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The rapid development of sequencing technologies has to led to an explosion of pathogen sequence
data that are increasingly collected as part of routine surveillance or clinical diagnostics. In public
health, sequence data is used to reconstruct the evolution of pathogens, anticipate future spread, and
target interventions. In clinical settings whole genome sequences identify pathogens at the strain level,
can be used to predict phenotypes such as drug resistance and virulence, and inform treatment by
linking to closely related cases. While sequencing has become cheaper, the analysis of sequence data
has become an important bottleneck. Deriving interpretable and actionable results for a large variety
of pathogens – each with their own complexities – from continuously updated data is a daunting task
and requires flexible bioinformatics workflows and dissemination platforms. Here, we review recent
developments in real-time analysis of pathogen sequence data with a particular focus on visualization
and integration of sequence and phenotypic data.

As pathogens replicate and spread, their genomes accumu-
late mutations. These changes can now be detected via cheap
and rapid whole genome sequencing on unprecedented scale.
Such sequence data are increasingly used to track the spread
of pathogens and predict their phenotypic properties. Both
applications have great potential to inform public health and
treatment decisions if sequencing data can be obtained and an-
alyzed rapidly. Historically, however, sequencing and analysis
has lagged months-to-years behind sample collection. The re-
sults from these studies have taught us much about pathogen
molecular evolution, genotype-phenotype maps, and epidemic
spread, but have come almost always too late to inform public
health interventions or treatment decisions.

The rapid development of sequencing technologies has
made routine sequencing of viral and bacterial genomes possi-
ble and tens of thousands of whole genome sequences (WGS)
are deposited in databases every year (see Fig. 1). Many more,
regrettably, are sequenced and not shared. There are currently
two major directions in which high-throughput sequencing
technologies are used in public health and diagnostics: (i)
to track outbreaks and epidemics to inform public health re-
sponse, and (ii) to characterize individual infections to tailor
treatment decisions.

Sequencing in public health. The utility of rapid sequenc-
ing and phylogenetic analysis of pathogens is perhaps most
evident for influenza viruses and food-borne diseases. Due
to rapid evolution of its viral surface proteins, the antigenic
properties of the circulating influenza viruses change every
few years and the seasonal influenza vaccine needs frequent
updating1. The WHO Global Influenza Surveillance and Re-
sponse System (GISRS) sequences hundreds of viruses every
month and many of these sequences are submitted to the GI-
SAID database (gisaid.org) within 4 weeks of sample collec-

tion. Phylogenetic analysis of these data provide an accurate
and up-to-date summary of the spread and abundance of dif-
ferent viral variants that is crucial input to the biannual con-
sultations on seasonal influenza vaccine composition.

Such rapid turn-around and data sharing is considerably
harder to achieve in an outbreak setting in resource limited
conditions. Nonetheless, Quick et al.2 achieved even shorter
turn-around during the tail end of the 2014–2015 West African
Ebola outbreak. Similarly, Dyrdak et al.3 analyzed an en-
terovirus outbreak in Sweden and continuously updated the
manuscript until publication with sequences sampled within
days of publication included in the analysis.

Molecular epidemiology techniques can reconstruct the
temporal and spatial spread of an outbreak. In this case, the
accumulation of mutations alongside a molecular clock esti-
mate can be used to date the origin of an outbreak. Similarly,
by linking samples that originate from different geographic lo-
cations, phylogeographic methods can reconstruct geographic
spread and differentiate distinct introductions. The resolution
of these inferences critically depends on the rate at which mu-
tations accumulate in the sequenced locus, which increases
with the per site evolutionary rate and the length of the locus.

RNA viruses accumulate changes in their genome with a
typical rate of 0.0005 to 0.005 changes per site and year4.
Rate estimates vary from virus to virus and depend on the time
scale of observation or whether measured within or between
hosts. Ebola virus and Zika virus, for example, evolve at a
rate of µ ≈ 0.001 per site per year. The expected time interval
without a substitution along a transmission chain is 1/(µL),
which corresponds to approximately 5 weeks for Zika virus
(L ≈ 10kb) and 3 weeks for Ebola virus (L ≈ 19kb). Hence
evolution and spread of such RNA viruses can be resolved on
the scale of a month. While this temporal resolution is typi-
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cally insufficient to resolve individual transmissions, it is high
compared to the duration of outbreaks. Rapid sequencing and
analysis therefore has the potential to inform intervention ef-
forts as outbreaks are unfolding. In particular, they rule out
direct transmission and differentiate different introductions or
zoonosis.

Phylodynamic and phylogeographic methods are best es-
tablished for viral pathogens with high evolutionary rates and
small genomes for which large scale sequencing has been pos-
sible for years. The evolutionary rates of bacteria are many
orders of magnitudes lower than those of RNA viruses. How-
ever, bacteria also have about 100 to 1000-fold larger genomes
and it is now possible to sequence entire bacterial genomes at
low cost. Substitution rate estimates in bacteria come with
substantial uncertainty but they tend to be on the order of one
substitution per megabase per year (with about one to two
orders of magnitude of variation between species5). With a
typical genome size of 5 megabases, this translates into 5–10
substitutions per genome and year — similar to many RNA
viruses. The substitution rate in the core genome of MRSA,
for example, was estimated to be 1.3 × 10−6 per site and
year6. The core genome of Listeria monocytogenes evolves
more slowly at about one substitution every 2.5y7. Hence real-
time phylogenetics for bacterial outbreak tracking is possible
in much the same way as for RNA viruses. Analysis of bac-
terial genomes, however, is vastly more complicated than that
of RNA viruses with short genomes. Bacteria frequently ex-
change genetic material via horizontal transfer, take up genes
from the environments and rearrange their genome. Recombi-
nation can blur phylogenetic signal and recombinant sequence
is often difficult to remove. Furthermore, strong selection
within hosts, for example through drug therapy, can acceler-
ate evolution by an order of magnitude8. If not properly ac-
counted for, these processes can blur any temporal signal and
obscure links between closely related isolates.

Even with whole genomes, phylogenetic resolution typi-
cally is insufficient to make the case for a direct transmis-
sion, but transmission can be confidently ruled out for di-
vergent sequences, seemingly unrelated cases can be grouped
into outbreaks (e.g. an outbreak of drug resistant MtB among
migrants arriving in multiple European countries9), predom-
inant routes of transmission and likely sources in the envi-
ronment or animal reservoirs can be identified. Genome-
Trackr and PulseNet, for example, are a large federated ef-
forts to sequence tens of thousands of genomes from food-
borne outbreaks and clinical samples10;11. All sequence data
from these projects are publicly available on NCBI with lit-
tle delay and are analyzed in real-time to track outbreaks.
The recently released Pathogen Detection system by NCBI
(www.ncbi.nlm.nih.gov/pathogens/) provides convenient ac-
cess to the sequence and metadata generated by these projects
as well as phylogenetic analysis.

These examples illustrate the potential and feasibility of ob-
taining actionable information from pathogen sequence data
for both viral and bacterial infections. However, with rapidly
increasing data volumes, efficient processing pipelines and
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FIG. 1 The number of complete pathogen genomes has increased
dramatically over the last few years. More than 4000 complete in-
fluenza A (IAV) subtype H3N2 virus genomes have been deposited
in GISAID in 2017. The GenomeTrakr network sequenced in excess
of 40,000 Salmonella genomes and 25,000 other bacterial genomes
(mostly Listeria, E. coli/Shigella, and Campylobacter) in 201711.

tools that help with interpretation – e.g. visualizations – in-
creasingly become the bottleneck.

Sequencing in diagnostics and therapy. For some
pathogens like Zika virus, sequencing the genome has no
implications for treatment. In the case of HIV, however,
drug resistance profiles derived from sequence data have di-
rectly informed treatment for years12. As the genetic basis
of drug resistance phenotypes are better understood, rapid
whole genome sequencing will increasingly be used to diag-
nose and phenotype pathogens directly from the clinical spec-
imen. Such culture-free methods are particularly important
for tuberculosis, in which culture based susceptibility testing
takes many weeks. Votintseva et al.13 have recently shown that
high-throughput sequencing directly from respiratory samples
can provide drug resistance profiles of M. tuberculosis within
a day.

Sequencing for diagnostic purposes or for public health
surveillance have different aims and requirements, but can
complement each other. Public health response typically re-
quires recent data with an emphasis on dynamics. Surveil-
lance data provides context for the individual case in the clin-
ics requires a stable database with validated content to make
reliable predictions on drug susceptibility, phylogenetic con-
text, and protective measures. Clinical sequencing data, how-
ever, should be fed into surveillance databases immediately
whenever ethically possible. Only with rapid and open shar-
ing of sequencing data can the full potential of molecular epi-
demiology be realized11.

The challenges involved in sample collection, processing,
sequencing and data sharing have been discussed at length
elsewhere14. Here, we focus on software developments that
facilitate the implementation of real-time analysis with an em-
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phasis on web-based visualization, as a full review of general
tools for genomic analysis and visualization is not easily en-
compassed.

RAPID AND INTERPRETABLE ANALYSIS OF GENOMIC
DATA

A typical molecular epidemiological analysis aims to
identify transmission clusters, date the introduction of the
pathogen, detail geographic spread, and in some cases iden-
tify potential phenotypic change of a pathogen from sequence
data. The rapidly increasing numbers of sequenced genomes
make comprehensive analysis computationally challenging.
While 1000s of viral genomes can be aligned within minutes
(e.g. by MAFFT) and the reconstruction of a basic phyloge-
netic tree typically takes less than one hour (e.g. using IQ-
TREE, RAxML or FastTree), the most popular tool for phylo-
dynamic inference (BEAST)15 will often take weeks to finish.

To overcome these hurdles, several tools that use sim-
pler heuristics have been developed to infer time-stamped
phylogenies16;17;18. Rather than sampling a large number of
tree topologies, these tools use the topology of an input tree
with little or no modification. Dating of ancestral events tends
to be of comparable accuracy to BEAST16;17;18. However,
these tools do not integrate uncertainty of tree reconstruction
and provide limited flexibility to infer demographic models.
Furthermore, the heuristics used by these program are based
on assumptions (for example that sequences are closely re-
lated) and they are not expected to be accurate in all scenarios.
The computational cost of Bayesian phylodynamics could be
mitigated if methods for continuous updating and augmenting
of the Markov chain with additional data were developed. For
the time being, however, efficient heuristics and sensible ap-
proximations deliver sufficiently accurate and reliable results
when near real-time analysis is required.

Viral genomes: Nextflu and Nextstrain

The number of influenza viruses that are sequenced and
phenotyped per month has increased sharply to a point that
a comprehensive and timely manual analysis and annotation
of the results is no longer feasible. In 2014, we developed an
automated phylodynamic analysis pipeline that operates on an
up-to-date database of sequences and serological information.
The results of this pipeline are available were made available
at nextflu.org and included a phylogeny, branch-specific mu-
tations, frequency trajectories of mutations and variants, and
a model of antigenic evolution.

Nextflu is now integrated in the more general plat-
form Nextstrain, that provides an online platform for out-
break investigations of diverse viruses and is available at
nextstrain.org? . Nextstrain uses TreeTime18 to infer time-
scaled phylogenies and conduct ancestral sequence inference.
In addition, Nextstrain uses the discrete ancestral character

inference of TreeTime to infer the likely geographic state of
ancestral nodes. Since this approach applies “mutation” mod-
els to “migration”, it is often called a “mugration model”.
A phylodynamic/phylogeographic analysis of 1000 sequences
of length 10kb takes on the order of an hour on a standard lap-
top computer.

Bacterial WGS data

Bacterial WGS data typically comes in the form of mil-
lions of short reads that can either be assembled into contigs,
mapped against reference sequences, or classified based on
kmer distributions. A large number of tools have been devel-
oped for rapid species identification, typing, and variant call-
ing. WGSA by the , for example, allows the user to upload
an assembly and WGSA will detect the species and infer the
multi-locus sequence type within a few seconds. In addition,
WGSA predicts antibiotic resistance profiles for a number of
species. WGSA was developed by the Center for Genomic
Pathogen Surveillance and is available at wgsa.net.

Bacterial genomes are very dynamic and frequently gain
or lose genes. Even closely related bacteria can differ in the
presence or absence of dozens of genes. To track transmission
and detect clusters, genomes are typically compared at a set of
core genes present in all bacteria of a species. Genes present
in only a fraction of individuals are referred to as accessory
genes.

Clinically important genes such antibiotic resistance deter-
minants or virulence factors are often not part of the core
genome and are horizontally transferred between strains and
species. Collections of bacterial genomes are therefore an-
alyzed using pan-genome tools that aim to cluster all genes
in the collection of genomes into orthologous groups. Early
methods for pan-genome analysis scaled poorly with the num-
ber of genomes that are analyzed since every gene in every
genome needed to be compared to every other gene. The
first tool capable of analyzing 100s of bacterial genomes was
Roary20. Roary is designed to work with very similar genes
(as is common in outbreak scenarios) and accelerates infer-
ence of orthologous gene clusters by pre-clustering genomes.
A more recent pan-genome analysis pipeline capable of large
scale analysis is panX21 that speeds up clustering by hierar-
chically building up the complete pan-genome from sub-pan-
genomes inferred from smaller batches of genomes. PanX is
coupled to a web-based visualization platform discussed be-
low.

While the pan-genome tools cluster annotated genes in the
collection of genomes, they are of little help to assess the ori-
gin and distribution of a particular sequence. Traditional tools
for homology search in NCBI only index assembled sequence,
but today the majority of sequence data are stored in short read
archives rather than in Genbank. Bradley et al.22 developed a
method to search the entire collection of microbial sequence
data including metagenomic samples from a wide variety of
environment. The ability to search this vast treasure trove
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FIG. 2 Phylogeographic analysis of Zika virus sequences on nextstrain.org? . Whole genomes sequences sampled between 2013 and 2017
were processed using the Nextstrain pipeline. Nextstrain reconstructs likely time and place of each internal node of the tree and from this
assignments infers possible transmission patterns that are displayed on a map. Molecular analysis of this sort reveals for example multiple
introductions of Zika virus into Florida originating most likely from viruses circulating in the Caribbean in 2015-2016.

of data will likely be transformative in assessing spread and
prevalence of novel resistance determinants. The recently dis-
covered mobile colistin resistance gene mcr-1, for example,
was found in more than 100 datasets where it wasn’t previ-
ously described22.

Outlook

Most current analysis pipelines require rerunning the entire
analysis even when only a single sequence is added. While
this strategy is still feasible today, this will likely become un-
sustainable in the future. Applications that support cheap up-
dating of datasets and on-line addition of user data will likely
replace current versions.

VISUALIZATION AND INTERPRETATION

With increasing dataset sizes, interpretation and exploration
of data become increasingly challenging. Phylogenetic trees
can be visualized as familiar planar graphs, but the tree alone
only shows genetic similarity between isolates and becomes
quickly unintelligible as the number of sequences increases.
To make pathogen sequence data truly useful, it needs to be
integrated with other types of information, ideally in an inter-
active way. A suitable platform to do so is the web-browser
and several powerful web applications have emerged over the
last few years. In addition, browser-based visualizations are
naturally disseminated online.

Microreact

Microreact is a web application based on React (a
JavaScript framework for interactive applications), D3.js (a
JavaScript library for producing dynamic, interactive data vi-
sualizations), Phylocanvas (a JavaScript flexible tree viewer),
and Leaflet (a JavaScript mapping toolkit)23. Microreact al-
lows exploration of a phylogenetic tree, the geographic loca-
tions, and a time line of the samples. It is available at microre-
act.org. Custom data sets can be loaded into the application in
the form of a Newick tree and a tabular file containing infor-
mation such as geographic location or sampling data.

Nextstrain

Nextstrain was developed as a more generic and flexible
version of Nextflu19 which is available at nextstrain.org. Sim-
ilar to Microreact, Nextstrain uses React, D3.js, and Leaflet,
but uses a custom made tree viewer that has flexible zooming
and annotation options. The tree can be decorated with any
discrete or continuous attribute, both on tips of the tree and
inferred values for internal nodes (for example geographic lo-
cation). Nextstrain maps individual mutations to branches in
the tree and thereby allows to associate mutations with phe-
notypes or geographic distributions. The map in Nextstrain
shows putative transmission events and a panel indicates ge-
netic diversity across the genome (Fig. 2).

The analyses by Nextstrain and Nextflu critically depend on
timely and open sharing of sequence information that many
laboratories around the globe contribute. To incentivize early
pre-publication sharing of data, platforms like Nextstrain need
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to explicitly acknowledge the individual contributions. Ide-
ally, such platforms should provide added value to authors,
such as for example deep links that show data by a particular
group in the context of the outbreak.

Phandango

Phandango is an interactive viewer for bacterial whole
genome sequencing data24 and combines a phylogenetic tree
with metadata columns and gene presence-absence maps
or recombination events. Phandango is available at phan-
dango.net and can ingest the output of a number of analysis
tools commonly used for the analysis of bacterial WGS data
such Gubbins, Roary and BRAT.

panX

PanX is a pan-genome analysis pipeline that is coupled
to a web-browser based visualization21. Similar to Phan-
dango, it displays a core genome SNP phylogeny but is other-
wise more centered on genetic variation in individual genes.
Pangenomes of about 100 bacterial species based on curated
reference genomes are available at pangenome.de. The tree
and alignment of each gene in the pan-genome can be ac-
cessed rapidly by a searching a table of gene names and anno-
tations. PanX then displays gene and species tree side by side
and maps gene gain and loss events to branches in the core
genome tree and mutations to branches in the gene tree. Trees
can be colored by arbitrary attributes such as resistance phe-
notypes and associations between genetic variation and these
phenotypes can be explored.

Other tools

SpreaD3 allows of visualization of phylogeographic recon-
structions from models implemented in the software package
BEAST25. PhyloGeoTool is a web-application to interactively
navigate large phylogenies and to explore associated clinical
and epidemiological data26. TreeLink displays phylogenetic
trees alongside metadata in an interactive web application27.

CHALLENGES IN DATA INTEGRATION AND
VISUALIZATION

With rapidly increasing volumes of sequence data, deci-
sions as to how the data are filtered and what analysis are
shown become increasingly important. Epidemiological in-
vestigations of a novel outbreak typically seek to identify
the sources, track the spread, and detect transmission chains.
In this case, a generic combination of map, tree, and time
line will often be an appropriate and sufficient visualization.
Nextstrain and Microreact both follow this paradigm.

However, when analyzing established pathogens that con-
tinuously adapt to treatments, vaccines, or pre-existing immu-
nity, more specific applications will be necessary since case
data, phenotype data, and clinical parameters differ wildly
by pathogen. Such data will generally have a common core
such as sample date and location, but other parameters such
as drug resistance phenotypes, disease severity, host age, risk
group, serology, etc., are pathogen specific. While these data
are often stored in non-standardized formats and ethical and
technical reasons can impede data sharing, these data are of-
ten at least as important for interpretation of the epidemio-
logical dynamics as phylodynamic inference from sequence
data. The value of either data is greatly increased by seam-
less integration, but the idiosyncrasies require flexible analysis
and visualization frameworks that can be tailored to specific
pathogens.

One such example is the serological characterization of in-
fluenza viruses via hemagglutination inhibition (HI) titers us-
ing antisera raised in ferrets. Such titers are routinely mea-
sured as part of GISRS to monitor the antigenic evolution of
influenza viruses are a good example how phenotype informa-
tion can be interactively integrated with phylogeny and molec-
ular evolution. HI titers are reported in large tables and have
been traditionally visualized using multidimensional scaling
without any reference to the phylogeny. In Bedford et al.28 and
Neher et al.29, we developed methods to integrate the molecu-
lar and antigenic evolution of influenza virus. This integration
allows association of genotypic changes with antigenic evolu-
tion and suggests an intuitive and interactive visualization of
HI titer data on the phylogeny. A screenshot of this integration
is shown in Fig. 3. Due to data sharing restrictions, most HI
titer data are not openly available, but historical data by Mc-
Cauley and colleagues are visualized along with the molecular
evolution at hi.nextflu.org.

In addition to phenotype integration, it is crucial to choose
the right level of detail for a specific application. This is
particularly true for bacteria where the relevant information
might be the core genome phylogeny, the presence/absence of
particular genes or plasmids, or individual mutations in spe-
cific genes. If the analysis tool and the visualization does not
provide a fine grained analysis at the relevant level, the most
important patterns might stay hidden. On the other hand, sift-
ing through every gene or mutation is prohibitive. The pri-
mary aim should be to highlight the most important and ro-
bust patterns upfront and provide flexible methods to filter and
rank variants (e.g. by recent rise in frequency, association with
host, resistance or risk group, etc). The user should then have
the possibility to expose detail on demand when a deeper ex-
ploration is required.

Similarly, parameter inferences and model abstractions are
very useful to get a concise summary of the data, but should
be complemented by the ability of interrogate the raw data
(e.g. an estimate of the evolutionary rate should be accompa-
nied by a scatter plot of root-to-tip divergence and sampling
time). This is particularly important in outbreak scenarios
when methods are applied to an emerging pathogen in a de-
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FIG. 3 Integration of HI titer data with molecular evolution influenza
virus. Each year, influenza laboratories determine thousands of HI
titers of test viruses relative to sera raised against several reference
viruses (indicated by gray cogs). These data can be integrated with
the molecular evolution of the virus and visualized on the phylogeny
(here showing inferred titers using a model). The reference virus with
respect to which titers are displayed can be chosen by clicking on the
corresponding symbol in the tree29. The visualization exposes both
raw data (via tool tips for each virus) as well as a model inference
that integrates many individual measurements (hi.nextflu.org).

veloping situation.
For clinical applications, the presentation of the results of

an analysis should be focused on the sample in question and
only provide reliable and actionable information, while sug-
gestive and correlative results tend to be a distraction30.

CONCLUSIONS

High-throughput and rapid sequencing is revolutionizing
infectious disease diagnostics and epidemiology. Sequence
data can be used to unambiguously identify pathogens, to link
related cases, to reconstruct the spread of an outbreak, and will
soon allow detailed prediction of a pathogen’s phenotype.

The Global Influenza Surveillance and Response System
(GISRS) is a good example of a near real-time surveillance
system. Hundreds of viruses are sequenced and phenotyped
every month and the sequence data is shared in a timely man-
ner. A global comprehensive analysis of these data, updated
about once a week, is available at nextflu.org. These analysis
directly inform the influenza vaccine strain selection process1.

Several public health agencies have adopted WGS as
their primary tool for outbreak investigation and many cen-
ters share these data openly with commendable timeli-
ness. The GenomeTrakr and PulseNet networks, for exam-
ple, now sequence and openly release about 5000 bacterial
genomes per month10;11. These data are accessible on NCBI
through the recently released Pathogen Detection system at
www.ncbi.nlm.nih.gov/pathogens with analysis results avail-

able via FTP.
These two examples clearly show that near real-time ge-

nomic surveillance is possible and valuable and all the individ-
ual components to implement such surveillance are in place.
However, to realize this potential for many more pathogens,
sample collection and sequencing has to be streamlined, data
need to be shared along with the relevant metadata, and spe-
cific analysis methods and visualizations need to be imple-
mented and maintained.
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