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Summary 

Single-cell time-lapse studies have advanced the quantitative understanding of cell-to-cell 
variability. However, as the information content of individual experiments is limited, methods 
to integrate data collected under different conditions are required. 

Here we present a multi-experiment nonlinear mixed effect modeling approach for 
mechanistic pathway models, which allows the integration of multiple single-cell perturbation 
experiments. We apply this approach to the translation of green fluorescent protein after 
transfection using a massively parallel read-out of micropatterned single-cell arrays. We 
demonstrate that the integration of data from perturbation experiments allows the robust 
reconstruction of cell-to-cell variability, i.e., parameter densities, while each individual 
experiment provides insufficient information. Indeed, we show that the integration of the 
datasets on the population level also improves the estimates for individual cells by breaking 
symmetries, although each of them is only measured in one experiment. Moreover, we 
confirmed that the suggested approach is robust with respect to batch effects across 
experimental replicates and can provide mechanistic insights into the nature of batch effects. 
We anticipate that the proposed multi-experiment nonlinear mixed effect modeling approach 
will serve as a basis for the analysis of cellular heterogeneity in single-cell dynamics. 
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Introduction 
After decades of investigation, it is well known that even isogenic cell populations show 
molecular and phenotypic differences at the single-cell level (Altschuler & Wu 2010; Elowitz 
et al. 2002). Sources of cell-to-cell variability include noisy cellular processes (Elowitz et al. 
2002), differences in cell cycle state (Buettner et al. 2015), the history of individual cells 
(Spencer et al. 2009), as well as spatio-temporal differences of the cell’s environment 
(Snijder & Pelkmans 2011). Methods such as mass cytometry (Bodenmiller et al. 2012) or 
single-cell RNA sequencing (Angerer et al. 2017) can provide highly multiplexed snapshots 
of cell-to-cell variability in thousands to millions of cells. Complementarily, time-lapse 
microscopy allows for the time-resolved measurement of cell-to-cell variability in the dynamic 
response of cells (Muzzey & van Oudenaarden 2009; Locke & Elowitz 2009). Recently, in 
order to improve the high-throughput capability of single-cell time-lapse studies, 
microstructured arrays (Muzzey & van Oudenaarden 2009) or microfluidic devices (Uhlendorf 
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et al. 2012) are used to restrict cells in their movement, enabling automated acquisition of 
single-cell fluorescence trajectories over time.  

Single-cell technologies already facilitated many novel insights, ranging from the analysis of 
population structures (Bodenmiller et al. 2012; Buettner et al. 2015) over the assessment of 
developmental trajectories (Navin et al. 2011; Haghverdi et al. 2016) to mechanistic insights 
into causal differences (Elowitz et al. 2002; Spencer & Sorger 2011; Hasenauer et al. 2014; 
Loos et al. 2017). To gain mechanistic insights, many studies use ordinary differential 
equation (ODE) models (Chen et al. 1998; Kühn et al. 2009; Klipp et al. 2005; Kitano 2002).  

In this spirit, earlier studies have analyzed time-lapse microscopy measurements of single-
cells after transfection with synthetic mRNA to assess mRNA lifetime (Leonhardt et al. 2014). 
mRNA lifetime is of fundamental interest to basic science, as it is a key parameter in many 
gene regulatory processes. Moreover, transient transfection of synthetic mRNA is relevant 
for biomedical applications, as it enables treatment of diseases via the targeted expression of 
proteins (Yamamoto et al. 2009; Kreiter et al. 2011). Hence, a good understanding and 
control of the expression dynamics of therapeutic proteins is essential for treatment design 
(Sahin et al. 2014). Yet, inference of quantitative estimates from single-cell experiments is 
model dependent and only insofar meaningful as our mechanistic understanding of many 
basic cellular processes, including transcription and translation, is sufficiently accurate. The 
model parameters can be estimated from single-cell time-lapse microscopy measurements 
using two different approaches: 

(I) The standard two-stage approach (STS) estimates single-cell parameters and population 
distribution parameters sequentially (Almquist et al. 2015; Karlsson et al. 2015). First, 
parameters for every single cell are estimated independently by fitting an ODE to the 
respective trajectory. Then, a population-wide parameter distribution is reconstructed 
according to the single-cell parameter estimates. The STS approach enjoys great popularity 
(Leonhardt et al. 2014; Kalita et al. 2011; Karlsson et al. 2015; Almquist et al. 2015), because 
it is easy to implement, as many methods and tools developed for bulk data can be applied. 
However, the STS approach fails to distinguish between cell-to-cell variability and uncertainty 
of the estimated single-cell parameters, resulting in the overestimation of cell-to-cell 
variability (Sheiner & Beal 1983). This impairs applicability of the STS approach in settings 
with high experimental noise and sparse observations (Karlsson et al. 2015). 

(II) In contrast, the non-linear mixed effect (NLME) approach (Pinheiro 1994) estimates 
single-cell parameters and population distribution parameters simultaneously. The single-cell 
parameters are considered as latent variables, which are constrained by the population 
distribution. The implementation of the NLME approach is more involved (Wang 2007; Kuhn 
& Lavielle 2005; Beal & Sheiner 1980) and it’s application computationally more intensive. 
Originally developed in pharmacology (Beal & Sheiner 1980), the NLME approach has 
recently risen in popularity for the analysis of single-cell data (Zechner et al. 2014; Karlsson 
et al. 2015; Almquist et al. 2015; Llamosi et al. 2016). It has been reported that NLME is 
more robust than STS in settings with large parameter uncertainty, as it reduces uncertainty 
(Sheiner & Beal 1983; Karlsson et al. 2015) and removes estimation bias (Almquist et al. 
2015). 

The NLME approach has several advantages over the STS approach when single-cell 
parameters have poor practical identifiable (Sheiner & Beal 1983; Karlsson et al. 2015), i.e., 
when the amount or noisiness of the data prohibits reliable parameter estimation. However, 
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structural non-identifiability (Chis et al. 2011) of single-cell parameters is problematic for the 
STS as well as for the NMLE approach. Structural non-identifiabilities, meaning that the 
reliable parameter estimation is impossible due to model structure (vector field and 
observable), of single-cell parameters may lead to structural non-identifiability of population 
distribution parameters (Lavielle & Aarons 2016) and thus prohibit the reliable estimation of 
cell-to-cell variability. For bulk data, such structural non-identifiabilities can be resolved by 
considering perturbation experiments (Flassig & Sundmacher 2012). For single-cell data, it is 
unclear how the consideration of perturbation experiments affects non-identifiability for the 
STS and NLME approach.  

Previous studies have shown that the single-cell degradation rates of mRNAs and proteins 
are structurally non-identifiable when considering time-lapse microscopy measurements for a 
single protein (Ferizi et al. 2015). This also holds for the respective population average 
parameters, as long as no further assumptions are made (Sahin et al. 2014). For this 
application, the structural non-identifiability is particularly problematic, as it impedes the 
reliable estimation of the mRNA lifetime, a key parameters of interest. 

In this study, we address this problem by extending NLME to a multi-experiment setting, 
allowing the integration of single-cell perturbation experiments, which is not possible for the 
STS approach. We apply the method to study the fluorescence trajectories of hundreds of 
individual cells after transfection with mRNA encoding for eGFP. In contrast to previous 
studies, experiments were carried out twofold using two distinct variants of eGFP that differ 
in their protein lifetime. By analyzing single-cell trajectories from both experiments in a 
consistent nonlinear mixed effect modeling approach, we demonstrate that both protein and 
mRNA degradation rates can be uniquely identified. Furthermore, we assess the use of 
extended models for translation, including enzymatic degradation as well as ribosomally 
limited translation and find evidence for ribosomal rate-limitation of the translation process. 
Moreover, we show that the developed approach enables the robust estimation of population 
parameters, despite the presence of batch effects. 

 

Results 
Single-cell time-lapse experiments reveal a large heterogeneity of 
the fluorescent reporter protein expression after mRNA 
transfection. 

To obtain high-quality data of single-cell transfection-translation dynamics, we combined 
micropatterned protein arrays (Fig. 1a) with scanning time-lapse microscopy of multiple 
positions over a duration of 30 h (Fig. 1b) using a tailored perfusion tubing system. The 
perfusion tubing system allows for mRNA transfection during the time-lapse measurement. 
The cells were incubated with mRNA lipoplexes (Lipofectamine2000TM) during the first hour 
of the measurement and washed with cell culture medium afterwards to limit the time window 
for lipoplex uptake. After a cell successfully internalizes mRNA lipoplexes, the corresponding 
mRNA molecules are translated into fluorescent proteins. This translation processes can be  
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described by biochemical rate equations (Fig. 1c) (Leonhardt et al. 2014). The use of tubing 
systems allows for the observation of the translation kinetics of single cells right after adding 
mRNA lipoplexes (Fig. 1d), which was not possible in previous studies. The protein 
expression dynamics of single cells were measured by integration over the fluorescence 
intensities of successfully confined and transfected cells (at least 500 cells per mRNA 
construct and experiment). The analysis of the trajectories revealed substantial cell-to-cell 
variability in the amplitude and timing of expression. The collected data are provided in the 
Supplementary File S1.  

 

 
Figure 1: Single-cell translation assay for highly parallel readout of reporter protein expression kinetics 
after mRNA transfection. a) Micropatterned protein arrays are used for highly parallel readout of single-cell 
kinetics on standardized protein adhesion spots, which enables the observation of thousands of cells over a long 
time period. The microscopy image shows the micropatterned area of one channel with cells expressing eGFP. b) 
Schematics of the six-channel sample holder and the scanning time-lapse acquisition mode. Stacks of images 
from individual panels are depicted on the right. c) Schematic illustration of the transfection process using mRNA 
containing lipoplexes. The mRNA, which is released into the cytosol, is translated into a fluorescent reporter 
protein. The translation dynamics are modeled by biochemical rate equations. d) Single-cell eGFP expression is 
measured by integration over the fluorescence intensity. The zoom-in shows one eGFP-expressing cell confined 
on a fibronectin square (dashed square). The recording of protein expression begins by adding the mRNA 
lipoplexes, which are incubated for 1h. e) A subset of the single-cell trajectories of eGFP expressing cells shows 
the heterogeneity within the population. The thick black trajectory corresponds to the mean protein expression 
dynamic.  
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Single-Experiment Single-Cell Measurements are Insufficient for 
Estimation of Protein Translation Parameters  

For an in-depth analysis of the collected single-cell trajectories, we employed mathematical 
modeling. The process model we used is based on the established two-stage model of gene 
expression (Chen et al. 1998) and describes the concentration of mRNA and GFP molecules 
over time: 

𝑑[𝑚𝑅𝑁𝐴]
𝑑𝑡

= −𝛿 𝑚𝑅𝑁𝐴 ,     [𝑚𝑅𝑁𝐴](0)  = 0, lim
!→!!,!!!!

[𝑚𝑅𝑁𝐴](𝑡) = [𝑚𝑅𝑁𝐴](𝑡) +𝑚! 

![!"#]
!"

= 𝑘 𝑚𝑅𝑁𝐴 − 𝛾 𝐺𝐹𝑃 ,    [𝐺𝐹𝑃](0)  =  0,   

where 𝑘 is the translation rate per mRNA, 𝑚! is the amount of transfected mRNA entering 
the cell at time point 𝑡!, 𝛿 is the mRNA degradation rate and 𝛾 is the protein degradation rate. 
The measured fluorescence 𝑦 is assumed as the sum of a signal proportional to the amount 
of eGFP (with scaling parameter 𝑠𝑐𝑎𝑙𝑒) plus background fluorescence (𝑜𝑓𝑓𝑠𝑒𝑡). To facilitate 
the use of an additive error model, we consider the logarithm of the fluorescence intensity  

𝑦 = log(𝑠𝑐𝑎𝑙𝑒[𝐺𝐹𝑃] + 𝑜𝑓𝑓𝑠𝑒𝑡). 

Not all of these parameters are structurally identifiable. Therefore, we reduced the model to a 
set of parameters 𝜃 that consists of products of the original parameters (see Supplementary 
Information, Section Mathematical Models For GFP Translation).  

Following the literature (Almquist et al. 2015; Karlsson et al. 2015), we estimated all 
parameters using the STS approach (Fig. 2a). The parameters of individual cells were 
inferred from measured single-cell trajectories using a maximum likelihood method (stage 1) 
and then the distribution of parameters across the cell population was assessed (stage 2). 
The single-cell trajectories indicate pronounced cell-to-cell variability (Fig. 2b), which is 
reasonably well captured in the individual single-cell model fits (Fig. 2c). This pronounced 
cell-to-cell variability is in agreement with previous studies suggesting stochasticity of mRNA 
uptake (Ligon et al. 2014) and limited enzyme abundances as well as inhomogeneous spatial 
distribution within cells, e.g. for ribosomes (Liu et al. 2016). 

The parameter distributions of the degradation rates, 𝛿 and 𝛾, span two orders of magnitude 
and indicate multiple modes (Fig. 2d). At first glance, this suggests a previously unidentified 
subpopulation structure. Yet, the careful examination of the model structure (see 
Supplementary Information, Section Uncertainty Analysis of Single-Cell Parameters) 
revealed symmetry in the two degradation rates, 𝛿 and 𝛾. We found that this symmetry, 
instead of multiple subpopulations, gives rise to the particular shapes of the estimated 
parameter distributions. This symmetry in the parameter estimates corresponds to a global 
structural non-identifiability (Chis et al. 2011).  

Using structural identifiability analysis, we found that the symmetry could be resolved by (i) 
simultaneously measuring single-cell mRNA and protein levels or by (ii) measuring single-cell 
protein levels in cells sequentially transfected with different mRNA constructs. Both 
approaches are conceptually feasible (see (Chis et al. 2011; Darmanis et al. 2016; Frei et al. 
2016) for (i)) but non-trivial. In general, the unique identification of relevant parameters from  
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a single experiment is often challenging or impossible with the available experimental 
techniques. For bulk experiments, structural non-identifiabilities can sometimes be resolved 
by considering additional perturbation experiments (Raue, Kreutz, et al. 2013). This is 
possible as parameters can be assumed to be conserved quantities, which enables the 
recasting of perturbation experiments as additional observables in the model (Ligon et al. 
2017). In contrast, it is non-trivial to consider additional perturbation experiments in the STS 
approach. For the STS approach, all single-cell parameters, and, hence, the parameter 
distributions for all experiments are assumed to be independent. Thus, no conserved 
quantities exist and information from multiple perturbation experiments cannot be exploited 
efficiently.  

Multi-Experiment NLME-Modeling Breaks Parameter Symmetry 
To resolve the structural non-identifiability, we employed the NLME approach to integrate 
multiple perturbation experiments. In contrast to the STS approach, the NLME allows for 
conserved quantities between perturbation experiments (Fig. 3a). For the NLME model, we 
assume that the parameters 𝜑! of the ith single cell consist of a fixed effect 𝛽 and a random 
effect 𝑏! ∼ 𝑁(0,𝐷): 𝜑! = exp(𝛽 + 𝑏!). The population parameters 𝛽 and 𝐷 are the mean and 
the covariance of the logarithm of the single-cell parameters. This corresponds to a 
lognormal distribution assumption, which ensures positivity of single-cell parameters. 

The population parameters 𝛽 and 𝐷 are conserved between experimental conditions, even if 
different individual cells are observed. Accordingly, single-cell data collected for different 
experiments can be integrated on the level of the cell population using 𝛽 and 𝐷. In the NLME 
approach the population parameters 𝛽 and 𝐷 as well as the single-cell parameters 𝜑! are 
estimated simultaneously in a hierarchical optimization problem (see Supplementary 
Information, Section NLME Approach). 

To resolve the non-identifiability in the translation model, we recorded an additional dataset 

 

 
Figure 2 Parameter estimation results for the STS approach a) Schematic illustration of the Standard Two-
Stage (STS) approach. b) Experimentally recorded single-cell eGFP trajectories. c) Exemplary fits for 10 single-
cell trajectories. d) Parameter distributions computed according to the STS approach using a kernel density 
estimate. The symmetry in 𝛿 and 𝛾 is illustrated by showing the respective kernel density estimate if the estimated 
values are swapped in lighter color. 
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in which cells were transfected with destabilized eGFP (d2eGFP). The fluorescence intensity 
was quantified for single cells for a duration of 30 hours after transfection. For cells 
transfected with eGFP the recorded signal reached a peak at around 9h and remained stable 
for the rest of the experiment (Fig. 3b). For cells transfected with d2eGFP the signal peaked 
around 10h and declined subsequently. For both datasets a pronounced variability of the 
recorded trajectories is evident. 

We used both datasets, eGFP and d2deGFP, to estimate parameters using the STS and the 
NLME approach. For the NLME we assume two distinct parameter distributions for the 
protein degradation rates (𝛾!"#$ for eGFP and 𝛾!!!"#$ for d2eGFP) (see Supplementary 
Information, Section Multi-Experiment Extension of the NLME Approach). For all other 
parameters, including the mRNA degradation rate 𝛿, the distributions are assumed to be 
identical across experiments. For the STS approach, we also assume that the protein 
degradation rates differ and calculate the corresponding parameter distributions for each 
experiment. However, it is not possible to enforce that the distributions of the remaining 
parameters are identical between the experiments.  

The analysis of the optimization results revealed that the STS and the NLME approach yield 
almost identical fits to the single-cell data (Fig. 3c). Moreover, for the NLME approach, the 
distributions of the estimated single-cell parameters 𝜑! agreed with the estimated distribution 
parameters 𝛽 and 𝐷 (Fig. S2). In summary, this suggests that the distribution assumptions 
for the NLME were appropriate. 

For most of the parameters (𝑘𝑚!𝑠𝑐𝑎𝑙𝑒, 𝑡!, 𝑜𝑓𝑓𝑠𝑒𝑡 and 𝛾!!!"#$), both approaches yield similar 
population distributions (Fig. 3d). This may be surprising for 𝛾!!!"#$, as the same symmetry 
effects as for 𝛾!"#$ could be expected. However, the estimated degradation rates for mRNA 
and protein are so close to each other that symmetry has a negligible effect. For the mRNA 
degradation rate 𝛿, the STS approach yields different distributions depending on the 
considered dataset, while the NLME, by construction, yields a single consistent distribution. 
For 𝛾!"#$, the NLME yields a narrower distribution than the STS approach. This narrowing of 
the distribution can be attributed to the breaking of the parameter symmetry through the 
consideration of an additional dataset. (see Supplementary Information, Section Uncertainty 
Analysis of Single-Cell Parameters). This demonstrates that only the NLME approach is able 
to convey meaning to single-cell perturbation experiments. Indeed, by breaking the 
symmetry, the NLME approach improves not only the estimates of population parameters 
such as mean and variance, but also estimates of single-cell parameters (Fig. S1). 

Model Selection indicates Rate Limitation through Ribosome 
Abundance 
To assess the appropriateness of the fitting results achieved using the STS and NLME 
approaches for modeling, we computed the distribution of the residuals at different time 
points. The result revealed a clear temporal trend (Fig. 3b), indicating that the considered 
mechanistic model was insufficient to describe the data. For this reason, we analysed three 
additional models (Fig. 4a (ii)-(iv)) that take the effect of ribosomes in protein translation and 
enzymes on mRNA degradation into account. These extensions are supported by  
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experimental evidence collected in other studies (Parker & Song 2004). Yet, the relevance of 
these processes for single-cell transfection dynamics has not been studied in detail.  

The effect of ribosomes is modeled by introducing the ribosomal species with initial free 
concentration 𝑅!, which binds to the mRNA at rate 𝑘! (Fig. 4a (ii)). The translation happens 
at rate 𝑘! and produces a free mRNA molecule and a free ribosome. The effect of enzymatic 
degradation is modeled by introducing an enzymatic species with initial free concentration. 
The degradation reaction of the mRNA is replaced by a binding reaction to the enzyme with 
rate 𝛿! (Fig. 4a (iii)). The enzyme degrades the bound mRNA molecule with rate 𝛿!. In the 
standard model, these reactions are approximated by first order kinetics, which is reasonable 
under the assumption that the abundance of ribosomes and enzymes are not rate limiting. In 
total we considered four different models (Fig. 4a): (i) the standard model with two 
extensions that feature (ii) ribosomal binding to mRNA before translation as well as (iii) 
enzymatic degradation of mRNA and (iv) the combination of both extensions.  

We inferred the parameters of models (i) - (iv) using the multi-experiment NLME approach. 
The corresponding optimization problem was solved using multi-start local, gradient-based 
search, which provided reproducible estimates (Fig. S3). The comparison of estimated 
parameters revealed striking differences (Fig. 4b), in particular for the degradation rates 𝛿, 
𝛾!"#$ and 𝛾!!!"#$. This highlights the need for appropriate models when estimating these 
kinetic parameters. 

 
Figure 3 Comparison of parameter estimation results for the NLME and STS approaches. Coloring indicates 
employed approach (STS, NLME) and dataset (eGFP, d2EGFP). a) Schematic illustration of the NLME approach. 
b) Experimentally recorded single-cell eGFP and d2eGFP trajectories (top) and population statistics of residuals 
for the investigated approaches (bottom). c) Exemplary fits for 10 representative single-cell trajectories (top) and 
corresponding residuals (bottom). d) Comparison of parameter distributions computed using the STS and the 
NLME approach. 
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To select among candidate models, we considered the model selection criteria Akaike 
Information Criterion (AIC) (Akaike 1998) and Bayesian Information Criterion (BIC) (Schwarz 
1978). AIC and BIC favored the two models with ribosomal translation (Fig. 4c), model (ii) 
and (iv). The best AIC and BIC values were achieved by model (iv) — the most complex 
model —, accounting for ribosomal translation and enzymatic degradation. Closer inspection 
revealed that the AIC and BIC values are dominated by the value of the log-likelihood 
function. The contribution of the complexity penalization is minor. 

To confirm these findings, we evaluated the time-dependent residual distribution (Fig. 4d). 
This revealed that the magnitude of the residuals is substantially smaller for models with 
ribosomal translation (ii,iv) compared to models which do not account for this mechanism 
(i,iii). This suggests that the approximation of the ribosomal translation process with first 
order kinetics is not appropriate and that the abundance of free ribosomes is rate-limiting. In 
contrast, the difference in the residual profiles for model (ii) and (iv) is small, suggesting that 
enzymatic degradation is not essential to describe the data. For this reason, we perform all 
subsequent analyses with model (ii). 

 
Fig. 4 Comparison of parameter estimation results for four model candidates. Coloring corresponds to the 
model. a) Systems Biology Graphical Notation (SBGN) representation of the four model candidates with 
parameters plotted next to the respective reactions. The SBGN representation was created using the Newt editor 
(Sari et al. 2015). b) Comparison of parameter distributions across all considered models according to the NLME 
approach. Distributions are only shown for those models that include the respective parameter, as indicated by 
models numbers in each subplot. c) Comparison of log-likelihood values for MLE estimate for the four different 
models. d) Comparison of residuals for the four model candidates. Top: eGFP, bottom: d2eGFP. Shaded areas 
correspond to +/- one standard deviation across single-cells. 
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Mechanistic Model Identifies and Explains Batch Effects 
The experimental setup used in this study allowed for the investigation of multiple 
perturbation conditions in a single experimental batch. This is not always possible and each 
experimental condition often has to be investigated in an individual batch, which makes it 
difficult to distinguish perturbation specific effects from batch effects. Moreover, studies 
considering single-cell data sometimes pool batches to increase the statistical power 
(Zechner et al. 2014), which makes it difficult to distinguish single-cell heterogeneity from 
batch effects. Hence, robustness to batch effects is required for the meaningful integration of 
multiple (pooled) perturbation experiments. 

To assess the robustness and reproducibility of our results, we recorded two additional 
experimental replicates, i.e., two additional batches. All replicates provide single-cell 
trajectories for >200 cells per experimental condition over a duration of ~30 hours. For each 
experimental replicate, the single-cell trajectories were split into 3 subsets of same size, 
resulting in a total of 9 datasets (Fig. 5a). Even for our highly quantitative experimental setup, 
we found differences between replicates, which are larger than the sampling error (Figure 
5b). 

 
Fig. 5 Uncertainty analysis for parameter distributions for model with ribosomal translation. Coloring 
according to replicate. a) Illustration of replicates and threefold split in data subsets b) Comparison of variability of 
mean and coefficient of variation within and across replicates. Shaded areas correspond to +/- one standard 
deviation within replicates. c) Comparison of log-likelihood within and across replicates. Error bars correspond to 
+/- one standard deviation within replicates. d) Analysis of uncertainty of parameter distributions within and across 
replicates. Shaded areas correspond to +/- one standard deviation within replicates. e) Estimated correction 
factors for m0 according to the respective estimated parameter distributions. Coloring according to the parameter 
distribution used to compute the correction factor. 
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To assess the effect of these batch effects on parameter estimates, we performed parameter 
estimation using the NLME approach for all 9 subsets individually. For all replicates, we 
observed similar average log-likelihood values, suggesting that the fit to all three datasets 
was of a similar quality (Fig. 5c). In contrast, we observed a much higher variability of log-
likelihood values across the different subsets compared to individual replicates. As the log-
likelihood is computed as a sum over all considered cells, the standard deviation can be 
rescaled to other settings by multiplying with the cell number ratio. This allowed us to 
compute the standard deviation of the log-likelihood values for the full experiment, which was 
considered for the analysis in Fig. 4c and accordingly test whether the observed difference in 
log-likelihood values for individual models is statistically significant. We found that the 
difference in log-likelihood value between model (i) and (ii) is statistically significant 
(p=0.018), while the differences between model (ii) and (iii) (p=0.084) and between model (ii) 
and (iv) (p=0.317) are not statistically significant. 

The estimated parameter distributions were largely consistent within as well as across 
replicates (Fig. 5d). The only parameters for which we found apparent differences were 
𝑘!𝑚!𝑠𝑐𝑎𝑙𝑒,𝑘!𝑚! and 𝑅!/𝑚! (due to the width of the densities for 𝑘!𝑚!, the differences in 
𝑘!𝑚! are hard to spot by eye). For these parameters, the population means differed 
substantially across replicates. All three parameter combinations contain the parameter 𝑚!, 
which describes the average concentration of mRNA transfected into the cells. However, 
since transfection efficiency is sensitive to cell culture conditions and the exact timing in the 
transfection preparation, it is likely that the experiment–to-experiment variability of the 
parameter 𝑚! exceeds the intrinsic width of the parameter distributions of a single 
experiment. We found that the computed correction factors for 𝑚! are consistent for all 
parameters and replicates (Fig. 5e). This suggests that differences in the average number of 
mRNA molecules released into the cytoplasm can indeed explain the observed batch effects, 
and shows that the NLME approach allows for the identification and handling of batch 
effects. 

Discussion 
Single-cell time-lapse experiments are essential for the quantification and unraveling of the 
dynamics of cellular processes at the single-cell level. The NLME approach provides a 
powerful statistical tool to analyze single-cell fluorescence trajectories (Zechner et al. 2014; 
Karlsson et al. 2015; Almquist et al. 2015; Llamosi et al. 2016). In this study we introduced 
the multi-experiment NLME approach and demonstrated how it can be used to integrate 
single-cell measurements from multiple perturbation experiments. In particular, we studied 
eGFP expression after mRNA transfection using two distinct eGFP variants with different 
protein lifetime. The integration of these two datasets into a multi-experiment non-linear 
mixed effect modeling allowed for the robust parameter estimation. In particular, the reliable 
estimation of the distribution of mRNA lifetime, the key parameter of interest, is now possible 
for the standard model. Interestingly, the integration of data on the population level also 
improves the estimates of single-cell parameters by eliminating the structural non-
identifiability (Fig. S1). The multi-experiment integration is an important advancement. 
Generally, experiments are measured using the same readouts under different experimental 
conditions, which essentially alters the entire set of parameters and does not change the 
quality of the parameter estimation.  

The parameter estimation was performed using a gradient-based approach, which yields 
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consistent results within as well as across replicate experiments, i.e., individual optimization 
runs consistently converged to similar likelihood values. Still, as observed in other studies 
(Kreutz 2016), we found that the convergence frequency of the local optimizers to the global 
optimum decreases as the model complexity increases (see Supplementary Information, 
Section Reproducibility of Optimization Results for the NLME Approach, Fig. S3). Moreover, 
although the current implementation of the approach scales linearly with respect to the 
number of considered single cells, application to higher throughput experiments may be 
problematic due to the already high computational cost for hundreds of cells.  

The single-cell resolution allowed us to identify a pronounced temporal structure in the 
residuals of the established standard model of gene expression. This assessment revealed a 
substantial limitation of the established model and can directly be employed in other studies. 
Our model selection revealed improved agreement with a model that includes ribosomal rate-
limitation of translation. Still, the residuals of the proposed model show a temporal structure 
and a higher magnitude for early time points (Fig. 4d). The experimental data show smoother 
onset dynamics than the model simulations (Fig. 4d, column 2), which could be explained by 
including GFP maturation or a more complex transfection process. The time-distributed 
delivery of multiple individual lipoplexes or a maturation phase of the protein would both be 
possible explanations for the smoother onset dynamics.  

We find that for some of the parameters the population variability is estimated to be 
surprisingly large (e.g. 𝑘!𝑚! in Fig. 5). This may be due to a combination of large variabilities 
in 𝑘!and 𝑚!. Alternatively, the description of the transfection or the translation process 
process might still be too simple, and that the variability accumating along multi-step 
processes is compensated by a large variability of few parameters (Snijder & Pelkmans 
2011). As in similar studies, the results depend on the underlying mechanistic and statistical 
model. A refinement might improve the estimation accuracy further. Here, we see our results 
corroborated by the generally good agreement between literature values and the population 
mean parameter estimated with the NLME approach (Tab. S2).  

All our findings were reproducible across independent experimental replicates. However, we 
found that batch effects arise even in sophisticated pipelines. In single-cell studies, these 
batch effects are often not handled adequately or hidden by pooling cells. Here, we 
demonstrated that the NLME approach can identify sources of batch effects, a crucial step to 
improve the experimental processes.  

In summary, the NLME approach provides a powerful tool for the analysis of single-cell data 
with many possible extensions (Almquist et al. 2015; Karlsson et al. 2015; Kuhn & Lavielle 
2005). We have demonstrated that the usefulness of the NLME approach is not limited to 
settings with sparse and noisy data, but also extends to settings where multiple experiments 
are considered. We anticipate that this unique feature of the NLME approach will help 
unraveling more mechanistic details about basic processes such as gene expression, but 
also enable careful design of targeted treatment strategies with mRNA-based therapeutic 
agents. Furthermore, we advocate the use of multiple datasets and their integration using the 
NLME approach to unravel underlying mechanisms and potential sources of batch effects.  
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SUPPLEMENTARY INFORMATION 

Experimental Methods 
Materials 
RPMI 1640, Leibovitz’s L15 Medium, and Trypsin-EDTA were purchased from c.c.pro GmbH, 
Germany. FBS, HEPES solution, Sodium pyruvate, OptiMEM, and LipofectamineTM 2000 
were purchased from Invitrogen, Germany. Sterile PBS was prepared in-house. Six-channel 
slides (sticky µ-Slide VI0.4) and uncoated coverslips were purchased from ibidi, Germany. 
PLL(20kDa)-g[3.5]-PEG(2kDa) was purchased from SuSoS AG, Switzerland. Fibronectin 
was purchased from Yo Proteins, Sweden. For fluid handling on the microscope the 
selfmade tubing system was built of PTFE Microtubing with an inner diameter of 0.3 mm 
(Fisher Scientific, Germany), needlefree swabable valves (MEDNET, Germany), female luer 
lugs (MEDNET, Germany), and in-house made male luer teflon plugs. 

Plasmid vectors and mRNA production 
Open reading frame of Enhanced Green Fluorescent Protein (eGFP) as well as from 
Destabilized Enhanced Green Fluorescent Protein (d2eGFP) was excised from peGFP-N1 
and pd2EGFP-N1 respectively (Clontech) and cloned into the backbone pVAX1-A120 which 
has been described previously (Kormann et al. 2011) to generate pVAXA120-eGFP as well 
as pVAXA120-d2EGFP. 

The resulting plasmids were further linearized downstream of the poly(A) tail by NotI 
digestion and purified by chloroform extraction and ethanol precipitation. Purified linear 
plasmids were used as template for mRNA production via in vitro transcription (IVT) using 
RiboMax Large Scale RNA production System-T7 (Promega, Germany). Along with the 
addition of Anti-Reverse Cap Analog (ARCA) into to the IVT reaction mix to generate 5′ 
capped mRNA, chemically modified nucleotides, namely methyl-CTP and thio-UTP (Jena 
Bioscience, Germany), were added into reaction for the production of chemically modified 
mRNAs (cmRNAs) as described by Ferizi et al (Ferizi et al. 2015). The final RNA pellet was 
resuspended in RNAse free water and stored at -80°C. 

Cell Culture 
The human hepatoma epithelial cell line HuH7 (I.A.Z. Munich, Germany) was cultured in 
RPMI 1640 medium, supplemented with 10% FCS, 5mM HEPES and 5mM Sodium 
pyruvate. The cell line was cultured in a humidified atmosphere at 37°C and 5% CO2 level. 

Surface patterning and array preparation 
The single cell arrays are produced using microscale plasma-initiated protein patterning 
(µPIPP) on a polymer substrate as described in previous work (Ferizi et al. 2015; Segerer et 
al. 2016). In this study we used uncoated coverslips as substrate for the micropatterning 
which were glued to adhesive six-channel slides. Each bottom of the six channels is 
microstructured with the same pattern made of 30 µm x 30 µm adhesion squares, which are 
coated with Fibronectin, and a distance of 60 µm between the squares. The interspace 
between the Fibronectin squares is passivated with PLL(20kDa)-g[3.5]-PEG(2kDa). 

HuH7 cells were seeded at a density of 10,000 cells per channel. The slide was stored in the 
incubator for four hours to enable cellular self-organization and adhesion on the Fibronectin 
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squares (Röttgermann et al. 2014). Afterwards, two tubing systems each linking three of the 
six channels are connected with the slide enabling perfusion during the time-lapse 
measurement. The cell culture medium in the channels is exchanged to L15 medium 
containing 10% FBS by a syringe which is plugged in each of the swabable valves. The 
tubing systems were reused for all experiments after rinsing them with 70 % EtOH followed 
by distilled water and autoclaving them.  

Time lapse microscopy 
The time-lapse imaging was done on a motorized inverted microscope (Nikon, Eclipse Ti-E) 
equipped with an objective lens (CFI PlanFluor DL-10x, Phase 1, N.A. 0.30; Nikon). A 
heating chamber (ibidi GmbH, Germany) was used for controlling the sample temperature to 
37 °C (± 2 °C) during the measurement. For image acquisition we used a cooled CCD 
camera (CLARA-E, Andor), a LED light source (SOLA SE II, lumencor), and a filter cube with 
the filter set 41 024 (CHROMA Technology Corp., Bp450-490, FT510, LP 510-565).  

The six-channel slide connected with the tubing systems is put in the heating chamber and 
all tubes are fixed on the microscope stage for the time lapse measurement. The scanning 
macro containing information such as the exposure time as well as the position list is defined 
prior to the time-lapse measurement using NIS-Elements Advanced Research software 
(Nikon). The image acquisition was started right after adding the lipoplex solution to the cells. 
Fluorescent images were recorded every 10 min over a duration of 30 h. 

In vitro Transfection on the microscope 
The cells were transfected with LipofectamineTM 2000 complexes containing one of the 
described mRNA constructs. Both mRNA constructs were treated with LipofectamineTM 2000 
using the following protocol: The lipoplexes are made of a ratio of 2.5 µl LipofectamineTM 
2000 per 1µg mRNA. mRNA and LipofectamineTM 2000 were diluted separately in OptiMEM 
in a final volume of 250 µl each and incubated for 5 min at room temperature. The mRNA 
solution and the LipofectamineTM 2000 were mixed and further incubated for 20 min at room 
temperature for lipoplex formation. The final lipoplex solutions have a total volume of 500 µl 
with a mRNA concentration of 0.5 ng/µl. 

During the lipoplex formation the cells were washed with 37 °C warmed-up PBS. After the 
incubation each of the tubing systems were rinsed with 500 µl of one of the mRNA lipoplex 
solutions. The time point when the lipoplex solution was added to the cells is defined as the 
beginning of the experiment. After 1 h of lipoplex incubation the cells were washed with 37 
°C warmed-up L15 medium supplemented with 10% FBS and the cells were not treated 
further for the remaining measurement. 

Mathematical Methods 
Data Acquisition and Quantitative Image Analysis 
The obtained raw image stacks of the time-lapse experiments were processed using in-
house written plugins in ImageJ for background correction and readout of the single-cell 
trajectories (Ferizi et al. 2015). First, the image stacks were background corrected based on 
a previously published algorithm (Schwarzfischer et al. 2011). Afterwards, the fluorescence 
trajectories were generated by calculating the mean intensity over time for every cell on the 
micropattern, which expressed the fluorescent protein. To read out the fluorescence 
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trajectories, a grid corresponding to the micropattern is aligned to every image stack and only 
squares occupied by a cell are manually selected to calculate the mean intensity of the 
square for every frame of the image stack.  
Analysis of processed data suggested a constant offset and multiplicative measurement 
noise in the recorded fluorescence trajectories. Therefore, we log-transformed the data, 
which yields additive noise for which standard algorithms can be used. The log-
transformation is also applied to observable map in the models, which will be described in 
the following section. The model also includes a scaling and offset parameter, which is 
estimated along with the other model parameters. 

Mathematical Models for GFP Translation 
In the following we provide model equations for all four considered models of GFP 
transfection. For all models we initially derived a basic form of the model and then identified 
structurally non-identifiable parameters using the MATLAB toolbox GenSSI (Ligon et al. 
2017). Subsequently, we applied state transformation and conservation laws to eliminate 
structural non-identifiabilities and unnecessary state equations. The model simulations were 
all carried out using the AMICI toolbox (Fröhlich, Kaltenbacher, et al. 2017; Fröhlich, Theis, 
et al. 2017). We provide AMICI and SBML implementations of the model in Supplementary 
File S2. The ODEs for model (i) - (iv) are provided in Table S1. 

The models consider up to four state variables: mRNA abundance (𝑚), protein abundance 
(𝑝), ribosome abundance (𝑟), enzyme abundance (𝑒), ribosome-mRNA complex abundance 
(𝑟𝑚) and enzyme-mRNA complex abundance (𝑒𝑚). All models include the bolus injection 
which increases the mRNA level at time 𝑡! from 0 to 𝑚!,  

 𝑙𝑖𝑚
!→!!,!!!!

𝑚′(𝑡) = 𝑚′(𝑡) +𝑚!. 

In the transformed models, we consider the normalized mRNA abundance, 𝑚 = 𝑚′/𝑚!, 
yielding for the bolus injection 

 𝑙𝑖𝑚
!→!!,!!!!

𝑚(𝑡) = 𝑚(𝑡) + 1. 

The bolus injection is not explicitly described in Table S1. Instead, we write 𝑚′(𝑡!)  =  𝑚! and 
𝑚′(𝑡!)  =  1. The mRNA abundances are 0 up to time 𝑡!. 
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Table S1 Mathematical Formulation and Transformation of Models (i) - (iv). Molecule abundances are 
abbreviated for mRNA (m), protein (p), ribosome (r), enzyme (e), ribosome-mRNA complex (rm) and enzyme-
mRNA complex (em). 
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Uncertainty Analysis of Single-Cell Parameters 
To assess the effect of the population constraint on single-cell parameter estimates we 
analyzed the respective uncertainty for the STS and the NLME approach using the profile 
likelihood approach (Raue, Schilling, et al. 2013). The analysis revealed that the uncertainty 
of parameters 𝑘𝑚!𝑠𝑐𝑎𝑙𝑒, 𝑡! and 𝑜𝑓𝑓𝑠𝑒𝑡 is negligible compared to the population variability 
(Fig. S1a). Moreover, there are only small differences in the location of the mode and the 
width of the profiles between the two approaches, which suggests that the imposition of the 
population constraint in the NLME approach has negligible effect on the estimated values for 
these parameters. For 𝛿 and 𝛾!"#$ the profiles for the STS approach are bimodal, which can 
be expected due to the parameter symmetry. For the single-experiment (eGFP dataset) 
NLME approach, the separation of modes increased compared to the STS approach, but 
parameter symmetry persisted. For the multi-experiment NLME approach, the profiles 
become unimodal, which indicates that the symmetry has indeed been broken. 

A careful inspection of profiles revealed that a large number of profiles of 𝛿 and 𝛾!"#$ are 
unimodal instead of bimodal. This effect can be explained by the superposition of uncertainty 
of the two modes that would be expected according to parameter symmetry. To demonstrate 
this effect we approximated the profile shown in Fig S1a as sum of two normal densities (Fig. 
S1b). For the investigated case, a change in the mean of the normal densities, as small as 
1% of the parameter value, led to the emergence of a single mode in the middle between the 
two previous modes. As 𝛿 and 𝛾!"#$ are symmetric, a unimodal profile implies that both 
parameters are estimated to the same value. Consequently, the STS approach fails to 
resolve sufficiently small differences between 𝛿 and 𝛾!"#$ and instead estimates both 
parameters to be the same (Fig. S1c). In this study, this leads to a trimodal shape of the 
parameter population density (Fig. 1d), where two of the modes are explained by the 
symmetry of parameters for which the difference was sufficiently big, while the the third mode 
is explained by the remaining parameter for which the difference could not be resolved. 
Overall, this phenomenon introduces a bias in the estimates of the single-cell parameters as 
well as the population level distributions. 

For the NLME approach, we do not directly observe this effect, as all profiles are unimodal. 
However, we found that some of the single-cell profiles are slightly skewed. This might be the 
reason for the slight skewness in the estimated density of single-cell parameters (Fig S1d). 
Yet, as the NLME approach assumes a normal density, this skewness is not present in the 
estimated population variability. 
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Figure S1 Analysis of single-cell parameters for the STS and the NLME approach for the eGFP dataset for 
a single cell. a) Profile-Likelihood ratios of single-cell parameters for the STS approach (𝜃!, green), the single-
experiment NLME approach (𝜑!, purple) and for the multi-experiment NLME approach (𝜑!, red). For the NLME 
approach profiles, the estimated population parameters 𝛽 and 𝐷 were fixed during profile calculation. For the 
single-experiment NLME approach profiles from local minima in the parameters 𝛽 and 𝐷 were combined. Color 
indicates the employed approach. b) Sketch explaining the emergence of unimodal and bimodal profile shapes. 
The dashed black line is the superposition of the two normal densities in grey. The computed profile-likelihood is 
shown as green line. c) Comparison of estimated single-cell parameters for the STS (𝜃!, green) and NLME (𝜃!, 
green) approach. d) Comparison of NLME single-cell parameters histogram (bars) and kernel density estimate 
(red line) with the population parameter distribution (black dashed line). 
 
 
 

 
 
Figure S2 Comparison of distributions of estimated single-cell parameters (𝜑𝒊) and estimated population 
parameter distributions (𝛽,𝑫). NLME single-cell parameters histogram (bars) and kernel density estimate (red 
line) with the population constraint (black dashed line). 
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Literature Validation of Estimated Parameter Values 
Our structural identifiability analysis revealed that only few of the kinetic rates could be 
uniquely estimated as for most only the products of rates were identifiable. For the uniquely 
identifiable mRNA degradation rate 𝛿 and the protein degradation rates of 𝛾!"#$ and 𝛾!!!"#$ 
we were able to compare the estimated values to literature values from bulk experiments 
(Table S2). 

Table S2 Comparison of estimated population mean values to literature values for the 
NLME approach with model (ii). 

Parameter Formula Estimated 
value 

Literature 
value 

Reference 

mean mRNA 
(all genes) 

half-life 

 !"(!)
!

 0.8h 1-30h (Schwanhäusser et 
al. 2011) 

mean eGFP 
half-life 

𝑙𝑛(2)
𝛾!"#$

 
22.8h ~26h (Corish & Tyler-Smith 

1999) 

mean 
d2eGFP half-

life 

𝑙𝑛(2)
𝛾!!!"#$

 
6.6h ~5.5h (Corish & Tyler-Smith 

1999) 

 

 

STS Approach 
For the STS approach we used a standard Maximum Likelihood method to estimate 
parameters. We transformed the data and assumed additive, independent, normally 
distributed measurement noise with variance 𝜎!!. This yields the likelihood function 

𝑝(𝑦!
(!)|𝜃!)  =  !

!!!!
𝑒𝑥𝑝 −

(!!
(!)!!(!!,!!))!

!!!
!

!!
!!! , 

where 𝑦!
(!) is the measurement data for cell 𝑖 and the vector 𝜃! contains the unknown single-

cell model parameters. In a single-cell context, no empirical estimator, which requires 
multiple replicates, can be used to estimate 𝜎!! from data, as we are limited to a single 
replicate per single cell. Therefore, we use the model-based estimate of 𝜎!! (Pinheiro 1994): 

𝜎!! =  
(𝑦!

(!) − 𝑦(𝑡! , 𝜃))!

𝑛!

!!

!!!

 

To estimate the parameters 𝜃!, the optimization problem  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 20, 2018. ; https://doi.org/10.1101/285478doi: bioRxiv preprint 

https://doi.org/10.1101/285478
http://creativecommons.org/licenses/by/4.0/


𝜃! = 𝑎𝑟𝑔𝑚𝑎𝑥!𝑝(𝑦(!)|𝜃) 

is solved for every cell using a local gradient-based multi-start algorithm implemented in the 
Matlab toolbox PESTO (Stapor et al. 2017). AMICI (Fröhlich, Kaltenbacher, et al. 2017) was 
used for the computation of the gradient. The convergence was checked by comparing the 
best estimates. The population densities were then computed based on a kernel density 
estimate. 

NLME Approach 
For the NLME approach we replace the parameter 𝜃!  by a mixed effect 𝜑! which consists of 
a fixed effect 𝛽 and a random effect 𝑏! ∼ 𝑁(0,𝐷). To compute the likelihood for the NLME 
model, we have to evaluate an integral over the random effects (Pinheiro 1994): 

𝑝(𝑦|𝛽,𝐷)  = 𝑝(𝑦(!)|𝜑! = 𝑒𝑥𝑝(𝛽 + 𝑏!))𝑝(𝑏!|𝐷)𝑑𝑏!
!!
!!! , 

where 𝑛!   is the total number of cells. Numerically exact evaluation of this integral with 
methods such as Markov Chain Monte Carlo sampling is computationally highly demanding. 
Instead, we used the Laplace approximation (Pinheiro 1994). The Laplace approximation 
assumes that 𝜓!(𝑏|𝛽,𝐷) = log(𝑝(𝑦(!)|𝜑! = exp(𝛽 + 𝑏!))𝑝(𝑏!|𝐷)) is close to a quadratic 

function in 𝑏, which allows analytic evaluation of the integral for the approximate likelihood 𝑝: 

𝑝(𝑦|𝛽,𝐷)  = exp − !
!
𝜓!(𝑏!|𝛽,𝐷) +

!
!
log 2𝜋 !! det(𝐻𝜓!(𝑏!|𝛽,𝐷)

!!
!!!  s.t. 

𝑏! = argmin!𝜓!(𝑏|𝛽,𝐷), 

where 𝐻𝜓!(𝑏!|𝛽,𝐷) is the Hessian of 𝜓!(𝑏!|𝛽,𝐷). To estimate the population parameters with 
the NLME approach, we solved a hierarchical optimization problem with the outer problem 

𝛽!"#$ ,𝐷!"#$ = argmax!𝑝(𝑦|𝛽,𝐷) 

and the inner problem 

𝑏! = 𝑎𝑟𝑔𝑚𝑖𝑛!𝜓!(𝑏|𝛽,𝐷). 

The computation of 𝑝(𝑦|𝛽,𝐷) including the respective inner optimization problem was solved 
using the MATLAB toolbox MEMOIR (https://github.com/ICB-DCM/MEMOIR). In contrast to 
other NLME modeling toolboxes such as MONOLIX or NONMEM, MEMOIR employs local-
gradient based optimization algorithm which uses AMICI (Fröhlich, Kaltenbacher, et al. 2017) 
for the computation of the gradient. The outer optimization problem was solved using Matlab 
toolbox PESTO (Stapor et al. 2017), using the interior-point algorithm implemented in 
FMINCON, initialized and 200 random starting points. MEMOIR was evaluated using a range 
of artificial data, which are included as examples in the repository.  

For the covariance matrix, we used a Matrix Logarithm parameterization (Pinheiro 1994). 
The Matrix Logarithm parameterization guarantees that 𝐷 is symmetric and positive definite 
and only uses a minimal number of parameters to prevent overparameterization. For the 
purpose of this study, we assumed that 𝐷 has diagonal form. 

Multi-Experiment Extension of the NLME Approach 
The NLME approach per se, is not directly applicable to multiple experiments. We extended 
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the approach by introducing experiment specific single-cell parameters 𝜑!!(𝛽! , 𝑏!!). The 
corresponding likelihood function has to be computed separately per experiment 

𝑝(𝑦|𝛽,𝐷)  = 𝑝(𝑦 ! |𝜑!!) = exp(𝛽! + 𝑏!!))𝑝!(𝑏!!|𝐷)𝑑𝑏!!!∈!(!)
!!
!!! , 

where 𝑛! is the number of experiments, 𝐸(𝑒) denotes the set of indices of cells belonging to 
a particular experiment and 𝑝! is the density of the experiment specific population constraint 
corresponding to 𝑏!! ∼ 𝑁(0,𝐷!). Without loss of generality, it is reasonable to assume that a 
single cell cannot belong to more than one experiment. The same approximation as before 
can be applied. 

To encode the assumption of conserved quantities, we assume that parameterization of 
some of the parameters in 𝛽! and 𝐷! are shared across the experiment. For this particular 
study, we assumed that the parameterization for all parameters, but 𝛾!"#$ and 𝛾!!!"#$, is 
shared across both experiments. For example for model (i), this means that the entries in 
𝛽!"#$ correspond to the parameters [𝛿, 𝛾!"#$ , 𝑘𝑚!𝑠𝑐𝑎𝑙𝑒, 𝑡!, 𝑜𝑓𝑓𝑠𝑒𝑡] and in 𝛽!!!"#$ 
correspond to the parameters [𝛿, 𝛾!!!"#$ , 𝑘𝑚!𝑠𝑐𝑎𝑙𝑒, 𝑡!, 𝑜𝑓𝑓𝑠𝑒𝑡]. 

Reproducibility of Optimization Results for the NLME Approach 
For the NLME approach, we started 200 optimization runs per model. Each individual 
optimization run required 1-8 weeks of computation time (>15 years of cpu time in total). Our 
analysis revealed that the optimization results for model (i) were highly reproducible, as the 
log-likelihood values for the top 10 optimization runs had low variance. Moreover, only a 
small fraction of optimization runs crashed, i.e. had repeated failures in the evaluation of the 
log-likelihood function due to numerical integration problems. For models (ii) - (iv) the 
variance in log-likelihood value as well as the number of crashed optimization runs is 
substantially higher compared to model (i). However, we found that the differences among 
the top 10 optimization runs for each model were substantially smaller (10! to 5 ⋅ 10!) than 
differences in log-likelihood values across models (> 5 ⋅ 10!). Hence, we do not expect any 
negative impact on the validity of model selection. 
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Figure S3 Analysis of reproducibility of optimization results for the NLME approach. Results for each 
considered model are shown in individual subplots, which are marked by roman numerals and border color. In 
each subplot, the left two plots show all/top10 log-likelihood values across all optimization runs. Highest objective 
function value is always colored in red. For all other optimization runs, coloring is only applied if multiple 
optimization runs yielded objective function values within 0.01 of each other, otherwise a grey color indicates the 
rank in log-likelihood value. The same coloring is applied to the estimated parameter values on the right. Crashed 
optimization runs are not shown. 
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