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Hierarchy, Morphology, and Adaptive Radiation: a Test of

Osborn’s Law in the Carnivora

Abstract

Henry Fairfield Osborn’s law of adaptive radiation was intended to explain the early proliferation

of morphological and functional variation in diversifying clades. Yet, despite much theoretical

development and empirical testing, questions remain regarding the taxonomic levels at which

adaptive radiation occurs, the traits involved, and its frequency across the tree of life. Here, we

evaluate support for this “early burst” model of adaptive radiation in 14 ecomorphological traits

plus body mass for the extant mammalian order Carnivora. Strong support for an early burst

adaptive radiation is recovered for molar grinding area, a key proxy for diet. However, we find no

evidence for early burst–like dynamics in body mass or multivariate trait data, suggesting a

decoupling of evolutionary modes among traits driven by dietary specialization. Furthermore, the

signal of an early burst is only recovered for Carnivora, and not in family–level clades. The lack

of support for the early burst model of morphological adaptive radiation in previous phylogenetic

studies may be a consequence of focusing on the wrong traits at the wrong taxonomic levels.

Osborn’s law predicted that adaptive radiation should be hierarchically structured, and the search

for its signature and understanding of its prevalence will require a renewed focus on functional

traits and their evolution over higher-level clades.

(Key-words: Early Burst, Macroevolution, Mammals, Phylogenetic Comparative Methods, Traits)
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Introduction

Since the turn of the twentieth century, adaptive radiation has been a dominant paradigm

for understanding the uneven distribution of morphological diversity across the tree of life, and in

clades ranging from arthropods (Gould, 1989; Briggs et al., 1992) to lungfishes (Westoll, 1949)

and island lizards (Losos, 2009). Arising initially from Henry Fairfield Osborn’s “Law of Adaptive

Radiation” (Osborn, 1902), and undergoing theoretical development by paleobiologist (Simpson,

1944, 1953; Valentine, 1969, 1980; Walker and Valentine, 1984; Gould, 1989), quantitative

geneticists (Lande, 1976; Arnold et al., 2001), and macroevolutionary biologists (Schluter, 1996b,

2000; Gavrilets and Vose, 2005; Harmon et al., 2010), this model posits that increased ecological

opportunity, resulting from extinction of competitors, colonization of a novel environment, or the

evolution of a key innovation, triggers rapid expansion of a diversifying clade across the adaptive

landscape and, in turn, morphospace (Gavrilets and Vose, 2005; Gavrilets and Losos, 2009; Losos

and Mahler, 2010; Yoder et al., 2010). As niches fill and ecological opportunity is exhausted, the

rate at which the clade spreads across the adaptive landscape should slow, yielding a

characteristic signal that has come be known as an “Early Burst” of morphological evolution.

Robust empirical support for the early burst hypothesis is conspicuously lacking however.

Disparity, measured as per-interval morphological variance, reaches a peak early in the fossil

records of many clades (e.g., Knoll et al., 1984; Foote, 1992, 1994, 1995; Lupia, 1999; Boyce,

2005; Ruta et al., 2006; Hughes et al., 2013), but this pattern could equally arise as the result of

constraints that restrict a clade to repeatedly revisit the same limited set of morphologies (Foote,

1996; Gavrilets, 1999). These very different evolutionary modes – declining evolutionary rates

versus constant rates in a bounded space – are distinguishable if the phylogenetic relationships

among taxa are known, as true early bursts should leave a strong phylogenetic signal in the

distribution of trait values, while limits to disparity should result in homogenization of variation

within and among clades, in turn reducing phylogenetic signal (Revell et al., 2008; Slater, 2015b).

But, while early bursts of morphological diversification have been recovered in some clades using

phylogenetic methods (e.g., Cooper and Purvis, 2010; Slater et al., 2010; Benson et al., 2014;
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Derryberry et al., 2011; Astudillo-Clavijo et al., 2015; Price et al., 2016), they are far from

common and an analysis of 44 extant clades, including some of the most iconic examples of

adaptive radiation, revealed a dearth of support for early burst dynamics in both size and shape

data (Harmon et al., 2010). This has led some authors to question whether the early burst model

of adaptive radiation is truly as widespread as suggested by the fossil record, and to a view that

morphological evolution is essentially unbounded in space and time (Venditti et al., 2011). As a

result, the study of tempo and mode in morphological evolution, at least from a phylogenetic

perspective, has begun to swing away from the goal of identifying law-like generalities about how

evolution works (Gould, 1980; Marshall, 2014) and towards more ad hoc objectives such as

identifying rate shifts (Eastman et al., 2011; Venditti et al., 2011; Rabosky, 2014) or the presence

of adaptive peaks (Ingram and Mahler, 2013; Mahler et al., 2013; Uyeda and Harmon, 2014;

Khabbazian et al., 2016) that are specific to individual clades.

Before discarding the early burst paradigm, it is worth reconsidering its origins. Osborn’s

original law of adaptive radiation (Osborn, 1902) was ostensibly a pair of ideas about how

ecomorphological diversification proceeds at different levels of the phylogenetic hierarchy. In his

framework, ecological opportunity drove a burst of diversification in locomotor and feeding

morphologies early in clade history, consistent with the early burst paradigm, that resulted in a

general adaptive radiation. But, Osborn also noted that subsequent competition among

contemporaneous taxa occupying similar adaptive zones would drive the continuous evolution of

characteristics that facilitate resource partitioning, resulting in ongoing local adaptive radiations.

Paleobiologists since Osborn’s time have developed conceptually similar models to understand

how rates or modes of morphological evolution vary through clade history (e.g., Gould, 1989;

Simpson, 1944, 1953; Valentine, 1980) but the unifying concepts, often missed in phylogenetic

comparative studies (but see Humphreys and Barraclough, 2014), are that hierarchy and traits

matter (Jablonski, 2007; Erwin, 2000); while higher level clades tend to represent patterns of

morphological and ecological diversification that are consistent with general adaptive radiation,

lower level clades, such as vertebrate families and genera, almost always represent local adaptive
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radiations, a “filling–in” of already occupied ecospace, and their diversity is rarely predictive of

morphological disparity in general terms (Foote, 1993, 1995, 1996, 1997; Valentine, 1980, 1969).

Thus, although Schluter’s (2000) ecological theory of adaptive radiation emphasizes the

importance of ecological opportunity in driving adaptive radiation, it focuses on too low a level

for early bursts of morphological evolution to be an expected outcome and it comes as little

surprise that this pattern is rare among low-level phylogenetic datasets examined to date, as in

Harmon et al. (2010). Given the need for a phylogenetic context when examining patterns of

morphological evolution (Foote 1996) and the wide availability of suitable methods for detecting

early bursts (Blomberg et al., 2003; Freckleton and Harvey, 2006; Harmon et al., 2003, 2010), the

more pressing question is not whether early bursts occur, but rather at what level and in which

traits they are found, and then under what circumstances.

Appropriate systems for testing Osborn’s hierarchical model of adaptive radiation should

meet three distinct criteria. First, they should be higher level clades, such as classes or orders,

that encompass several lower level clades. Second, they should possess a well–resolved phylogeny

with branch lengths, and third, they should exhibit a range of ecomorphological variation that

can be both quantified and directly related to resource use. We here study ecomorphological

macroevolutionary dynamics using terrestrial representatives of the mammalian order Carnivora

as just such a model system. Carnivora is diverse, comprising over 200 species in 13 extant

families (exclusive of the aquatic pinnipeds) and its phylogenetic relationships have been

extensively studied (Gaubert and Veron, 2003; Bardeleben et al., 2005; Flynn et al., 2005;

Gaubert and Cordeiro-Estrela, 2006; Fulton and Strobeck, 2006, 2007; Johnson et al., 2006;

Koepfli et al., 2006, 2007, 2008; Krause et al., 2008; Patou et al., 2009; Eizirik et al., 2010).

Furthermore, the broad ecological diversity in dietary habits among carnivorans (Ewer, 1973), can

be directly related to a rich suite of ecomorphological traits that can readily measured and that

have demonstrable form-function relationships (Van Valkenburgh, 1988, 2007; Van Valkenburgh

and Koepfli, 1993; Friscia et al., 2007). Here, we use a novel species–level phylogeny and

ecomorphological dataset consisting of craniodental functional indices and body mass to ask
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which, if any, ecomorphological traits show signals consistent with an early burst of morphological

evolution and at what phylogenetic levels these signals emerge. We find that Osborn’s model of

general adaptive radiation is supported at the level of Carnivora for traits that have direct links

to the broad dietary niche (i.e., carnivory, omnivory, herbivory) occupied by constituent species,

but not for traits related to size. However, the signal of a general adaptive radiation is not

recovered at lower levels for any trait, suggesting that the early burst pattern may be an emergent

property of complex within-clade dynamics rather than an actual process. By modelling the

evolution of the evolutionary rate matrix describing evolutionary correlations between molar

grinding area and body mass, we also show that axes of local adaptive radiation may differ among

sub–clades of a general adaptive radiation.

Materials and methods

Phylogeny Reconstruction.—

We inferred a new, time-scaled phylogeny for 235 extant and recently extinct terrestrial

carnivorans, omitting pinnipeds (seals, sealions and walrus) as our trait evolutionary analyses

focus on terrestrial clades. Full details of phylogenetic methods are provided in the

Supplementary Methods but, briefly, we downloaded 30 thirty nuclear and all available protein

coding mitochondrial loci from Genbank and jointly estimated phylogenetic topology and branch

lengths in a Bayesian framework as implemented in BEAST v2.3.2 (Bouckaert et al., 2014) under

a relaxed log-normal molecular clock (Drummond et al., 2006) and using the Fossilized

Birth–Death (FBD) model as a tree prior (Heath et al., 2014; Gavryushkina et al., 2014, 2016).

Following the approach described in Law et al. (2017) for musteloid carnivorans, we included 250

fossil carnivorans as terminal taxa in our matrix with all characters coded as “?” and occurrence

times specified as uniform age range corresponding to described stratigraphic ranges. To reduce

treespace for the topology search while avoiding the need to make arbitrary decisions regarding

relationships of fossil taxa, we specified a minimal set of topology constraints based on the most

inclusive placements possible as ascertained from published phylogenetic analyses. We ran three
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independent chains, each of 100 million generations, sampling every 10,000 generations. After

visually checking for convergence of likelihoods and parameters using the TreeAnnotator software,

we discarded a chain-specific appropriate number of samples as burn-in and combined the

posterior samples of trees before pruning fossil taxa and producing a Maximum Clade Credibility

(MCC) tree from the retained posterior sample. This tree was used for subsequent

macroevolutionary analyses.

PMW BL LGA

UGA

M1LPML

MD
BL

MAT

MAM

C1

dL

Figure 1: Measurements used to generate ecomorphological metrics. Top: occlusal view of lower
dentition. Middle: lingual view of lower dentition. Bottom: occlusal view of upper dentition.
PMW, lower fourth premolar width; PML, lower fourth premolar length; BL, blade length of
carnassial; M1L, length of m1; LGA, lower grinding area (occlusal area of talonid of m1 and post-
carnassial dentition); MAM, moment arm of masseter muscle; MAT, moment arm of temporalis
muscle; dL, dentary length; MD, mandibular depth; UGA upper grinding area (occlusal area of
upper molars). Modified from Friscia et al.(2007).

Morphological Data Collection.—
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Table 1: Functional traits, their meanings, and constituent measurements.

Abbreviation Meaning

C1 Cross sectional shape of the upper canine, measured as width divided by anteropos-
terior length

P4S Lower fourth premolar shape, measured as maximum width of p4 divided by its
maximum length

P4Z Relative length of fourth lower premolar, measured as the maximum length of p4
divided by dentary length (measured as in M1BS)

P4P Relative size of the protocone of the upper fourth premolar (carnassial), measured as
the ratio of maximum width of P4 divided by maximum length of P4

RBL Relative blade length of lower first molar (m1 carnassial), measured as the ratio of
trigonid length to total anteroposterior length of m1

M1BS m1 blade size relative to dentary length, measured as the length of the trigonid of m1
(carnassial) divided by dentary length.

RLGA Relative lower grinding area, measured as the square root of the summed areas of the
m1 talonid and m2 (if present) divided by the length of the m1 trigonid. Area was
estimated as the product of maximum width and length of the talonid of m1 and m2,
respectively

M2S m2 size relative to dentary length, measured as the square root of m2 area (if present)
divided by dentary length. Tooth area measured as in RLGA and dentary length
(measured as in M1BS). If no m2 was present in the taxon, M2S was recorded as zero

RUGA Relative upper grinding area, measured as the square root of the summed areas of M1
and M2 (if present) divided by the anteroposterior length of P4 (upper carnassial).
Area was estimated by the product of width and length of M1 and M2, respectively

UM21 Square root of upper second molar area (if present) divided by square root of upper
first molar area. Areas estimated as RUGA. If no M2 was present in a taxon, UM21
was recorded as zero

MAT Mechanical advantage of the temporalis muscle, measured as the distance from the
mandibular condyle to the apex of the coronoid process divided by dentary length
(measured as in M1BS)

MAM Mechanical advantage of the masseter muscle, measured as the distance from the
mandibular condyle to the ventral border of the mandibular angle divided by dentary
length (measured as in M1BS)

IxP4 Second moment of area of the dentary at the interdental gap between the third and
fourth lower premolars relative to dentary length. Used as an estimate of resistance of
the dentary to bending. Second moment of area was calculated using the formula Ix
=(πDxDy3)/64, where Dx is maximum dentary width and Dy is maximum dentary
height at the p3-p4 interdental gap. Ix relative to dentary length was then estimated
as the fourth root of Ix divided by dentary length (measured as in M1BS)

IxM2 same as IxP4 but at the interdental gape between the first and second lower molar
or, if m2 is absent, immediately posterior to m1.

ln( 3
√
mass) the natural logarithm of the cube root of mass, in grams
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Our trait evolution analyses are based on 14 functional variables plus body mass (Figure

1, Table 1). The ecomorphological traits that we use describe aspects of craniodental morphology

associated with food acquisition and processing that have been shown to be important

discriminators of diet and predatory behavior in previous studies (Friscia et al., 2007;

Meachen-Samuels and Van Valkenburgh, 2009; Sacco and Van Valkenburgh, 2004;

Van Valkenburgh, 1988, 1991; Van Valkenburgh and Koepfli, 1993). The dataset is based on

measurements from 1583 museum specimens representing 198 terrestrial carnivoran species (n =

8, range = 1-25). Measurements for a subset of specimens (n = 425) were taken from a previous

study of small carnivoran ecomorphology (Friscia et al., 2007) while the remaining measurements

were collected specifically for this project using Mitutuyo (c) digital calipers to 0.01mm precision.

We excluded the aardwolf (Proteles cristatus) due to its peg-like teeth that cannot be measured

for our ecomorphological traits, and the bat-eared fox (Otocyon megalotis) due to its duplicated

upper first and lower second molars. Where possible, only wild-caught specimens were measured

due to well-described skeletal abnormalities associated with captive carnivorans (O’Regan and

Kitchener, 2005; Hartstone-Rose et al., 2014), though dental measurements were taken from some

zoo animals to increase sample sizes. We obtained body masses, in kilograms, for all available

terrestrial carnivoran species in the panTHERIA database (Jones et al., 2009) and supplemented

these with data from the literature for missing species. We converted our mass estimates to a

linear scale by taking their cube roots and subsequently natural log-transformed them for analysis.

Modeling Ecomorphological Evolution.—

We fit three standard models of morphological evolution to the species means for each of

our 15 traits (14 ecomorphological traits plus body size) using the fitContinuous() function in

the geiger v.2.0.6 library (Pennell et al., 2014). To understand whether and how hierarchy

affects inference of evolutionary mode, we fit models to the entire carnivoran dataset, and to

family-level clades containing > 5 species.

Brownian Motion (BM) is often invoked to describe a trait evolving by drift (i.e., as a

random walk at a constant rate) but can also describe processes in which evolution tracks a
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fluctuating or rapidly shifting adaptive peak (Revell et al., 2008). We here interpret BM as any

process for which trait covariances among taxa are well predicted by their phylogenetic

covariances. A Single Stationary Peak (SSP) model is a single peak Ornstein-Uhlenbeck (OU)

process where the root state and trait attractor are equivalent (Hansen, 1997). This model can

describe trait evolution under attraction to a single adaptive peak but may also fit well to datasets

generated under constrained or bounded evolution. The early burst (EB) model (Blomberg et al.,

2003; Harmon et al., 2010) is a time-heterogeneous rate model of morphological evolution where

rate decays exponentially through time from its initial value, resulting in a strong phylogenetic

partitioning of morphological variation. As a result, this model provides a good approximation of

Osbornian general adaptive radiation. Measurement error was accounted for in univariate

analyses by adding sampling variance to the diagonals of the variance-covariance matrix. Because

sample sizes were small for some species, we computed a pooled variance for each trait and then

computed the sampling variance for the ith species as the pooled variance divided by its sample

size, ni. Because we did not have within-species estimates of sampling error for body mass, we

assigned each species a standard error of 0.0345, following Harmon et al. (2010). Relative model

fit was assessed by computing small-sample corrected Akaike Weights, wA, for each model.

Because morphology is inherently multivariate, it is possible that adaptive radiations

occur in multivariate ecomorphospace, rather than along individual trait axes. Under multivariate

Brownian motion with k traits, we must estimate a vector of k phylogenetic means, or root states,

and a k x k matrix, R, the diagonal elements of which give the evolutionary rates of each trait

and off-diagonal elements give the evolutionary covariances that describe how traits change in

relation to one another. For this reason, R is often referred to as the evolutionary rate matrix (a

macroevolutionary equivalent of the P-matrix from quantitative genetics). We fit multivariate

versions of the three models described above to the complete, 15 trait dataset using the fast

method proposed by Freckleton (2012), which uses phylogenetically independent contrasts

(Felsenstein, 1985) in place of raw trait data and thus avoids the need to repeatedly invert the

outer product of the phylogenetic covariance matrix and evolutionary rate matrix. Using this
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approach, it is straightforward to fit multivariate versions of the SSP or EB model by

appropriately transforming the branch lengths of the phylogeny prior to computing the contrasts

variances (Freckleton, 2012), provided that the tree is ultrametric (Slater, 2014). It should be

noted that our non-BM multivariate models assume that the effect of the evolutionary model’s

parameters act uniformly across traits, for example that the evolutionary rate of each trait decays

at the same rate under a multivariate EB model.

Macroevolutionary Covariance of Size and Ecomorphology.—

We used a Bayesian approach, as implemented in the R library ratematrix (Caetano and

Harmon, 2017a,b), to understand whether the rate matrix itself evolves in response to shifts in

dietary ecology and whether this can explain different macroevolutionary signals in different

traits. We used an evolutionary model-based approach to classify carnivorans to dietary regimes,

rather than the more traditionally approach of using literature review. This is because diet can

vary considerably and continuously both within and among species, with the net effect that

dietarily dissimilar taxa become lumped into a common but meaningless omnivore regime (Davis

and Pineda-Munoz, 2016; Pineda-Munoz and Alroy, 2014; Pineda-Munoz et al., 2017). Using

Relative Lower Grinding Area as a focal trait due to its well–demonstrated link to dietary

resource use (Van Valkenburgh, 1988, 1991), we inferred the presence and location of dietary

regimes under an Ornstein-Uhlenbeck process as implemented in the R library l1ou (Khabbazian

et al., 2016). This approach uses a phylogenetic LASSO (Least Absolute Shrinkage and Selection

Operator) to identify an optimal set of evolutionary regimes on a phylogenetic tree, given a set of

trait values for the terminal taxa. In this respect it is similar to the SURFACE approach of

Ingram and Mahler (2013), which uses a step-wise AIC procedure to identify unique evolutionary

regimes under an OU process, but is substantially faster for larger datasets. We performed an

initial analysis to identify distinct evolutionary regimes with a maximum of 20 shifts enforced and

using the Bayesian Informaiton Criterion for model selection. We then performed a second

analysis on the resulting model output to identify convergent regimes that could be collapsed into

one another. The final set of regimes can be thought of as representing large shifts in morphology
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relative to background evolutionary rates that, in turn, correspond to shifts in diet and we

consider them analogous to Simpson’s (1944) notion of major adaptive zones.

To sample evolutionary rate matrices for each dietary regime, we first transformed each

vector of trait values to a 0-1 scale and placed broad, gaussian priors on the root states of each

trait, with a mean corresponding to the arithmetic mean of the trait and a standard deviation of

1.5 times the empirical standard deviation. For computational efficiency we restricted our

analyses here to sample the 2X2 R matrix describing evolutionary correlations between Relative

Lower Grinding Area and ln[ 3
√
mass]. This choice is motivated by the fact that a large number of

macroevolutionary analyses have focused on body mass as a proxy for ecomorphology when

attempting to understand adaptive radiation. We set a lognormal prior (ln[mean] = -2.3, sd = 1)

on the standard deviations (square roots of diagonal elements) of the evolutionary rate matrix

and a flat prior on the correlation matrices. We ran two Markov chains for 1 million generations

each and checked for convergence by ensuring potential scale reductions factors reached 1 and

that effective sample sizes for all parameters were greater than 200. We then discarded the first

20% of each run as burn-in and thinned the posterior by retaining every 1000th sample.

The use of a Bayesian approach to sample from the joint posterior distribution allows us

to make use of Bayesian tools for comparing rate matrices among different evolutionary regimes.

We first used Ovaskainen et al.’s (2008) method for assessing the difference between joint

posterior distributions of covariance matrices for two groups. Because a covariance matrix defines

a multivariate normal distribution, we can assess the distance d(A,B) between two matrices by

simulating many datasets from A and computing the proportion of cases in which these simulated

data have a higher probability of originating from B. To assess statistical support for the

difference between two posterior samples, pairs of covariance matrices are repeatedly drawn from

the joint posterior distributions of regimes A and B. We first measure the distances between pairs

of matrices from the same regime and subtract from their sum the summed distance between joint
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samples from the two regimes,

Ψd(A,B) = [d(A1,A2) + d(B1,B2)]− [d(A1,B1) + d(A2,B2)]. (1)

If inter-regime variation (the second term on the right side of equation 1) is large relative

to within-regime variation (the first term), that is the difference between regimes is substantial

even after accounting for uncertainty in within–regime estimates, then Ψd(A,B) will be negative

and a statistical test of whether the two regimes share a common R can be computed as

P [Ψd(A,B) > 0]. Because this test is one-tailed, we accept the two samples as representing

different distributions if P [Ψd(A,B) > 0] < 0.05

Ovaskainen et al.’s test tells us whether R differs among regimes but not whether it differs

in shape, size, or orientation. Matrix size is determined by the diagonal elements of R, which give

the evolutionary rates for each trait. The sum of the diagonals, tr(R), therefore gives the rate of

dispersion in multivariate space (Haber, 2016). The shape, or eccentricity, of the clade’s

dispersion in multivariate space can be characterized by the relative standard deviation of the

eigenvalues (rSDE) of R (Van Valen, 1974; Haber, 2016, see also Kirkpatrick 2009). Values of

rSDE close to zero indicate that variance is evenly spread over the eigenvectors of R, meaning

that constraints due to evolutionary covariation are weak and that the clade is free to evolve in

any direction in morphospace. Values of rSDE approaching 1 indicate that covariation among

traits is strong and that that the clade is constrained to evolve along a single axis. We computed,

for each pairwise comparison among dietary regimes, the posterior probability that the rate of

dispersion and rSDE were greater in regime A than for regime B as the proportion of cases in

which tr(R) and rSDE of samples from the joint posterior of regime A were larger than those of

regime B. Finally, we determined whether R differs in orientation among dietary regimes by

calculating the angle between principal eigenvectors from the joint posterior sample. We used

Equation 1 to determine whether the inter-regime difference in the orientation of R is greater

than the uncertainty associated with each within-regime posterior sample. The probability that

the regimes share a common orientation is then given as P [Ψ∠(A,B) > 0].
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Results

Phylogeny Reconstruction.—

The topology of the maximum clade credibility tree from our BEAST analysis (Figure 2)

is generally well-supported, with 94% nodes having posterior probabilities greater than 0.9, and is

congruent with previous analyses of carnivoran phylogeny. Uncertainty in divergence time

estimates was low (mean 95% Highest Posterior Density (HPD) interval = 2.56 Myr) but

increased for older nodes, and was also elevated in areas of the tree that lack phylogenetically

corroborated fossil taxa (e.g., the families Viverridae, Herpestidae, and Eupleridae) and/or areas

with sparse molecular coverage such as the genera Prionodon and Mydaus. We infer an Early

Eocene origin for crown Carnivora (mean age = 48.2 Ma, 95% HPD interval 45.1-52.6 Ma), with

crown Caniformia originating shortly after (mean age = 46.1Ma, 95% HPD = 42.3 - 49.6 Ma).

Crown Feliformia originated closer to the Eocene/Oligocene boundary (32.8Ma, 95% HPD =

29.1-37 Ma), and most extant families began to diversify during the mid to late Miocene or

Pliocene. Only Procyonidae and Mephitidae have 95% HPD intervals that extend into the

Oligocene.

Modeling Ecomorphological Evolution.—

Early burst is the best fitting evolutionary model for a subset of dental traits associated

with food-processing (Figure 3; Table 2), with strongest support (wA > 0.95) recovered in

grinding-related traits such as relative lower (RLGA), and upper (RUGA) grinding areas, and

relative size of the upper second molar (UM21). Maximum Likelihood Estimates (MLEs) for the

rate half-lives, that is the time for evolutionary rate to halve its initial value (Slater and Pennell,

2014), suggest moderate to slowly declining rates (t1/2 = 4.2 - 39.8 Myr). The single stationary

peak model was recovered as best fitting model for several traits, but only those associated with

bite strength (e.g., MAT, MAM), and canine tooth shape yielded moderate to strong support

(wA > 0.85). MLEs for the α parameter in these SSP models were small, corresponding to

phylogenetic half-lives, a measure of the influence of the optimum relative to diffusion (Hansen,
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Mustelidae
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Mephitidae

Ursidae
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Viverridae

Felidae
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Figure 2: Maximum clade credibility tree of extant and recently extinct carnivorans inferred under a
relaxed molecular clock and fossilized birth-death tree prior. Blue bars indicate 95% HPD intervals

1997), of between 10 and 35 Myr. Support for this model can therefore be interpreted as

indicating multiple peak shifts over carnivoran history that have reduced phylogenetic signal in

trait values, rather than strong constraint that prevented trait diversification. Brownian motion,

though the best fitting model for premolar shape, lower carnassial blade size and body mass, was

never strongly supported over other models.

Strong support for the early burst mode of evolution is less conspicuous when analyses are

conducted at lower phylogenetic levels (Figure 4). Among familes containing more than 5 taxa,

an early burst of grinding area evolution is only recovered for Viverridae and support is weak at

best (Figure 4i; wA > 0.66). Well supported early bursts are recovered in a few clades, but for
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very different traits, for example relative size of the second molars (M2S, UM21) in Eupleridae

(Figure 4b), mechanical advantage of the masseter muscle (MAM) in Procyonidae (Figure 4g),

and relative length of the lower fourth premolar (PMZ) in Ursidae (Figure 4h).
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Figure 3: Stacked barplots of Akaike Weights for the three models of morphological evolution
(BM, Brownian motion; SSP, single stationary peak; EB, early burst) fitted to each of the 14
ecomorphological traits, body mass, and the multivariate (MV) dataset on the maximum clade
credibility tree. The relative height of the color bars indicate relative support for the corresponding
model given the trait

We found no support for an early burst of multivariate morphological evolution, with an

SSP model recovered as best-fitting. Visualization of the common carnivoran R matrix (Figure 5)

reveals strong correlations in some traits (e.g, negative correlations between slicing and grinding

function of the carnassial teeth) but most correlations are weak. Body mass, in particular, shows

weak correlations with most ecomorphological traits.

Macroevolutionary Covariance of Size and Ecomorphology.—

We identified 12 independent dietary regime shifts in carnivorans using l1ou that were

subsequently collapsed into one of five convergent regimes (Figure S1,2). These can be broadly

summarized as (1) cat-like hypercarnivores (Felidae, Prionodontidae, Hyaenidae, Cryptoprocta

ferox ), 2) weasel-like hypercarnivores (most mustelid clades plus the herpestid genera

Paracynictis and Cynictis), 3) omnivores and hard-object feeders (most arctoids, hemigaline
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Table 2: Best fitting models for each ecomorphological trait fitted to the entire Carnivora, along
with associated parameter estimates and relative model support. σ2 and θ for MV data are vectors,
rather than single values, and so are omitted here.

trait best model α r σ2 θ wA

C1 SSP 0.09 - 8.10 * 10−4 0.71 1.00

P4S SSP 0.02 - 6.00 * 10−4 0.56 0.56

P4Z BM - - 1.21* 10−4 0.09 0.43

P4P EB - -0.04 3.96 * 10−4 0.71 0.61

RBL EB - -0.02 9.43 * 10−4 0.64 0.69

M1BS BM - - 2.29 * 10−5 0.09 0.58

RLGA EB - -0.06 4.80 * 10−2 1.02 0.99

M2S EB - -0.03 5.79 * 10−5 0.06 0.83

RUGA EB - -0.04 1.48E * 10−2 1.04 0.95

UM21 EB - -0.08 4.48 * 10−2 0.51 1.00

MAT SSP 0.03 - 1.78 * 10−4 0.27 0.90

MAM BM - - 7.34 * 10−5 0.15 0.58

IxP4 SSP 0.03 - 8.41 * 10−6 0.06 0.92

IxM2 SSP 0.02 - 6.14 * 10−6 0.07 0.53

ln( 3
√
mass) BM - - 1.09 * 10−2 0.56 0.45

MV SSP 0.025 - - - >0.99
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Figure 4: Stacked barplots of Akaike Weights for the three models of morphological evolution fitted
to each of the 14 ecomorphological traits and body mass for each carnivoran family containing more
than 5 species: a) Canidae, b) Eupleridae, c) Felidae, d) Herpestidae, e) Mephitidae, f) Mustelidae,
g) Procyonidae, h) Ursidae, i) Viverridae. Colors correspond to those in Figure 3; Brownian motion:
yellow; SSP: blue; Early burst: black.

viverrids, mungotine herpestids), 4) frugivores (Procyonidae exclusive of Procyon and

Bassariscus), and 5) an ancestral regime that we recognize as mesocarnivorous (Canidae, most

Viverridae, Eupleridae exclusive of Cryptoprocta, and remaining Herpestidae).

Bayesian joint estimation of R for the five dietary regimes resulted in good convergence

and large effective sizes (>> 200) for all parameters except for regime 4 (frugivorous procyonids),
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Figure 5: A plot of the correlation matrix derived from R for all carnivorans indicates strong corre-
lations among functionally related traits but that the relationship between size and ecomorphology
(final column or row) is weak. The shape of the ellipses indicates the strength of the correlation
between the row and column traits, with more ellipical shapes indicating stronger correlations and
circular shapes indicating weaker correlations. Hotter colors indicate stronger positive correlations
while colder colors indicate stronger negative correlations

which contained only 8 species; we therefore omit this group from subsequent pairwise

comparisons. (Table 3). The 2x2 R matrices for the remaining dietary regimes can be well

differentiated from one another based on Ovaskainen et al.’s (2008) distance test, though the

comparison between omnivores and mesocarnivores is not significant at the α = 0.05 level

(p = 0.09). Cat–like (rSDE = 0.99) and weasel–like(rSDE = 0.71) hypercarnivores have more

eccentric R–matrices than omnivores (rSDE = 0.37) or mesocarnivores (rSDE = 0.29), and

cat–like hypercarnivores have more eccentric matrices than weasel–like taxa. Furthermore, the

angles between the principal eigenvectors of the 2x2 R–matrices for ecologically distinct regimes

differ significantly. The principal vectors of the two hypercarnivore regimes are almost

perpendicular to those of omnivores (mean angles 75°and 68°, respectively) and are oriented in

the direction of body mass variation (Figure 6). Comparisons between the principal vectors of

hypercarnivore regimes (mean angle = 7°, p = 0.091) and between omnivores and mesocarnivores
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Table 3: Pairwise comparisons between the 2x2 R matrices for carnivorans belonging to four dietary
regimes. P(Ψd(A,B) > 0) is the probability that the two matrices define identical multivariate
normal distributions. PP(rSDE) gives the posterior probability that matrix A is more eccentric
(has a higher rSDE) than matrix B. ∠AB gives the mean angle between the principal eigenvectors
of the two matrices; P(Ψ∠(A,B)> 0) is an associated test of whether they differ significantly.
PP(disp) provides the posterior probability that the rate of multivariate dispersion is greater for
regime A than for B. In each case, A refers to the first regime given and B refers to the second
regime. Posterior probabilities are provided in A> B format for ease of presentation - it should be
noted that PP < 0.05 is strong evidence for B > A.

P(Ψd(A,B) > 0) PP(rSDE) ∠AB P(Ψ∠(A,B)> 0) PP(disp) PP(rlga) PP(mass)

Regime 1 vs 2 <0.001 1 76 <0.001 0.16 0 0.99

Regime 1 vs 3 <0.001 1 7 0.091 0.4 0 0.61

Regime 1 vs anc <0.001 1 53 0.001 0.39 0 0.99

Regime 2 vs 3 <0.001 0.03 68 0.003 0.78 1 0.04

Regime 2 vs anc 0.09 0.69 22 0.272 0.83 1 0.45

Regime 3 vs anc <0.001 0.99 45 0.016 0.5 0 0.98

(mean angle = 22°, p = 0.272) are not significant. Taken together, these results indicate that

hypercarnivores display limited ability to evolve in the direction of grinding area and disperse

predominantly in the direction of size (Figure 6). Mesocarnivores and omnivores evolve

dominantly in the direction of grinding area but retain the ability to evolve freely in the direction

of size.

This interpretation is further borne out by examination of evolutionary rates. Most

inter-regime comparisons suggest little variation in rates of bivariate dispersion. We examined

this lack of variation further by looking for differences between rate posterior distributions for

RLGA and ln( 3
√
mass) individually. Here, we found strong support (PP =1) for faster rates of

relative lower grinding area evolution in omnivores and mesocarnivores compared with both

hypercarnivorous regimes. For body mass, rates in the two hypercarnivore regimes were

substantially faster than the omivores (PP[1 > 2] = 1, PP[3 > 2] = 0.96) and the mesocarnivores

(PP[1 > anc]1, PP[3 > anc] = 0.97) while comparisons between hypercarnivores

(PP1 > 3] = 0.76) and between mesocarnivores and omnivores (PP[anc > 2] = 0.53) reveal no

significant differences.
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Figure 6: The 2x2 marginal distributions of R, restricted to body mass and relative lower grind-
ing area (RLGA), can be obtained from the posterior distributions of the full 5x5 R matrices.
Shown here are ellipses representing the 95% quantiles of 50 matrices sampled at random from
the joint posterior distributions of A) cat–like hypercarnivores, B) weasel–like hypercarnivroes, C)
omnivores, and D) mesocarnivores.

Discussion

The Carnivoran General Adaptive Radiation.—

The order Carnivora underwent an early–burst of ecomorphological evolution, consistent

with an Osbornian general adaptive radiation, but our ability to determine this is dependent on

the traits studied. Of the individual ecomorphological traits we examined, only dental traits

related to the relative proportion of non-meat items in the diet (Van Valkenburgh, 1988, 1991)

showed signals consistent with an early burst model. The carnivoran carnassial has long been

recognized as a key innovation that facilitated the dietary diversification of the clade from the

Eocene onward (Matthew, 1909; Gregory and Hellman, 1939; Ewer, 1973) but it is interesting to

note that functional traits related to shearing (P4P and RBL) accrued relatively modest support

(wA < 0.7) for the EB model compared to those related to grinding (wA > 0.9). Studies of feeding

behavior in wild carnivorans indicate that the carnassial blade is used primarily in cutting and

chewing skin, and therefore plays an important role in allowing access to muscle, viscera, and
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bones within carcasses (Van Valkenburgh, 1996). Weak support for early burst dynamics in

relative blade length and shape may therefore reflect the functional importance of a

well-developed blade not only in hypercarnivorous taxa, but also in any taxon that seasonally

hunts or scavenges vertebrate prey. The stronger support for EB dynamics in traits associated

with the ability to process non-meat foods suggests that carnivorans represent an adaptive

radiation along an axis of increasing dietary diversity that includes not only hypercarnivores, but

also mesocarnivores, omnivores, and frugivores.

This dietary adaptive radiation characterizes the order as a whole however and its signal

is not present in individual carnivoran families. Foote (1996) noted that such a pattern may occur

where evolutionary rates have slowed sufficiently by time subclades originate that a signature of

their decline is undetectable in trait data. Here though, failure to detect the carnivoran-wide

early burst at lower levels seems to arise from variation in the mode of grinding area evolution

within subclades, which results in dramatically different patterns of trait variation to those

expected from the early burst inferred for the parent clade. For example, grinding area evolution

in canids is characterized by a best fitting SSP model. Support for a model indicating low

phylogenetic signal is consistent with repeated convergence on a constrained set of

ecomorphological outcomes for this clade (Van Valkenburgh, 1991; Slater, 2015a), but is

inconsistent with early burst dynamics. Best fitting Brownian motion models for malagasy

carnivorans (Eupleridae) and mongooses (Herpestidae), in contrast, indicate that these clades

have continued to expand in grinding area diversity at a slow but steady pace. The presence of

such different macroevolutionary signatures at different levels of phylogeny suggests that early

burst–like patterns may be an emergent property of complex, heterogeneous evolutionary

dynamics, rather than resulting from simple slow–downs in evolutionary rate through time.

Such a perspective is logically consistent with conceptual models of early divergence into

distinct adaptive zones combined with later diversification in and among sub-zones (Simpson,

1953; Valentine, 1980) but, if pervasive, has important implications for the validity of some

phylogenetic tests of the early burst hypothesis. For example, the lack of temporal trends in the
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magnitude of per-branch rates of trait evolution has been offered as evidence that early bursts are

an uncommon mode of adaptive radiation (Venditti et al., 2011). However, if evolutionary mode

varies over a given phylogeny, then trends derived from per-branch rates estimated under a

Brownian motion model may be extremely misleading. This is particularly true where equilibrial

dynamics, such as Ornstein–Uhlenbeck or diversity–dependent processes, are involved, as the

magnitude of trait change per unit time is not expected to be constant (Rabosky, 2009; Hunt,

2012). In our study, per-branch rates of grinding area evolution have indeed been quite variable

through time and, contrary to expectations under early burst dynamics, the fastest rates occur in

some of the youngest lineages such as Lycalopex canids (Figure 7A). However, branch durations

also show a tendency to decrease towards the present (branch length = 1.26 + 0.33 parent node

age, R2 = 0.385, p < 0.001), which will tend to result in larger per-branch rate estimates in young

branches when the true mode of phenotypic evolution deviates from a constant–rates process.

This phenomenon is analogous the the “Sadler effect” from sedimentary geology, where a trend of

faster rates of sediment accumulation towards the present results from the discontinuous nature of

sediment deposition combined with an increase in sequence length with increasing age (Sadler,

1981), and suggests that examining trends in per-branch rates might provide a poor test for early

burst dynamics. More generally, it is worth stressing that a few recent, rapid rates do not negate

a general partitioning of morphological variation among clades (Slater and Pennell, 2014; Cooney

et al., 2017) which is the phenomenon we are actually interested in when studying general

adaptive radiation. Relative subclade disparity through time (Harmon et al., 2003), though high

for the first 20 Myr of carnivoran evolution where branch lengths are longest, gives way to a

partitioning of variation among clades from 30 Ma until the present, coincident with the radiation

of extant carnivoran families (Figure 7B). Integration of now extinct clades such as nimravids and

amphicyonids, which diverged during the early phase of carnivoran diversification (Wesley-Hunt

and Flynn, 2005), could increase the the signal for an early partitioning of disparity by breaking

up long, old branches (Slater et al., 2012). Constant rates of grinding area evolution combined

with highly selective, clade–specific patterns of extinction could plausibly generate this pattern,
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but it is difficult to contrive a realistic scenario in which the partitioning of variance among clades

is overturned.
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Figure 7: A) Rates of grinding area evolution slow down in general over carnivoran phylogeny but
the fastest rates occur close to the tips. B) Despite fast rates along young branches, morphological
disparity is increasingly partitioned among clades as one moves from root to tip, with a substantial
drop at approximately 30 mya coincident with the origins of Feliformia and the onset of familial
diversification.

Body Size as an Axis of Local Adaptive Radiation.—

The lack of an early burst in carnivoran body mass evolution contrasts strongly with the

signal detected in dental traits and corroborates the view that size can play an unpredictable role
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in macroevolutionary pattern (Jablonski, 1996). The use of size in macroevolutionary studies is

often justified by the observation that many ecological, biomechanical and physiological traits

show predictable patterns of allometric scaling (Bonner, 1965; Calder, 1984; Peters, 1986;

Schmidt-Nielsen, 1984), and this is true in general terms for carnivorans where both prey size

(Carbone et al., 1999, 2007; Van Valkenburgh, 1996) and the outcomes of interspecific interactions

(Donadio and Buskirk, 2006) show strong size-based relationships. However, the weak correlation

between mass and grinding area that emerges from our multivariate model fitting

(model-averaged r= -0.086, Figure 5) corroborates a general decoupling of size and

ecomorphology in Carnivora (Meloro and Raia, 2010) and implies that while size may play an

important role over microevolutionary time scales, functional traits are more likely to carry a

faithful signal of ecological diversification in the geologic past (Slater, 2015a). As a consequence,

the lack of an early burst of body mass evolution in other clades should not be held as evidence

against this mode of general adaptive radiation.

We find some support for the notion that body mass plays an important role in other

forms of adaptive radiation. Osborn (1902) hypothesized that ongoing competition for resources

within the lineages of a general adaptive radiation should result in local adaptive radiations, the

evolution of assemblages of ecologically similar taxa with ecomorphological characteristics that

facilitate resource partitioning. Our analyses suggest that body mass may be a particularly

critical axis of local adaptive radiation in hypercarnivorous carnivorans, where the reduction or

loss of molar grinding area reduces ecomorphological flexibility (Holliday and Steppan, 2004;

Van Valkenburgh, 2007; Van Valkenburgh et al., 2004) and renders body mass the major axis of

variation available to selection (Figure 6, Table 3). Indeed, extant and fossil hypercarnivore

communities have long been recognized to exhibit strong size-based partitioning of prey resources

and represent some of the few cases in which the presence of Hutchinsonian size ratios have been

statistically established (Hutchinson, 1959; Dayan et al., 1990; Dayan and Simberloff, 1994;

Werdelin, 1996; Meiri et al., 2005). Felid communities in both the Paleo- and Neotropics

superficially appear to violate this prediction by consistently containing pairs of similarly sized
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taxa (Kiltie, 1984, 1988), though ecological data suggest that these pairs may avoid direct

competition by spatio-temporally partitioning the environment (Bianchi et al., 2011), providing

tantalizing cases of exceptions that prove the rule. It is important to stress, however, that despite

the ecological importance of size in these clades and their faster rates of body mass evolution,

there is no reason to expect strong phylogenetic signal or early burst-like evolutionary dynamics

in traits underlying local adaptive radiations. Ecological mechanisms such as species sorting and

character displacement are likely more important in generating equal size spacing (Rosenzweig,

1966; Davies et al., 2007; Pfennig and Pfennig, 2012) and we find no support for an early burst of

body mass evolution in felids (wA = 0.19 ) or mustelids (wA = 0.2) when these clades are analyzed

independently. Size may also provide a source of ecologically important morphological variation

through allometry and some authors have suggested that size can, in this way, act as a line of least

macroevolutionary resistance (Schluter, 1996a; Marroig and Cheverud, 2005, 2010). Birds provide

a rare example of a clade with a particular propensity towards early bursts of body size evolution

at both higher and lower phylogenetic levels (Richman and Price, 1992; Harmon et al., 2010;

Jønsson et al., 2012) but some evidence suggests that allometric variation in cranial and beak

morphology provides an important source of ecologically important variation (Bright et al., 2016),

Thus, where early bursts of size evolution occur, they may represent instances of trait hitch-hiking

(Jablonski, 2008, 2017), rather than divergence into distinct, size-based adaptive zones.

Dimensionality of Adaptive Radiation.—

Although we find strong support for the early burst model of general adaptive radiation in

univariate dental traits associated with dietary resource use, we find no support for early

burst–like dynamics in multivariate ecomorphology. This result is surprising given that most

paleobiological evidence for early burst–like dynamics comes from analyses of multivariate

character data that characterize overall organismal form (Westoll, 1949; Foote, 1995; Hughes

et al., 2013). Although several authors have shown that cladistic and morphometric data can

provide similar characterizations of clade disparity (Villier and Eble, 2004; Anderson and

Friedman, 2012; Foth et al., 2012; Hetherington et al., 2015) few have examined whether the
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choice of data affects inference of macroevolutionary mode. In a rare exception,

Mongiardino-Koch et al. (2017) found conflicting signals when comparing cladistic and

morphometric data for the scorpion genus Brachistosternus and interpreted the “late peak

disparity” signal in their morphometric data to represent species–specific but convergent

adaptations that overwrote historical patterns of ecomorphological evolution, such as early burst

adaptive radiation. Support for the low phylogenetic signal, single stationary peak model for our

multivariate ecomorphological data is consistent with this interpretation and helps reconcile our

results with a disparity–based analysis of the North American carnivoran fossil record that

showed no evidence for an early peak in multivariate ecomorphological variation (Wesley-Hunt,

2005). But, given the recent emergence and interest in multivariate phylogenetic methods for

studying ecomorphological evolutoin (e.g., Clavel et al., 2015; Bastide et al., 2018), it seems

reasonable to question why this distinction emerges and what it says about the dimensionality of

different forms of adaptive radiation?

The ecological opportunity model of adaptive radiation is rooted in the idea that lineages

within diversifying clades evolve rapidly towards novel or vacated peaks on the adaptive

landscape (Schluter, 2000; Losos and Mahler, 2010). Conceptualizing this model in univariate

space is straightforward as we can imagine isolated peaks or adaptive zones (Simpson, 1944, 1953)

that directly relate morphology to function. Indeed, this idea is implicit in modern phylogenetic

approaches for modeling adaptive evolution under an Ornstein-Uhlenbeck process (Hansen, 1997;

Butler and King, 2004; Beaulieu et al., 2012) and is the pattern we recover here for relative

grinding area. However, simulations show that where selection acts to optimize multiple functions

simultaneously, the number of peaks on the multi-dimensional adaptive landscape, that is the

number of phenotypic outcomes yielding comparable net fitness, increases while the fitness

difference between the peaks and the valleys connecting them may decline. The result is a

network of somewhat interconnected peaks that can easily be traversed over macroevolutionary

timescales (Niklas, 1997, 1999). Marshall (2003, 2014) termed this outcome the “Principle of

Frustration” because evolution’s ability to maximize all functions simultaneously is frustrated by
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trade–offs that result from the underlying morphological architecture of the organism. This idea

is related to the concept of many-to-one mapping of form to function (Wainwright et al., 2005)

where a massive amount of morphological variation may exist in individual components of an

integrated functional system without affecting the functional output of the system itself.

Critically, mosaicism in macroevolutionary rates and modes among different traits or body parts,

a rather common pattern in fossil time series (Hopkins and Lidgard, 2012), is an expected

consequence in such scenarios (Collar and Wainwright, 2006; Muñoz et al., 2017), and is the

outcome we find here when comparing among best-fit models for individua ecomorphologicall

traits. However, the weak evolutionary covariances among traits that result from such process will

yield “noisy” multivariate data, where considerable morphological divergence is expected between

young species pairs undergoing local adaptive radiation (Doebeli and Ispolatov, 2017). The choice

of trait(s) is therefore critical when attempting to understand general, law–like behaviors in

patterns of morphological evolution. Comparative evolutionary biologists must remember that all

ecomorphological traits are not equal and those, like relative grinding area, that play a greater

role in determining the fundamental ecological role of the organisms under study are more likely

to be the ones in which early bursts of general adaptive radiation occur. Despite the greater

potential to describe overall organismal form, multivariate data will not necessarily help detect

general adaptive radiations and may even hinder the search for them.

Conclusion

Phylogenetic comparative methods provide a powerful statistical framework for testing

hypotheses about tempo and mode in phenotypic evolution, but the insights about how evolution

works that can be gained from them depend wholly on the selection of appropriate data for the

question at hand. Much of what we have learned about the prevalence of early bursts over the

past 10 years has, we argue, been based on a conflating of processes occurring at different levels of

the phylogenetic hierarchy and, as a result, we have made little progress in advancing our

understanding of general law-like behaviors in morphological diversification (Gould, 1980). We
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here demonstrated that early burst dynamics characterize the evolution of a suite of traits

associated with diet in the order Carnivora, but that this macroevolutionary signature

characterizes the order and not individual families. Other traits, such as body mass, play critical

roles in facilitating resource partitioning at lower phylogenetic levels but the evolutionary and

ecological processes involved do not lead to early burst–like patterns in comparative data.

Though challenges exist for assembling appropriate datasets (Cooney et al., 2017), restricting the

expectation of an early burst of phenotypic evolution to Osbornian general adaptive radiations

and identifying the traits involved and hierarchical levels at which this process operates (Erwin,

2000; Jablonski, 2007) offers a compelling route towards a more comprehensive understanding of

the nomothetic forces shaping macroevolutionary pattern and process in morphological data.
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