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automatically learned that only proteins supported by peptides within the specified FDR 

threshold (5% by default) are retained. The newly generated database is usually smaller than the 

original one, especially for those containing many irrelevant proteins, which will speed up the 

subsequent restricted search. In addition, given the sensitivity of the open search, nearly all target 

proteins in the experiment are considered in the restricted search. Second, variable modifications 

are determined according to the previous reranking step in which the frequency of each 

modification is computed. Generally, the top-k highly abundant modifications are selected (k is 

chosen as five by default). Relevant modifications are automatically and adaptively set using this 

strategy for different MS/MS datasets, unlike specifying modifications according to expert 

experience.  

Mixed spectra analysis. A simple strategy is used to identify mixed spectra. First, m precursor 

ions are extracted using pParse (or other tools) for each spectrum. Secondly, m tandem mass 

spectra are generated by copying the MS/MS information of the original spectra and assigning m 

different precursor ions (monoisotopic masses and charge states) to m tandem mass spectra. Then, 

these newly generated spectra are searched in the traditional way by search engines. 

However, this method may cause a serious problem. Given two spectra A and B, generated 

from the same original spectrum S, two peptides may be identified with an identical sequence but 

different modifications to fit the precursor ions of A and B. The two peptides may both match the 

spectrum well because many fragment ions are the same for the two peptides, and then match to 

the same peaks in S (although they may appear to have matched different peaks in A and B). 

However, if one peptide is considered the correct one, the other will be less credible due to the 

lack of independent evidence. The problem may be more serious for an open search procedure 

because more modifications are considered, resulting in a greater possibility that the mass gap 

between a precursor ion and the corresponding peptide will be randomly filled. In other words, 

given a mixed spectrum and several peptide candidates, the shared peaks matched with these 

peptides should be strictly limited to avoid reporting many incorrect PSMs with high scores. 
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Open-pFind improves the simple strategy described above at the beginning of this section by 

slightly modifying the reranking step. As shown in the reranking description, all spectra are 

sorted according to their scores matched with the top-ranked peptide before each iteration. For 

each PSM p, the improved strategy checks each of its siblings that were extracted from the 

original spectrum with the same scan number. If the score of a sibling PSM q is better than p and 

the number of shared peaks between these two PSMs p and q is greater than k (three by default), 

then p should be removed from the current PSM list (but it will still be considered in the next 

iteration because the scores of p and q may change). Generally, only the backbone ions are 

considered in this step, e.g., b and y ions for HCD and c and z ions for ETD. In summary, the 

improved strategy guarantees that no two sibling PSMs from the same MS2 spectrum sharing 

more than k peaks are reported by Open-pFind; thus, most fragment ions in each retained PSM 

are uniquely matched in each mixed spectrum.  

MS/MS datasets. First, two datasets were used to measure the sensitivity and accuracy of 

different engines. Dong-Ecoli-QE is derived from a sample of 
14

N- (i.e., unlabeled), 
15

N- and 

13
C-labeled E. coli cultures at a ratio of 1:1:1, and Xu-Yeast-QEHF is derived from a sample of 

unlabeled and 
15

N-labeled yeast cultures at a ratio of 1:1. Then, another four published datasets 

obtained with different types of mass spectrometers were used to evaluate the performance of the 

search engines, e.g., the MS/MS identification rate, the number of identified PSMs, peptides and 

proteins, and the consistency of the results between Open-pFind and other search engines. The 

details of these six datasets are shown in Supplementary Table 1. 

Sample preparation for Dong-Ecoli-QE. The 
15

N-labeled E. coli cells were prepared as 

described
50

 using a M9 medium made of 
14

NH4Cl. The 
13

C-labeled E. coli cells were prepared 

in a similar way, except that the M9 medium was made of 
14

NH4Cl fully labeled 
13

C glucose. 

The bacterial cultures were grown for at least 24 h (eight generations) to complete 
15

N and 
13

C 

labeling. At OD600 around 0.8, the cells were harvested by centrifugation at 1000 × g and 

washed twice with a 10 mM Tris/HCl buffer (pH = 7). The bacterial cells were re-suspended in 
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lysis buffer (4% SDS, 0.1 M Tris/HCl, pH 8.0), adjusted to OD600 of 7.5 per 100 μL, and 

disrupted by sonication for 10 min on ice. Unbroken cells were removed by centrifugation at 

16,000 × g for 15 min. The protein concentration of the supernatant was determined using the 

bicinchoninic acid (BCA) method (Pierce), and the supernatant was stored at −80 °C. 

Sample preparation for Xu-Yeast-QEHF. Saccharomyces cerevisiae SUB 592 was used for all 

experiments in this work. 
14

N and 
15

N labeling media were prepared by adding 0.1% 

(
15

NH4)2SO4 (99.14% atom percent excess, SRICI, Shanghai, China) or 0.1% (NH4)2SO4 to 

Synthetic Dextrose (SD) Medium (0.7% Difco yeast nitrogen base, 2% dextrose, supplemented 

with adenine and uracil) as described previously
51

. Seed cultures of SUB 592 were grown at 

30°C with shaking (200 rpm) in 
14

N and 
15

N SD media (5 mL). The same cells (OD600, 0.05) 

were transferred in a 50-mL flask that included 10 mL of liquid 
14

N and 
15

N labeling media when 

minimal growth cultures were grown to mid-log phase. The 
14

N and 
15

N labeling cells were 

mixed 1:1 based on OD600 measurements when growing cells reached mid-log phase. The mixed 

labeling cells (8OD) were lysed in buffer (8 M urea, 5 mM IAA, 50 mM NH4HCO3, 1× protease 

cocktail) by the vortex mixer method (vortexed vigorously for 1 min, iced for 1 min, 10 cycles). 

The unbroken debris was eliminated by centrifugation (13,300×g) at 4°C for 10 min. The 

supernatant was collected and resolved by short SDS-PAGE (10%, 0.7 cm), followed by staining 

with Coomassie Brilliant Blue. The gel lanes were excised and digested with trypsin at 37°C for 

14 h. 

Database generation for Xu-Yeast-QEHF. The target protein database used for analyzing the 

Xu-Yeast-QEHF dataset contains three parts: 1) a six-frame translation database of the 

genome, 2) an N-terminal peptides database, and 3) a junction peptides database. We 

downloaded the whole genome sequence of yeast from SGD and then used a 

stop-codon-to-stop-codon six-frame translation strategy to the nuclear and mitochondria DNA. 

A standard codon table was used to translate nuclear DNA while a mitochondria codon table 

obtained from http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi was used to 
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translate mitochondria DNA. ORFs containing less than six amino acids were removed from 

the database. We also list all the fully specific digestion peptides starting with methionine to 

build the N-terminal peptides database to ensure retrieving N-terminal peptides in a fully 

specific digestion search mode. In SGD, 284 coding genes had splice junctions and 47 coding 

genes had translational frame shifts. Junction peptides database included peptides spanning 

splice sites or translational frame shift sites meeting enzyme digestion rules . These peptides 

could guarantee the same phase position with the original annotated genes. In the end, we 

combined these three databases and common contaminants database and then reversed all the 

sequences to generate a decoy database to use the target-decoy identification strategy. 

Database Search. Open-pFind and seven other search engines, specifically MSFragger, MODa, 

PEAKS-PTM (referred to as PEAKS), Comet, MS-GF+, Byonic and pFind, were investigated in 

this study. The open search mode was adopted in MSFragger, MODa and PEAKS, while the 

restricted search mode was used for the other four engines (Supplementary Table 2). To be more 

precise, PEAKS considered hundreds of modifications in its built-in modification list, while 

MODa and MSFragger employed a blind search mode that considered any mass shifts within a 

tolerance rather than the modifications pre-stored in a list such as Unimod. Non-tryptic peptides 

were considered in the search space for all open search engines with the exception of MSFragger 

because it always crashed when creating the ion index, even when using a server with 128 GB 

RAM. Therefore, only semi-tryptic peptides were searched by MSFragger across the six datasets 

for the running time comparison. In addition, the sensitivity of MSFragger was the highest when 

only tryptic peptides were considered (Supplementary Table 8); hence the results of MSFragger 

from the database search against fully tryptic peptides were used for the performance evaluation 

across the six datasets in the Results section. The FDR was controlled, when possible, to be 1% 

at the peptide level for the engines based on the target-decoy strategy with their primary scores 

(Open-pFind, MSFragger, Comet and pFind) or based on the built-in methods (MS-GF+, MODa, 

PEAKS and Byonic). For example, Byonic first controlled proteins at 1% FDR or at a maximum 
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of 20 decoy hits and then estimated FDR at the spectrum level (generally 0-5%). All MS/MS 

data were analyzed using a standard desktop computer (8-core CPU @ 2.90 GHz and 32 GB 

RAM), in which six threads were specified for Open-pFind, MSFragger, pFind, Comet, MS-GF+ 

and Byonic (Multicore: Normal). MODa performed single-threaded searches because multiple 

threading was not supported in this version, and Open-pFind was also tested additionally with a 

single thread for a fair comparison. PEAKS used its built-in strategy (about 6–8 threads by 

observation from the task manager of the operating system). 

Data availability. All raw files are described in Supplementary Table 1. The datasets of 

Dong-Ecoli-QE and Xu-Yeast-QEHF have been deposited into ProteomeXchange with the 

accession numbers of PXD008782 and PXD008783, respectively. The other four datasets were 

from the corresponding research articles published previously. Processed data files that support 

the findings of this study are available from the corresponding author upon request. 
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FIGURES 

 

Fig. 1. Workflow of Open-pFind, including the sub-workflow of the open search module. a) The workflow of 

Open-pFind. MS data are first preprocessed by pParse, and then the MS/MS data are searched by the open search 

module. Next, the MS data are re-searched by the restricted search module against the refined search space based on 

the learned information in the reranking step. Finally, the results obtained from both the open and restricted searches 

are merged, reranked again and reported. b) The default workflow of the open search module. For each spectrum, a 

few tags are extracted and then searched against the indexed protein database. Peptide candidates are then generated 

by extending the matched tags in proteins. Finally, peptides are scored with the spectrum and ranked; the mass shift 

between the precursor ion and each peptide is treated as a modification and localized by testing all valid positions.  
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Fig. 2. Performance evaluation of the Dong-Ecoli-QE dataset. a) Metabolically labeled datasets are searched against 

the protein database, in which only the non-labeled peptides are considered. Then, the accuracy is investigated by 

checking the percentage of the NaN-ratio PSMs. b) The numbers of identified PSMs, peptides and peptide 

sequences of each search engine. c) Distribution of the results of Open-pFind in different search spaces. d) The 

consistency of the results obtained by Open-pFind and each of the other search engines. e) The percentage of 

NaN-ratio PSMs in the consistently and separately identified results from Open-pFind and each of the other search 

engines.  
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Fig. 3. Performance evaluations of the four published datasets. a) The identification rate of each engine with the four 

datasets. b) The consistency of the results obtained by Open-pFind and each of the other search engines. The two 

dotted lines denote 10% and 50% on the x-axis. c-f) Analyses of the unidentified spectra in the four datasets. The 

curves denote the identification rates of the spectra with different tag lengths, and the histograms denote the 

distribution of the number of the total spectra at each tag length. 
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Fig. 4. Comparison of the speed of each engine for various datasets. a) The normalized running times of the eight 

search engines. b) Boxplots showing the search spaces for different search modes, including a search with no 

modifications (No mod), restricted search (Common, with carbamidomethylation of C, oxidation of M, 

Glnpyro-Glu at N-termini of peptides and acetylation at N-termini of proteins), phosphorylation search (Phospho, 

with common modifications and phosphorylation of S, T, and Y) and open search (Unimod, with at most one 

modification in Unimod), together with three different types of digestion. For each mode, 1,000 experiments were 

performed, each with 1,000 randomly selected proteins from UniProt database, which were digested in silico into 

peptides.  
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Fig. 5. Overall analysis of the Kim data using Open-pFind. a) Distribution of the identification rate for each raw file. 

b) The distribution of highly abundant modifications discovered in the Kim data. Each number in one cell denotes 

the percentage of modified amino acids among all amino acids that appeared among the identified peptides. For 

example, 79.7% of cysteines were modified by carbamidomethylation in the identified peptides from an LTQ 

Orbitrap Velos MS fractionized by bRPLC. c) The proportions of fully specific peptides. d) Distribution of peptide 

numbers identified from one spectrum. For example, 7.5% of the identified spectra from an LTQ Orbitrap Velos MS 

fractionized by bRPLC contribute two peptides. e) The identified peptides in Laminin subunit gamma-1. Red 

numbers in the brackets denote how many PSMs correspond to each peptide. 
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Fig. 6. Protein and gene identification from the Kim data. a) Protein and gene numbers with different numbers of 

supporting peptides. b) The number of olfactory receptors with different numbers of supporting peptides.   
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