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Abstract 15 

Protein kinases are major drug targets, but the development of highly-selective inhibitors has 16 
been challenging due to the similarity of their active sites. The observation of distinct structural 17 
states of the fully-conserved Asp-Phe-Gly (DFG) loop has put the concept of conformational 18 

selection for the DFG-state at the center of kinase drug discovery. Recently, it was shown that 19 
Gleevec selectivity for the Tyr-kinases Abl was instead rooted in conformational changes after 20 

drug binding. Here, we investigate whether protein dynamics after binding is a more general 21 

paradigm for drug selectivity by characterizing the binding of several approved drugs to the 22 
Ser/Thr-kinase Aurora A. Using a combination of biophysical techniques, we propose a universal 23 

drug-binding mechanism, that rationalizes selectivity, affinity and long on-target residence time 24 
for kinase inhibitors. These new concepts, where protein dynamics in the drug-bound state plays 25 
the crucial role, can be applied to inhibitor design of targets outside the kinome.    26 

 27 

eLife digest 28 

The Ser/Thr kinase Aurora A is an important target for the development of new anticancer 29 
therapies. A longstanding question is how to specifically and effectively inhibit only this kinase in 30 
a background of over 550 protein kinases with very similar structures. To this end, understanding 31 

the inhibition mechanism of Aurora A by different drugs is essential. Here, we characterize the 32 

kinetic mechanism of three distinct kinase drugs, Gleevec (Imatinib), Danusertib (PHA739358) 33 
and AT9283 (Pyrazol-4-yl Urea) for Aurora A. We show that inhibitor affinities do not rely 34 

exclusively on the recognition of a specific conformation of the Asp-Phe-Gly loop of the kinase. 35 
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Our quantitative kinetics data put forward an opposing mechanism in which a slow conformational 36 

change after drug binding (i.e., induced-fit step) dictates drug affinity. 37 

 38 

Introduction 39 

Protein kinases have become the number one drug target of the 21th century (Cohen, 2002; 40 

Hopkins & Groom, 2002), due to their central role in cellular processes and involvement in various 41 
types of cancer (Carvajal, Tse, & Schwartz, 2006; Gautschi et al., 2008; Katayama & Sen, 2010). 42 

Despite their therapeutic significance, the development of specific kinase inhibitors proves to be 43 

extremely challenging because they must discriminate between the very similar active sites of a 44 
large number of kinases in human cells. One of the biggest success stories is Gleevec: a highly 45 

selective drug that specifically targets Abl kinase, providing an efficient treatment of chronic 46 
myelogenous leukemia (CML) and minimizing side effects (Iqbal & Iqbal, 2014). Despite being a 47 
multi-billion-dollar cancer drug, the mechanism responsible for its impressive selectivity has been 48 

elusive until recently. It has long been proposed that the conformational state of the fully 49 
conserved DFG (for Asp-Phe-Gly) loop (Taylor, Keshwani, Steichen, & Kornev, 2012) dictates the 50 
selectivity for Gleevec and other kinase inhibitors (Lovera et al., 2012; Treiber & Shah, 2013). 51 

Recent quantitative binding kinetics put forward an opposing mechanism in which an induced-fit 52 
step after drug binding is responsible for Gleevec’s selectivity (Agafonov, Wilson, Otten, Buosi, & 53 

Kern, 2014; Wilson et al., 2015). 54 

Here we ask the question whether this fundamentally different mechanism is a more 55 
general principle for drug efficacy and selectivity not only for Tyr kinases such as Abl, but also for 56 

Ser/Thr kinases. To this end, we chose the Ser/Thr kinase Aurora A and investigated the binding 57 
kinetics of three distinct kinase drugs: Danusertib, AT9283, and Gleevec. Aurora A kinase is one 58 
of the key regulators of mitotic events, including mitotic entry, centrosome maturation and spindle 59 

formation (Fu, Bian, Jiang, & Zhang, 2007; Lukasiewicz & Lingle, 2009; Marumoto, Zhang, & 60 

Saya, 2005), as well as assisting in neuronal migration (Nikonova, Astsaturov, Serebriiskii, 61 
Dunbrack, & Golemis, 2013). Aurora A has attracted significant attention for the development of 62 

targeted agents for cancer because it is overexpressed in a wide range of tumors, including 63 

breast, colon, ovary and skin malignancies (Carvajal et al., 2006; Gautschi et al., 2008; Katayama 64 
& Sen, 2010; Lok, Klein, & Saif, 2010; Marzo & Naval, 2013). The focus was mainly on ATP-65 

competitive inhibitors, but more recently inhibition by allosteric compounds has also been pursued 66 

with the aim of achieving higher selectivity (Asteriti et al., 2017; Bayliss, Burgess, & McIntyre, 67 
2017; Burgess et al., 2016; Janecek et al., 2016; McIntyre et al., 2017). So far, only the clinical 68 
significance of Aurora A inhibition by ATP-competitive drugs has been established (Bavetsias & 69 
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Linardopoulos, 2015; Borisa & Bhatt, 2017), but little is known about their binding mechanisms. 70 

Many high-resolution X-ray structures of Aurora A kinase bound to different inhibitors have been 71 
solved (Bavetsias et al., 2015; Dodson et al., 2010; Fancelli et al., 2006; Ferguson et al., 2017; 72 

Heron et al., 2006; Howard et al., 2009; Kilchmann et al., 2016; Martin et al., 2012; Zhao et al., 73 

2008), but the selectivity profile of those kinase inhibitors remains very difficult to explain.  74 
The drugs used in this study are small, ATP-competitive inhibitors. Danusertib 75 

(PHA739358) and AT9283 were developed for Aurora kinases, whereas Gleevec is selective for 76 

the Tyr kinase Abl. Danusertib inhibits all members of the Aurora family with low nanomolar IC50 77 
values (13, 79 and 61 nM for Aurora A, B and C, respectively) (Carpinelli et al., 2007; Fraedrich 78 

et al., 2012) and was one of the first Aurora kinase inhibitors to enter phase I and II clinical trials 79 

(Kollareddy et al., 2012; Steeghs et al., 2009). A crystal structure of Danusertib bound to Aurora 80 
A kinase shows an inactive kinase with the DFG-loop in the out conformation (Fancelli et al., 81 
2006). AT9283 inhibits both Aurora A and B with an IC50 of 3 nM (Howard et al., 2009) and has 82 
also entered several clinical trials (Borisa & Bhatt, 2017). Interestingly, the crystal structure of 83 
Aurora A with AT9283 shows that this drug binds to the DFG-in, active conformation of the kinase 84 

(Howard et al., 2009). Both drugs are high-affinity binders that reportedly bind to a discrete kinase 85 
conformation and would allow us to probe for a conformational-selection step. Lastly, we selected 86 
Gleevec as a drug that is not selective for Aurora A and should, therefore, have a weaker binding 87 

affinity. We reasoned that this choice of inhibitors could reveal general mechanisms underlying 88 
drug selectivity and affinity.   89 

The combination of X-ray crystallography, NMR spectroscopy and comprehensive 90 
analysis of drug binding and release kinetics delivered a general mechanistic view. Differential 91 

drug affinity is not rooted in the overwhelmingly favored paradigm of the DFG-conformation, but 92 
instead in the dynamic personality of the kinase that is manifested in conformational changes 93 
after drug binding. Notably, such conformational changes have evolved for its natural substrates, 94 

and the drugs take advantage of this built-in protein dynamics. 95 

 96 

Results 97 

Dephosphorylated Aurora A samples both an inactive and active structure 98 
A plethora of X-ray structures and functional assays led to the general notion that 99 

dephosphorylated Aurora A and, more universally, Ser/Thr kinases are in an inactive 100 

conformation and that phosphorylation or activator binding induces the active structure. A 101 
comparison of many X-ray structures of inactive and active forms of Ser/Thr kinases resulted in 102 
an elegant proposal of the structural hallmarks for the active state by Taylor and collaborators: 103 
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the completion of both the regulatory and catalytic spines spanning the N- and C-terminal 104 

domains, including the orientation of the DFG-motif (Kornev & Taylor, 2010, 2015). 105 
To our surprise, two crystals from the same crystallization well capture both the inactive 106 

and active conformations of dephosphorylated Aurora A bound with AMPPCP (Figure 1A, B). As 107 

anticipated, the first structure (PDB 4C3R (Zorba et al., 2014)) superimposes with the well-known 108 
inactive, dephosphorylated Aurora A structure (PDB 1MUO (Cheetham et al., 2002)) and the 109 

activation loop is not visible as commonly observed for kinases lacking phosphorylation of the 110 

activation loop (Zorba et al., 2014). Unexpectedly, the second structure (PDB 6CPF; Figure 1-111 
figure supplement 1) adopts the same conformation as the previously published phosphorylated, 112 

active structure (PDB 1OL7 (Bayliss, Sardon, Vernos, & Conti, 2003)) (Figure 1C) and the first 113 

part of the activation loop could be built, although the B-factors are high. Every hallmark of an 114 
active state is seen for this dephosphorylated protein, including the DFG-in conformation that is 115 
essential for completing the regulatory spine. In contrast, the DFG-loop is in the out position for 116 
the inactive form of Aurora A (Figure 1D, cyan). In the active, non-phosphorylated structure, 117 
electron density is seen in the canonical tighter Mg2+-binding site, where the metal ion is 118 

coordinated to the a- and b-phosphates of AMPPCP and Asp274. The presence of the metal is 119 

supported by the CheckMyMetal (Zheng et al., 2017) validation except that the coordination is 120 

incomplete. We surmise that two water molecules, not visible in our data, complete the 121 
coordination sphere as is seen in several higher-resolution structures. In the inactive structure, 122 
no electron density for Mg2+ can be identified possibly due to the fact that Asp274 is rotated to the 123 

DFG-out position and is, therefore, lost as coordination partner. Furthermore, sampling of the 124 
active conformation does not depend on AMPPCP binding as dephosphorylated, apo Aurora A 125 
also crystallizes in the active form (PDB 6CPE; Figure 1E, F and Figure 1-figure supplement 1). 126 

We note that in Aurora kinase sequences a tryptophan residue, Trp277, is immediately 127 

following the DFG motif and displays a drastically different orientation whether Aurora A is in an 128 
active (DFG-in) or inactive (DFG-out) conformation (Figure 1D). This Trp moiety is unique for the 129 

Aurora kinase family in the Ser/Thr kinome and its position is suggested to be important for tuning 130 

the substrate specificity (C. Chen et al., 2014). We used this Trp residue as probe to monitor the 131 
DFG flip and drug binding in real time as described below. 132 

The fact that the inactive and active states are seen in the crystal implies that both are 133 

sampled; however, it does not deliver information about the relative populations or interconversion 134 
rates. Therefore, we set out to monitor the conformational exchange of the DFG-in/out flip in 135 
solution. Owing to the reported importance of the DFG flip for activity, regulation and drug design, 136 

there have been extensive efforts to characterize this conformational equilibrium by computation 137 
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(Badrinarayan & Sastry, 2014; Barakat et al., 2013; Meng, Lin, & Roux, 2015; Sarvagalla & 138 

Coumar, 2015). As an experimental approach, NMR spectroscopy is an obvious choice; however 139 
efforts on several Ser/Thr and Tyr kinases led to the general conclusion that the activation loop, 140 

including the DFG motif and most of the active-site residues, cannot be detected due to exchange 141 

broadening, and at best can only be seen after binding of drugs that stabilize conformations 142 
(Campos-Olivas, Marenchino, Scapozza, & Gervasio, 2011; Langer et al., 2004; Vajpai et al., 143 

2008; Vogtherr et al., 2006). 144 

[1H-15N]-HSQC experiments on uniformly 15N-labeled samples of Aurora A proved to be 145 
no exception: many peaks are missing and only three out of four tryptophan side chain indole 146 

signals are seen in the 2D spectra of a [15N]-Trp labeled sample (Figure 2A, B). Therefore, we 147 

sought a strategy to overcome this general problem of exchange broadening that hampers the 148 
detection of the DFG equilibrium. Aurora A was produced containing 5-fluoro-tryptophan residues 149 
to allow for one-dimensional 19F spectroscopy to deal with exchange broadening while providing 150 
sensitivity close to proton NMR (Kitevski-LeBlanc & Prosser, 2012). Now, we observe as expected 151 
four peaks in our NMR spectra for apo- and AMPPCP-bound wild-type Aurora A (Figure 2C). A 152 

deconvolution of the spectrum yields almost identical integral values for all four peaks, whereas 153 
the linewidth of one resonance is approximately 5-fold larger (Figure 2D, purple signal). This 154 
broad peak is a prime candidate to originate from Trp277, directly adjacent to the DFG-loop. The 155 

W277L mutation confirmed our hypothesis (Figure 2C), and the extensive line broadening of this 156 
signal in a one-dimensional spectrum is consistent with its absence in the [1H,15N]-HSQC 157 
spectrum. Of note, the W277L mutant is still active, as confirmed by a kinase assay, most likely 158 
because this Trp is not conserved in Ser/Thr kinases, where a Leu residue is found at the position 159 

for several Ser/Thr family members. Mutating any of the other, more conserved Trp residues 160 
resulted in insoluble proteins. The broad line shape for the Trp277 peak hints at severe exchange 161 
broadening in the surrounding of the DFG-loop and is consistent with the high B-factors for Trp277 162 

and its neighboring residues observed in all crystal structures described here. Determination of 163 

relative populations and rate constants of interconversion is not possible from this data, but this 164 

missing piece of information was obtained by stopped-flow kinetics of drug binding. 165 

 166 

Gleevec binding to Aurora A distinguishes conformational selection versus induced-fit 167 
mechanisms 168 

Through groundbreaking experiments on the Tyr kinases Abl and Src, the concept of drug 169 

selectivity based on the DFG-loop conformation has received considerable attention in kinase 170 
drug discovery (Lovera et al., 2012; Treiber & Shah, 2013). A recent report provides kinetic 171 
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evidence for such conformational selection, but identifies an induced-fit step after drug binding as 172 

the overwhelming contribution for Gleevec selectivity towards Abl compared to Src (Agafonov et 173 
al., 2014). Here, we ask the obvious question if this mechanism of Gleevec binding to Abl might 174 

exemplify a more general mechanism for kinase inhibitors. 175 

To assess which kinetic steps control drug affinity and selectivity, we first studied the 176 
binding kinetics for Gleevec to Aurora A by stopped-flow spectroscopy using intrinsic tryptophan 177 

fluorescence under degassing conditions to reduce photobleaching. At 25 °C, the binding of 178 

Gleevec to Aurora A was too fast to be monitored and, therefore, experiments were performed at 179 
10 °C. Binding kinetics of Gleevec to Aurora A exhibited biphasic kinetic traces (Figure 3A). The 180 

first, fast phase is characterized by a decrease in the fluorescence intensity (Figure 3A, B), with 181 

an observed rate constant,	𝑘#$% , increasing linearly with Gleevec concentration (Figure 3C). The 182 

slope corresponds to the bimolecular rate constant, 𝑘& = (1.1 ± 0.3) ´ 106 M-1s-1, of Gleevec 183 

binding to Aurora A and the dissociation of Gleevec is determined from the intercept, 𝑘'& = 31 ± 184 

2 s-1 (Figure 3C). The second, slow phase exhibits an increase in fluorescence intensity (Figure 185 
3A), with the observed rate constant decreasing with Gleevec concentration (Figure 3D). The 186 

decreasing 𝑘#$%	provides unequivocal evidence of conformational selection, where its rate of 187 

interconversion is slower than the rate of ligand dissociation (𝑘( + 𝑘'( ≪ 𝑘'&). The values of 𝑘( 188 

and 𝑘'( can be estimated by fitting the data to Equation 1 and are 0.014 ± 0.001 s-1 and 0.011 ± 189 

0.002 s-1, respectively (Figure 3D). These rate constants represent the conformational change 190 

from DFG-in to -out and vice versa since Gleevec is a DFG-out selective inhibitor due to steric 191 
hindrance (Nagar et al., 2002; Schindler et al., 2000; Seeliger et al., 2007). 192 

In order to more rigorously analyze the data and test the model, all time courses of the 193 
fluorescence changes were globally fit using the microscopic rate constants determined above as 194 

starting values (Figure 4) to the model in Figure 3G, where also the resulting microscopic rate 195 
constants are given. The lack of a conformational transition after drug binding (i.e., induced-fit 196 
step) in Aurora A should dramatically decrease drug affinity in comparison to Abl. Indeed, Gleevec 197 

binds to Aurora A with a 𝐾, of 24 ± 7 µM (Figure 3F) compared to the low nM affinity to Abl 198 

(Agafonov et al., 2014). Two pieces of independent evidence establish that there is indeed no 199 

induced-fit step in Gleevec binding to Aurora A: (i) the calculated KD from the kinetic scheme is in 200 

agreement with the macroscopically measured 𝐾, (c.f. Figure 3G and 3F), and (ii) the observed 201 

𝑘#--  from the dilution experiment (Figure 3E) coincides with the physical dissociation rate (i.e., 202 

intercept of the binding plot, 31 ± 2 s-1, in Figure 3C). In summary, the lack of an induced-fit step 203 
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for Gleevec binding to Aurora A is the major reason for Gleevec’s weak binding, and not the DFG-204 

loop conformation. 205 
 206 

Kinetics of Danusertib binding to Aurora A: three-step kinetics with conformational 207 

selection and an induced-fit step 208 
Next, we wanted to shed light on why Danusertib, unlike Gleevec, binds very tightly to Aurora A. 209 

A high-resolution X-ray structure shows Danusertib bound to Aurora A’s active site with its DFG-210 

loop in the out conformation (Figure 5A) (Fancelli et al., 2006), and to rationalize Danusertib’s 211 
high affinity we measured the kinetics of Danusertib binding to Aurora A directly by stopped-flow 212 

experiments at 25 °C. An increase in fluorescence intensity was observed at all Danusertib 213 

concentrations and showed double-exponential behavior (Figure 5B). The dependence of the two 214 
observed rates constants on drug concentration is linear for one of them (Figure 5C) and non-215 

linear for the other with an apparent plateau at approximately 16 ± 2 s-1 (Figure 5D). The step with 216 

linear inhibitor concentration dependence corresponds to the second-order binding step, whereas 217 
a non-linear concentration dependency hints at protein conformational transitions. For a 218 

hyperbolic increase of the observed rate with substrate concentrations, one cannot a priori 219 
differentiate between a conformational selection and an induced fit mechanism. However, 220 

conformational selection happens before drug binding, and the intrinsic slow DFG-in to DFG-out 221 
interconversion in Aurora A revealed by Gleevec binding (Figure 3A) must, therefore, be 222 

unaltered. Since the apparent rate of 16 ± 2 s-1 (Figure 5D) is two orders of magnitude faster, it 223 

can only reflect an induced-fit step (i.e., 𝑘#$% = 𝑘/ + 𝑘'/).  224 

So, what happened to the conformational selection step? We hypothesize that the lack of 225 
this step in our kinetic traces is due to a too small amplitude of this phase, or not observable 226 

because of photobleaching having a bigger effect at the longer measurement times. To lessen 227 
potential photobleaching, we reduced the enzyme concentration and increased the temperature 228 

to 35 °C. Indeed, under these conditions, the slow DFG-in to DFG-out kinetics were observed as 229 

an increase of fluorescence intensity over time with an observed rate constant of approximately 230 
0.1 s-1 (Figure 5-figure supplement 1A). 231 

While these experiments clearly establish the three-step binding mechanism, it does not 232 

provide accurate rate constants for the conformational selection step and it cannot be observed 233 
at 25 °C where all the other kinetic experiments are performed. To resolve this issue, we repeated 234 

the Aurora A–Gleevec experiment at 25 °C (Figure 5-figure supplement 2A, B) and obtained 235 

reliable rate constants (𝑘( = 0.09 ± 0.01 s-1 and 𝑘'( = 0.06 ± 0.005 s-1) for the conformational 236 

selection step in Aurora A, which will be used as “knowns” in what follows. We hypothesize that 237 
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the conformational selection step reflects the interconversion between inactive/active 238 

conformations and is correlated with the DFG-out and -in position (Figure 1). The following 239 
observations support our hypothesis: (i) two crystal structures for the apo-protein show Trp277 in 240 

very different environments (Figure 1E), (ii) Danusertib has been proposed to selectively bind to 241 

the DFG-out conformation based on a co-crystal structure (Figure 5A) (Fancelli et al., 2006), and 242 
(iii) the same slow step is observed for binding of both Gleevec and Danusertib. 243 

 Next, the dissociation kinetics for Danusertib was measured by fluorescence and 244 

appeared to be extremely slow with an observed slow-off rate of (3.2 ± 0.3) ´ 10-4 s-1 (Figure 5E). 245 

Rationalization of complex binding kinetics cannot be done anymore by visual inspection and 246 

kinetic intuition, which can, in fact, be misleading. In order to elucidate the correct binding 247 
mechanism and obtain accurate kinetic parameters, all kinetic traces were globally fit (Figure 6) 248 

to the three-step binding scheme (Figure 5I). Although global fitting of the binding and dissociation 249 

kinetics in KinTek Explorer delivered a value for 𝑘'& , evaluation of the kinetic scheme with respect 250 

to the time traces exposes that 𝑘'& is not well determined from our experiments. We therefore 251 

designed a double-jump experiment to populate the AurAout:D state followed by dissociation to 252 

obtain more accurate information on 𝑘'&. Our stopped-flow machine lacks the capability to 253 

perform double mixing. Therefore, the double-jump experiment was performed using a Creoptix 254 

WAVE instrument. This label-free methodology uses waveguide interferometry to detect refractive 255 
index changes due to alteration in surface mass in a vein similar to Surface Plasmon Resonance 256 

(SPR). It is an orthogonal technique that sidesteps notable issues associated with fluorescence 257 
methods (e.g., photobleaching and inner-filter effects). In short, after immobilizing Aurora A on a 258 

WAVEchip, a high concentration of Danusertib was injected for a short, variable period of time, 259 
and dissociation was triggered by flowing buffer through the microfluidics channel to remove the 260 

drug. The dissociation kinetics fit to a single exponent with a rate constant, 𝑘&, of 6.8 ± 0.4 s-1 261 

(Figure 5F and Figure 5-figure supplement 1B). 262 

We want to discuss a few additional kinetic features. First, the observed rate constant 263 

measured in the dilution experiment (Figure 5E, 𝑘'/ = (3.2 ± 0.3) ´ 10-4 s-1) is slower than 𝑘'/ 264 

from the global fit (𝑘'/ = (7.1 ± 0.5) ´ 10-4 s-1), which might seem counterintuitive. The observed 265 

rate constant was verified by an additional dilution experiment using Creoptix WAVE (𝑘'/ = (2 ± 266 

0.6) ´ 10-4 s-1, Figure 5-figure supplement 1C). The difference in the observed and microscopic 267 

rate constant can, however, be fully reconciled by considering the kinetic partitioning for the 268 

proposed scheme, as shown in Figure 6-figure supplement 1. Second, a powerful and 269 

independent validation of the three-step binding mechanism is obtained by comparing the 270 

measured overall 𝐾, of Danusertib with the calculated macroscopic 𝐾, from the microscopic rate 271 
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constants (Figure 5G, H, I and Figure 5-figure supplement 1D) according to Equation 4, which 272 

indeed delivers values that are within experimental error. In addition, our values for 𝑘&, 𝑘'/, and 273 

𝐾, are in good agreement with those reported in a recent study using SPR (Willemsen-Seegers 274 

et al., 2017). 275 
Our results illuminate trivial but profound principles of binding affinity and lifetime of 276 

drug/target complexes: a conformational selection mechanism always weakens the overall 277 
inhibitor affinity, while an induced-fit step tightens the affinity depending on how far-shifted the 278 

equilibrium in the enzyme/drug complex is (Equations 2, 3 and 4). For DFG-out binders (e.g., 279 

Danusertib and Gleevec), the DFG-in and -out equilibrium weakens the overall affinity 1.6-fold; 280 

however, the conformational change after drug binding results in a four orders of magnitude 281 
tighter binding for Danusertib and is the sole reason for its high affinity to Aurora A compared to 282 

Gleevec. The dissociation constants for the bimolecular binding step 𝐾& is very similar for both 283 

inhibitors. Finally, the lifetime of Danusertib on the target is very long because of the very slow 284 

conformational dynamics within the Aurora A/Danusertib complex (𝑘'/ = (7.1 ± 0.5) ´ 10-4 s-1).  285 

 286 
Kinetics of AT9283 binding to Aurora A – a surprise 287 
We chose AT9283 as a third inhibitor to characterize the binding mechanism because it has been 288 

described as a DFG-in binder based on a crystal structure of AT9283 bound to Aurora A (PDB 289 
2W1G, (Howard et al., 2009)). We, therefore, anticipated that in its binding kinetics one can now 290 

detect the DFG-out to DFG-in switch. Rapid kinetic experiments of binding AT9283 to Aurora A 291 
at 25 °C resulted in biphasic traces and both processes showed an increase in fluorescence over 292 

time (Figure 7A). The 𝑘#$%  for the faster phase (𝑘&) was linearly dependent on drug concentration 293 

reflecting the binding step (Figure 7B) and 𝑘#$%  for the slower phase (𝑘/) has a limiting value of 294 

0.8 ± 0.2 s-1 and is attributed to an induced-fit step (Figure 7C). For the conformational selection 295 

step (i.e., DFG-out to DFG-in), a decrease in fluorescence is expected because for the reverse 296 
flip observed in the Gleevec and Danusertib experiments, a fluorescence increase was seen 297 

(Figure 3A and Figure 5-figure supplement 1A). However, we could not find any condition (e.g., 298 

by varying temperature and ligand concentrations) where such a phase could be observed. 299 
Dissociation is characterized by double-exponential kinetics (Figure 7D and Figure 7-300 

figure supplement 1A). The fast phase (~38% of the total amplitude change) decays with a rate 301 

constant of (1.1 ± 0.02) ´ 10-2 s-1, and the slow phase (~62% of the total change in amplitude) has 302 

a rate constant of (0.1 ± 0.01) ´ 10-2 s-1. To distinguish between the reverse induced-fit step (𝑘'/) 303 

and the physical dissociation step (𝑘'&), a double-jump experiment was performed that 304 

unambiguously assigned the faster phase to 𝑘'&	(Figure 7E and Figure 7-figure supplement 1B). 305 
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Our attempts to globally fit all kinetic traces assuming binding to only the DFG-in state and using 306 

the rate constants for the DFG-loop flip from the Gleevec experiment failed (Figure 8-figure 307 
supplement 1A). An extended model, where AT9283 can bind to both DFGin/out conformations, 308 

followed by a common induced-fit step can also not explain the experimental kinetic traces (Figure 309 

8-figure supplement 1B). These failures, together with the lack of a detectable conformational 310 
selection step, led to a new model in which both the DFG-in and DFG-out states can bind AT9283, 311 

but only AurAin:AT can undergo an induced-fit step (Figure 7H). All data can be globally fit to this 312 

model (Figure 8) and the overall 𝐾, calculated from the corresponding microscopic rate constants 313 

(using Equation 5) is in good agreement with the experimentally measured 𝐾, (Figure 7F-H). 314 

Finally, the 10-fold difference between the 𝑘'/ from the global fit (Figure 7H) and the 315 
experimentally observed slow off-rate can be reconciled by kinetic partitioning as shown in Figure 316 

7-figure supplement 1A. 317 
 318 
Crystal structures of AT9283 bound to Aurora A buttress new binding model 319 

In an effort to structurally verify our model we solved a crystal structure of Aurora A with AT9283 320 
bound and indeed observed the DFG-out conformation (PDB 6CPG, Figure 9B and Figure 9-321 

figure supplement 1), in contrast to the DFG-in conformation as previously reported (Figure 9A) 322 

(Howard et al., 2009). Our structure was obtained by co-crystalizing Aurora A with AT9283 and a 323 
monobody that binds to the same site as the natural allosteric activator TPX2 (Figure 9B). Binding 324 
of this monobody shifts Aurora A into an inactive conformation, with the DFG-loop in the out 325 

conformation. This new structure underscores the plasticity of Aurora A kinase and the ability of 326 
AT9283 to bind to a DFG-out state, in addition to the previously reported DFG-in state. 327 

Thus, our structural and kinetic data together support that AT9283 can bind to both DFG-328 
in and DFG-out state of Aurora A, and emphasizes the need for caution when interpreting single 329 

X-ray structures. 330 
 331 
Inhibitors take advantage of built-in dynamics for ATP binding 332 

We finally compared the binding kinetics of the ATP-competitive inhibitors described above with 333 
the natural kinase substrate, ATP (Figure 10). In order to measure stopped-flow kinetics for ATP 334 
binding, FRET was measured by exciting Trp residues in Aurora A and detecting fluorescence 335 

transfer to the ATP-analogue mant-ATP (Lemaire, Tessmer, Craig, Erie, & Cole, 2006; Ni, 336 

Shaffer, & Adams, 2000). The binding of mant-ATP to Aurora A showed biphasic kinetic traces 337 
(Figure 10A) that describe the physical binding step (i.e., linear dependence on mant-ATP 338 

concentration; Figure 10B) and the induced-fit step (Figure 10C). The observed rate constant 339 
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approaches a maximum value defined by the sum of 𝑘/ +	𝑘'/ (Figure 10C) and the intercept can 340 

be estimated to be 𝑘'/ and is consistent with the value obtained from the 𝑘#--  experiment (Figure 341 

10D). We find that mant-ATP can bind to both the DFG-in or -out conformations, consistent with 342 

our nucleotide-bound crystal structures (Figure 1A-D) and recent single-molecule fluorescence 343 
spectroscopy data that indicates that nucleotide binding does not significantly affects this 344 

equilibrium (Gilburt et al., 2017). To confirm the model, the kinetic data were globally fit to a two-345 

step binding mechanism (Figure 10H, G). The calculated 𝐾, from the corresponding microscopic 346 

rate constants (Figure 10H) is comparable with experimental macroscopic 𝐾, obtained from a 347 
titration experiment (Figure 10E, F). 348 

The presence of an induced-fit step for the natural substrate ATP suggests that such 349 

conformational change after ligand binding is a built-in property of the enzyme. In other words, 350 
inhibitors take advantage of the inherent plasticity of the enzyme that is required for its activity 351 

and regulation. The main difference between ATP and inhibitor binding is the rate constant for the 352 

reverse induced-fit step (𝑘'/). In the case of ATP, this rate is much faster and, therefore, does 353 
not significantly increase the overall affinity. Faster conformational changes and weaker binding 354 

are of course prerequisites for efficient turnover; whereas slow conformational changes, 355 
particularly the reverse induced-fit step, are at the heart of action for an efficient drug, because it 356 
results in tight binding and a long lifetime on the target. In summary, binding of different ligands 357 

to the ATP-binding site, such as nucleotides or ATP-competitive inhibitors, is comprised of the 358 
physical binding step followed by an induced-fit step. By definition, it is the nature of the induced-359 
fit step that varies for the different ligands since it happens as a result of ligand binding. 360 

 361 

Discussion 362 

Characterizing the detailed kinetic mechanisms of drug binding is not just an academic exercise 363 
but delivers fundamental knowledge for developing selective inhibitors with high affinity. An 364 
induced-fit step turns out to be key for all tight-binding inhibitors studied. From our results on 365 

Aurora A kinase presented here and earlier data on Tyrosine-kinases (Agafonov et al., 2014; 366 

Wilson et al., 2015), we propose that this is a general mechanism for different kinases and multiple 367 
inhibitors, thereby providing a platform for future computational and experimental efforts in rational 368 

drug design. 369 

The “use” of a far-shifted induced-fit step for a promising drug is logical for the following 370 
reasons: (i) it increases the affinity for the drug by this coupled equilibrium, (ii) it prolongs the 371 

residence time of the drug on the target due to the often slow reverse rate, (iii) it is specific for 372 

each drug as it happens after the drug binding, and (iv) it can add selectivity for the targets 373 
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because it likely involves residues more remote from the active site. An increased drug residence 374 

time has significant pharmacological advantages as it can lead to a prolonged biological effect, a 375 
decrease of side effects, and a lower risk of metabolic drug modification. Such inhibitors have 376 

long been described as slow tight-binding inhibitors (Copeland, 2016; Copeland, Pompliano, & 377 

Meek, 2006). The concept of the advantageous roles of induced-fit steps is based on simple 378 
thermodynamics and protein flexibility, and is, therefore, likely of relevance for drug design to 379 

other targets outside of the kinome. 380 

Additionally, our data provides unique insight into the extensively discussed DFG flip. 381 
Combining x-ray crystallography, NMR spectroscopy and stopped-flow kinetics of drug binding 382 

establish the nature of this DFG flip both structurally, thermodynamically and kinetically, and 383 

resolves the longstanding question of its role for drug affinity and selectivity. Selective binding of 384 
a specific DFG-state by Gleevec has been first proposed as the reason for selectivity towards Abl. 385 
This conformational selection principle has ever since been at the center of drug discovery for 386 
many kinases, including Aurora A (Badrinarayan & Sastry, 2014; Liu & Gray, 2006). Based on our 387 
results, we argue that conformational selection of the DFG-state by ATP-competitive inhibitors is 388 

a mistakenly pursued concept in drug design for the following reasons: (i) conformational selection 389 
by definition weakens the overall ligand affinity, (ii) active site binders are automatically inhibitors, 390 
therefore selective binding to a specific DFG-state has no advantage (Badrinarayan & Sastry, 391 

2014; Liu & Gray, 2006), (iii) kinases interconvert between both states. High selectivity gained by 392 
DFG-state selective binding could only be achieved in the scenario of a highly skewed population 393 
towards the binding-competent state for one kinase relative to all others, which is unfounded. 394 

Our results exemplify why rational drug design is so challenging. The characterization of 395 

the complete free-energy landscape of drug binding is needed, which will require more 396 
sophisticated computational approaches guided by experimental data such as provided in our 397 
study. A good illustration of this point are the computational reports that focused on the DFG flip 398 

as a key determinant drug selectivity (Badrinarayan & Sastry, 2014) that now have been ruled out 399 

by our kinetic measurements. Our data suggest that future design efforts should be focusing on 400 

understanding and exploiting induced-fit steps. The findings presented here are encouraging for 401 

developing selective inhibitors even for kinases with very similar folds and drug binding pockets 402 

since the action does not happen on a single structural element of the protein but, on a complex 403 
energy landscape that is unique to each kinase. 404 

  405 

 406 

 407 
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Materials and Methods 408 

 409 

Cloning, expression and purification of dephosphorylated Aurora A (122-403) and 410 

inhibiting monobody. 411 
Dephosphorylated Aurora A proteins were expressed and purified as described before (Zorba et 412 

al., 2014) and analyzed by mass spectrometry to confirm their phosphorylation state. The W227L 413 
mutant was generated using the QuickChange Lightning site-directed mutagenesis kit (Agilent). 414 

 U-[15N] Aurora A was obtained by growing E. coli in M9 minimal medium containing 1 g/L 415 
15NH4Cl (Cambridge Isotope Laboratories, Tewksbury, MA, USA) and 5 g/L D-glucose as the sole 416 
nitrogen and carbon source, respectively. [15N]-Trp labeled wild-type Aurora A was obtained using 417 

the standard M9 minimal medium, complemented with all amino acids (0.5 g/L) with the exception 418 
of tryptophan. One hour prior to induction, 30 mg/L of 15N2-L-Trp (NLM-800; Cambridge Isotope 419 
Laboratories, Tewksbury, MA, USA) was added to the medium. Similarly, to obtain samples of 420 

wild-type and W277L Aurora A containing 5-fluoro-tryptophan, bacterial growth was performed in 421 
unlabeled M9 medium containing all amino acids (0.5 g/L) except for tryptophan. One hour before 422 
protein induction, the media was supplemented with 30 mg/L of 5-fluoro-DL-tryptophan (Sigma-423 

Aldrich) (Crowley, Kyne, & Monteith, 2012). NMR samples contained 200-300 µM Aurora A in 50 424 
mM HEPES, pH 7.3, 50 mM NaCl, 20 mM MgCl2, 5 mM TCEP, 2 M TMAO and 10%(v/v) D2O. 425 

 Inhibiting monobody used for co-crystallization with Aurora A and AT9283 was expressed 426 

in E. coli BL21(DE3) cells harboring the plasmid pHBT containing His6-tagged-Mb. A culture of 427 

TB media containing 50 µg/mL kanamycin that was grown overnight at 37 °C was added to 1L of 428 

TB media with 50 µg/mL kanamycin to get a starting OD600 of ~0.2. This culture was grown at 37 429 

°C until the OD600 reached ~0.8. Protein expression was induced by 0.6 mM IPTG at 18 °C for 430 
13-15 h and cells were harvested by centrifugation. The cell pellet was resuspended in binding 431 
buffer (50 mM Tris-HCl, pH 8.0, 300 mM NaCl, 20 mM imidazole, 20 mM MgCl2, 10% glycerol) 432 

containing 0.5 mg/mL lysozyme, 5 µg/mL DNase, and 1x EDTA-free protease inhibitor cocktail. 433 

Cells were ruptured by sonication on ice then centrifuged at 18,000 rpm at 4 °C for 1 h. The 434 

supernatant was loaded onto HisTrapTM HP (GE Healthcare) after filtration using 0.22 µm filtering 435 

unit. The pellet was resuspended with GuHCl buffer (20 mM Tris-HCl, pH 8.0, 6 M GuHCl) and 436 

allowed to rotate on wheel for 10 min at 4 °C and spun down again. The supernatant was passed 437 

through 0.2 µm filtering unit and loaded onto HisTrapTM HP column previously loaded with soluble 438 

fraction and pre-equilibrated with GuHCl buffer. Refolding monobody on-column was achieved by 439 
washing the HisTrapTM HP column with 5 column volumes (CV) of GuHCl buffer, followed by 5 440 
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CV of Triton-X buffer (binding buffer + 0.1% Triton X-100), then 5 CV of b-cyclodextrin buffer 441 

(binding buffer + 5 mM b-cyclodextrin), and finally 5 CV of binding buffer. Monobody was eluted 442 

with 100% of elution buffer (binding buffer + 500 mM imidazole). The protein was dialyzed 443 

overnight in gel-filtration buffer (20 mM Tris-HCl, pH 7.5, 200 mM NaCl, 20 mM MgCl2, 5 mM 444 

TCEP, 10% glycerol) in the presence of TEV protease (1:40 TEVP:Mb molar ratio). After dialysis, 445 
the TEV-cleaved monobody was passed through HisTrapTM HP column again. The flow-through 446 

containing TEV-cleaved monobody was collected and concentrated before loading onto Superdex 447 
200 26/60 gel-filtration column pre-equilibrated with the gel-filtration buffer. The monobody was 448 

flash-frozen and stored in -80 °C until use. 449 

 450 
X-ray crystallography 451 

Crystals of dephosphorylated (deP) Aurora A122−403 + AMPPCP were obtained by mixing 570 μM 452 
(18 mg/mL) deP Aurora A122−403 and 1 mM AMPPCP in a 2:1 ratio with mother liquor (0.2 M 453 
ammonium sulfate, 0.2 M Tris-HCl, pH 7.50, 30% (w/v) PEG-3350). The crystals were grown at 454 

18 °C by vapor diffusion using the hanging-drop method. The protein used for the crystallization 455 
was in storage buffer (20 mM Tris-HCl, pH 7.5, 200 mM NaCl, 10% (v/v) glycerol, 20 mM MgCl2, 456 
1 mM TCEP); AMPPCP was freshly prepared before use in the same buffer. Crystals were flash-457 

frozen in liquid nitrogen prior to shipping. Crystals of apo, deP Aurora A122−403 were grown at 18 458 
°C by vapor diffusion using the sitting-drop method (96-well plate). A 1:1 ratio of protein to mother 459 

liquor was obtained by combining 0.5 µL of 300 µM (10 mg/mL) deP Aurora A122−403 in 50 mM 460 

HEPES, pH 7.3, 500 mM ammonium acetate, 1 mM MgCl2, 5 mM TCEP) with 0.5 µL of 0.15 M 461 

Tris-HCl, pH 7.5, 0.15 M ammonium sulfate, 35% (w/v) PEG-3350. Crystals were soaked for 10-462 
20 s in cryo buffer (20% (w/v) PEG-400, 20% ethylene glycol, 10% water and 50% mother liquor) 463 

before flash-freezing in liquid nitrogen. The complex between Aurora A122−403, inhibiting monobody 464 
(Mb) and AT9283 was crystallized at 18 °C by vapor diffusion using the sitting-drop method. In 465 
short, a 1:1 ratio of protein mixture to mother liquor was obtained by combining 0.5 μL of sample 466 

[240 μM deP Aurora A122−403 + 1.0 mM AT9283 + 250 μM Mb] with 0.5 μL of mother liquor [0.1 M 467 

Bis-Tris, pH 5.5, 0.2 M magnesium chloride, 19% (w/v) PEG-3350]. Crystals were soaked for 10-468 
20 s in cryo buffer (17.5% (w/v) PEG-400, 17.5% ethylene glycol, 45% water and 20% mother 469 

liquor) before flash-freezing in liquid nitrogen. 470 

 Diffraction data were collected at 100 K at the Advanced Light Source (Lawrence Berkeley 471 
National Laboratory) beamlines ALS 8.2.1 (apo-AurA and AurA+Mb+AT9283) and 8.2.2 472 

(AurA+AMPPCP) with a collection wavelength of 1.00 Å. 473 

 Data were indexed and integrated using iMOSFLM (Battye, Kontogiannis, Johnson, 474 
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Powell, & Leslie, 2011) for apo/AMPPCP-bound Aurora A and Xia2 (Winter, 2010) using XDS 475 

(Kabsch, 2010) for the Aurora A/Mb/AT9283 complex, respectively. Data were scaled and merged 476 
with AIMLESS (Evans & Murshudov, 2013), in the case of Aurora A/Mb/AT9283 two data separate 477 

data sets were merged. All software was used within the CCP4 software suite (Winn et al., 2011). 478 

 As initial search models 1MQ4 (Nowakowski et al., 2002) and 3K2M (Wojcik et al., 2010) 479 
were used for Aurora A and monobody, respectively, and molecular replacement was performed 480 

using Phaser (McCoy et al., 2007). The molecules were placed in the unit cell using the 481 

ACHESYM webserver (Kowiel, Jaskolski, & Dauter, 2014). Iterative refinements were carried out 482 
with PHENIX (Adams et al., 2010), using rosetta.refine (DiMaio et al., 2013) and phenix.refine 483 

(Afonine et al., 2012), and manual rebuilding was performed in Coot (Emsley & Cowtan, 2004; 484 

Emsley, Lohkamp, Scott, & Cowtan, 2010). 485 
 Structure validation was performed using MolProbity (V. B. Chen et al., 2010) and yielded 486 
the statistics given below. The Ramachandran statistics for dephosphorylated apo (AMPPCP-487 
bound) Aurora A are: favored: 93.65 (94.90)%, allowed 5.95 (4.71)%, outliers: 0.4 (0.39)%);  0.48 488 
(0.0)%	rotamer outliers and an all-atom clashscore of 4.45 (2.44). For the Aurora A/Mb/AT9283 489 

complex, the Ramachandran statistics are: favored: 92.64%, allowed 7.06%, outliers: 0.3%); 0.0 490 
%	 rotamer outliers and an all-atom clashscore of 2.81. We note that the B-factors for the 491 
monobodies in the complex of Aurora A/Mb/AT9283 are rather high, indicating significantly 492 

flexibility in the parts that are not part of the binding interface with Aurora A. 493 
 The data collection and refinement statistics are given in Figure 1-figure supplement 1 and 494 
Figure 9-figure supplement 1. Structure factors and refined models have been deposited in the 495 
PDB under accession codes: 6CPE (apo Aurora A), 6CPF (Aurora A + AMPPCP) and 6CPG 496 

(Aurora A/Mb/AT9283). 497 
 498 
All figures were generated using Chimera (Pettersen et al., 2004). 499 

 500 
NMR spectroscopy 501 

All 19F NMR experiments were performed at 35 °C on a Varian Unity Inova 500 MHz spectrometer, 502 

equipped with a 1H/19F switchable probe tuned to fluorine (90° pulse width of 12 µs). All 1D 19F 503 

spectra were recorded with a spectral width of ~60 ppm and a maximum evolution time of 0.25 s. 504 

An interscan delay of 1.5 s was used with 5,000 scans per transients, giving rise to a total 505 
acquisition time of 2.5 h per spectrum. To remove background signal from the probe and avoid 506 

baseline distortions, data acquisition was started after a ~100 µs delay (using the "delacq" macro) 507 

and appropriate shifting of the data followed by backward linear prediction was performed. The 508 
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data were apodized with an exponential filter (2.5 Hz line broadening) and zero-filled before 509 

Fourier transform. To improve the signal-to-noise ratio several data sets were recorded 510 
consecutively and, provided that the sample remained stable, added together after processing 511 

(two for apo Aurora A, four for Aurora A + AMPPCP, and five for W277L + AMPPCP, respectively). 512 
19F chemical shifts were referenced externally to trifluoroacetic acid (TFA) at -76.55 ppm. 513 
 [1H-15N]-TROSY-HSQC experiments were recorded at 25 °C on an Agilent DD2 600 MHz 514 

four-channel spectrometer equipped with a triple-resonance cryogenically cooled probe-head. 515 

Typically, 115–128 (15N) × 512 (1H) complex points, with maximum evolution times equal to 48.5–516 
64 (15N) × 64 (1H) ms. An interscan delay of 1.0 s was used along with 32 or 56 scans per transient, 517 

giving rise to a net acquisition time 1.5-2.5 h for each experiment. To improve the signal-to-noise 518 

ratio several data sets were recorded consecutively and, provided that the sample remained 519 
stable, added together after processing (typically three data sets per sample). 520 
 All data sets were processed with the NMRPipe/NMRDraw software package (Delaglio et 521 

al., 1995) and 2D spectra were visualized using Sparky (Goddard, 2008). Deconvolution of the 522 
19F spectra and line shape fitting was performed using the Python package nmrglue (Helmus & 523 

Jaroniec, 2013). 524 
 525 
Kinetics experiments of Aurora A with Gleevec, Danusertib, and AT9283 526 

Stopped-flow experiment. Intrinsic tryptophan fluorescence spectroscopy was used to monitor 527 

drug binding kinetics to Aurora A. All experiments were performed at 25 °C, except for the Gleevec 528 

kinetics that were measured at 10 °C (unless otherwise stated) because the binding of Gleevec 529 

to Aurora A is too fast 𝑘#$%,1234235. Stock solutions of 200 mM Danusertib, 200 mM AT9283 and 530 

50 mM Gleevec (all purchased from Selleck Chemicals) were prepared in 100% DMSO were and 531 

stored at -80 °C until used. Aurora A used in the kinetic experiments was dephosphorylated 532 

Aurora A as determined by mass spectrometry, Western blot and activity experiments (data not 533 

shown). The rapid kinetics were studied using a stopped-flow spectrophotometer (SX20 series 534 

from Applied Photophysics Ltd). The flow system was made anaerobic by rinsing with degassed 535 
buffer comprised of 50 mM HEPES, 50 mM NaCl, 20 mM MgCl2, 5 mM TCEP, 5% DMSO, pH 536 

7.30 to minimize photobleaching. The stock solutions of Aurora A and all drugs were made 537 

anaerobic by degassing with ThermoVac (MicroCal) at the desired temperature. In general, a 538 

solution of 5 µM Aurora A was loaded in one syringe and quickly mixed with drug, prepared in the 539 

same buffer, in the other syringe (mixing ratio 1:10). A significant increase or decrease in the 540 
fluorescence intensity of Aurora A (excitation at 295 nm, emission cut-off at 320 nm) can be 541 

observed due to the drug binding. For each drug concentration, at least five replicate 542 
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measurements were made and these transients were averaged. Analysis was performed by fitting 543 

the individual trace to exponential equations using Pro-Data Viewer (Applied Photophysics Ltd) 544 
or with Kinesyst 3 software (TgK Scientific) and error bars denote the standard errors as obtained 545 

from the fit. KaleidaGraph version 4.5.3 (Synergy) was used for data analysis and plotting. All 546 

kinetic data were globally fitted in KinTek Explorer software (Johnson, 2009; Johnson, Simpson, 547 
& Blom, 2009). 548 

Under the rapid equilibrium approximation, the binding and dissociation steps of Gleevec 549 

to Aurora A are fast compared to conformational selection, therefore the value of 𝑘( and 𝑘'( can 550 

be estimated according to Equation 1: 551 
 552 

𝑘#$% = 	
678

(9	: [<=>>?>@]

[BCDEDF	B]G	HI7JIJ
K
L

+	𝑘( Equation 1 553 

 554 

where 𝑘( and 𝑘'(represent the conformational change from DFG-in to -out and vice versa, 555 

respectively. The approximate values of 𝑘( and 𝑘'( obtained from fitting to this equation are used 556 

as starting values for the global fit. 557 

 For the 5 µM Aurora A/Gleevec complex, the release of the drug was recorded after a 11-558 

fold dilution of the complex using the stopped-flow instrument for 0.25 s (excitation at 295 nm, 559 

emission cut-off at 320 nm) at 10 °C. 560 
 561 

Creoptix WAVE experiments. Double jump, slow-off, and macroscopic 𝐾, experiments of 562 

Aurora A with drugs were studied using a Creoptix WAVE instrument (Creoptix AG, Wädenswil, 563 
Switzerland) at 25 °C. All chemicals were purchased from GE Healthcare, unless otherwise 564 
stated. The protocols in the WAVEcontrol software for conditioning of the chip, immobilization of 565 
proteins and performing kinetics experiments were followed. In short, the polycarboxylate chip 566 

(PCH) was activated by injection of a 1:1 mixture with final concentrations of 200 mM N-ethyl-N’-567 
(3-dimethylaminopropyl)carbodiimide (EDC) and 50 mM N-hydroxysuccinimide (NHS), followed 568 

by streptavidin immobilization (50 µg/mL in 10 mM sodium acetate pH 5.0). Unreacted sites on 569 

the chip were blocked with 1 M ethanolamine pH 8.0. For all activation, immobilization and 570 

passivation steps 0.2x HBS-EP was used as running buffer with a flowrate of 10 µL/min and an 571 

injection duration of 420 s on both channels 1 and 2. 572 

Biotinylated T288V variant that mimics dephosphorylated Aurora A was used for 573 

experiments performed on the Creoptix WAVE instrument. The activity of T288V with substrate 574 
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Lats2, the macroscopic 𝐾, and slow-off rate of Danusertib were the same as wild-type (data not 575 

shown). Biotinylated T288V Aurora A (70 µg/mL) was immobilized on the PCH-streptavidin chip 576 

with 10 µL/min injection and 15 s injection duration over channel 1 only (channel 2 was used as 577 

reference channel). All experiments were run in 50 mM HEPES, 50 mM NaCl, 20 mM MgCl2, 5 578 

mM TCEP, 0.03 mg/mL BSA, 0.005% Tween-20, pH 7.30 as running buffer. Binding experiments 579 
were evaluated over a range of Danusertib (0.13 – 66.67 nM), AT9283 (0.03 – 64.8 nM), and 580 

Gleevec (0.37 – 40 µM) concentrations. Gleevec binding experiments contained 5% DMSO in the 581 

running buffer (see above) to enhance Gleevec’s solubility. Double-jump experiments of Aurora 582 

A/drugs were performed by injecting 1 µM Danusertib or AT9283 with 0.2, 0.4, 0.8, and 2 s 583 

injection duration for Danusertib and 1 and 3 s injection duration for AT9283 followed by a 60 s 584 

dissociation duration per injection. The slow-off experiments were performed by injecting 5 µM 585 

Danusertib or AT9283 with 5-10 s injection duration (to fully saturate Aurora A) followed by a 180 586 
s injection of buffer to remove the excess drug and the dissociation was measured for a duration 587 

of 10800 s. 588 
 589 

Spectrofluorometer experiments. The spectrofluorometer FluoroMax-4 (Horiba Scientific) with 590 

temperature controller was used to study the slow-off rate of Aurora A with Danusertib at 25 °C. 591 
For this experiment, a solution containing 30 nM Aurora A and 30 nM Danusertib was pre-592 
incubated for an hour, before diluting 30-fold into degassed buffer (ratio 1:30). A significant 593 

decrease in the fluorescence intensity of Aurora A (excitation at 295 nm, emission at 340 nm) can 594 

be seen due to the Danusertib release. The fluorescence signal was recorded every 160 s for a 595 
duration of six hours using the photobleaching minimization option that will close the shutter after 596 

each acquisition. A control experiment was performed, using the same experimental conditions, 597 
but without drug in order to account for photobleaching. 598 

 599 

Overall dissociation constant calculated from intrinsic rate constants. In the following 600 

equations, 𝐾(, 𝐾&, 𝐾/ and 𝐾M equal to: 601 

𝐾( =
𝑘'(
𝑘(

 602 

          𝐾& =
67J
6J
=

6ENN
6EO

 

603 

𝐾/ =
𝑘'/
𝑘/

 604 

𝐾M =
𝑘'M
𝑘M

 

605 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 21, 2018. ; https://doi.org/10.1101/286310doi: bioRxiv preprint 

https://doi.org/10.1101/286310
http://creativecommons.org/licenses/by/4.0/


 

 19 

Conformational selection followed by inhibitor binding: 606 

        Equation 2 607 
 608 

Inhibitor binding followed by an induced-fit step:  609 

    Equation 3 610 

 611 
Conformational selection followed by inhibitor binding and an induced-fit step: 612 

  Equation 4 613 

 614 
Conformational selection mechanism, followed by inhibitor binding to both DFG-in and -out state, 615 

but an induced-fit step only occurs in the DFG-in state: 616 
 617 

 Equation 5 618 

 619 
The uncertainties in the calculated dissociation constant parameter using the equations above 620 
are obtained using standard error propagation. 621 

 622 

Aurora A binding to mant-ATP. FRET using intrinsic tryptophan fluorescence is used to monitor 623 

mant-ATP binding kinetics to Aurora A at 10 °C. In the binding experiment or 𝑘#3, increasing 624 

concentration of mant-ATP were quickly mixed to 0.5 µM Aurora A (ratio 1:10, excitation at 295 625 

nm, emission cut-off at 395 nm). In the experiment to measure the release of mant-ATP or 𝑘#-- , 626 
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10 µM/10 µM Aurora A/mant-ATP complex was diluted with buffer (ratio 1:10). A significant 627 

decrease in the fluorescence intensity of Aurora A (excitation at 295 nm, emission cut-off at 395 628 
nm) can be seen due to the mant-ATP release. 629 

 630 

Macroscopic dissociation constant experiments 631 
Fluorescence titration experiments were measured using FluoroMax-4 spectrofluorometer 632 

(Horiba Scientific). Increasing amounts of Aurora A/Danusertib complex (4 nM Aurora A and 150 633 

nM Danusertib) or Aurora A/mant-ATP (1 µM Aurora A and 2 mM mant-ATP) were titrated into an 634 
Aurora A solution (4 nM and 1 µM Aurora A for experiments with Danusertib and mant-ATP, 635 

respectively). To measure Danusertib affinity, the excitation wavelength was 295 nm (5 nm 636 

bandwidth) and emission spectra were recorded from 310–450 nm (20 nm bandwidth) in 637 
increments of 2 nm and the temperature was maintained at 25 °C. For the mant-ATP experiment, 638 
the dissociation constant was measured at 10 °C using fluorescence energy transfer from 639 
tryptophan residues in Aurora A to mant-ATP by setting the excitation wavelength to 290 nm (5 640 
nm bandwidth) and collecting the emission intensity from 310–550 nm (5 nm bandwidth) in 641 

increments of 2 nm. A control experiment in the absence of Aurora A was performed using the 642 
same experimental settings and used to correct for the mant-ATP interference. In all experiments, 643 
a 5 minutes equilibration time was used after each addition of Aurora A/Danusertib complex or 644 

Aurora A/mant-ATP complex. 645 
The fluorescence intensity at 368 nm versus Danusertib concentration or the change in 646 

fluorescence at 450 nm (∆𝐹MRS) versus mant-ATP concentration was fitted to Equation 6 using 647 

Marquardt-Levenberg nonlinear fitting algorithm included in KaleidaGraph to obtain the 𝐾, . 648 
 649 

F = FS + A ∙
[W]9[XY]9Z['\([W]9[XY]9Z[)J'M∙[XY]∙[W]))

&∙[XY]
   Equation 6 650 

 651 

F and F0 are the fluorescence and initial fluorescence intensities, respectively. [I] and [𝐸`] are the 652 
total concentration of the drug or mant-ATP and the Aurora A, respectively. 653 
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Figure 1. Dephosphorylated Aurora A samples both the active and inactive conformation. (A) 
Superposition of X-ray structures of dephosphorylated Aurora A (residues 122-403) with Mg2+.AMPPCP 
(AMPPCP in gray sticks and magnesium as yellow sphere) in the inactive (cyan, PDB 4C3R (Zorba et 
al., 2014)) and active (orange, PDB 6CPF) state, solved from crystals of the same crystallization well. 
(B) Zoom-in of (A) to visualize the nucleotide binding region (K162, D274, and E181), the R-spine 
(L196, Q185, F275, H254, and D311) and the activation loop region (D256, K258, and T292). (C) 
Same zoom-in as in (B), but dephosphorylated Aurora A in active state (orange) is superimposed with 
phosphorylated Aurora A (red, PDB 1OL7 (Bayliss et al., 2003)). (D) Superposition of the DFG(W) motif 
in the three states shown in (B) and (C).(E) Superposition of phosphorylated Aurora A in active 
conformation (red) and apo, dephosphorylated Aurora A also in the active conformation (yellow, PDB 
6CPE). (F) Zoom-in of (E) showing the same region as in (B).
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Data collection and refinement statistics for dephosphorylated Aurora A 

apo-Aurora A 
(6CPE) 

Aurora A + AMPPCP 
(6CPF) 

Data collection 
Space group P 61 2 2 P 61 2 2 
Cell dimensions 

 a, b, c (Å) 80.55, 80.55, 169.79 81.75, 81.75, 172.87 
    , ,  (°)  90, 90, 120 90, 90, 120 
Resolution (Å) 84.90 – 2.45 (2.55 – 2.45)a 86.44 – 2.30 (2.39 – 2.30)a 

Rmeas 0.073 (1.308) 0.113 (2.260) 

I/ (I) 15.0 (1.6) 10.3 (1.3) 
CC1/2 0.998 (0.711) 0.997 (0.465) 
Completeness (%) 99.9 (100) 100 (100) 
Redundancy 7.6 (6.3) 9.7 (7.8) 

Refinement 
Resolution (Å) 64.52 – 2.45 54.79 – 2.30 
No. reflections 12617 (1224) 15756 (1527) 
Rwork / Rfree 0.2151 / 0.2528 0.2179 / 0.2587 
No. atoms 

 Protein 2035 2055 
 Ligand/ion 11 32 
 Water 4 6 

B factors 
 Protein 71.83 63.68 
 Ligand/ion 75.77 76.44 
 Water 52.52 45.84 

R.m.s. deviations
Bond lengths (Å) 0.005 0.004 
Bond angles (°) 0.98 0.97 

The number of crystals for each structure is 1.  
a Values in parentheses are for highest-resolution shell. 

 Figure 1-figure supplement 1
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Figure 2. NMR spectra indicate extensive dynamics of the DFG-loop. (A) The four tryptophan residues in 
Aurora A are shown on the structure (PDB 4C3R (Zorba et al., 2014)) in stick representation; Trp277 in the 
DFGW-loop is highlighted in red. (B) Overlay of [1H-15N]-TROSY-HSQC spectra of dephosphorylated 
Aurora A in its apo-state (U-[15N], blue; [15N]-Trp, green) and AMPPCP-bound (U-[15N], red). Only three 
instead of the four expected cross peaks for tryptophan side chains are detected. (C) 19F NMR 
spectra of 5-fluoro-Trp labeled dephosphorylated wild-type Aurora A (apo in blue and AMPPCP-bound 
in red) and the W277L Aurora A mutant bound to AMPPCP (green). The assignment of Trp277 following 
the DFG-loop is shown. (D) 19F spectrum of wild-type Aurora A bound to AMPPCP (red) together with its 
deconvolution into four Lorentzian line shapes, the overall fit is shown as a black, dotted line. The integrals 
for all four signals are equal, but the linewidth for Trp277 (purple) is approximately 5-fold larger.
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Figure 3. Kinetics of Gleevec binding to Aurora A at 10 °C measured by stopped-flow Trp fluorescence to 
dissect all binding steps. (A) Kinetics after mixing 0.5 μM Aurora A with 4.5 μM Gleevec is double 
exponential with a fast decrease and a slow increase in fluorescence signal. (B) The decrease in 
fluorescence intensity due to the fast binding phase was completed within 0.25 s. (C) Observed rate 
constants of fast binding phase were plotted against increasing concentrations of Gleevec (kobs,Binding = 1.1 
± 0.3 μM-1s-1, kdiss = 31 ± 2 s-1 from the y-intercept). (D) The increase in fluorescence intensity of slow 
phase (A) is attributed to conformational selection. The plot of kobs,CS of this slow phase versus Gleevec 
concentration was fit to Equation 1 and yields k1= 0.014 ± 0.001 s-1 and k-1 = 0.011 ± 0.002 s-1. (E) 
Dissociation kinetics of pre-incubated solution with 5 μM Aurora A and 5 μM Gleevec measured by 
stopped-flow fluorescence after an 11-fold dilution of the complex yields the k-2 = 23.3 ± 2 s-1. (F) The 
macroscopic dissociation constant (KD) of Gleevec binding to Aurora A measured by Creoptix WAVE. (G) 
Gleevec (labeled as G) binding scheme to Aurora A corresponds to a two-step binding mechanism: 
conformational selection followed by the physical binding step. The corresponding microscopic rate 
constants obtained from the global fit and calculated overall equilibrium and dissociation constants are 
shown. Fluorescence traces are the average of at least five replicate measurements (n > 5), and error 
bars and uncertainties given in C-G denote the (propagated) standard deviation in the fitted parameter.
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Figure 4. Global fits of Gleevec binding- and dissociation-kinetics to Aurora A at 10 °C. Fitting of kinetic 
traces (average, n > 5) of the mixing of 0.5 μM Aurora A with different Gleevec concentrations at two 
timescales, 0.25 s and 120 s, and dissociation kinetics (koff) were performed using the KinTek Explorer 
software with the binding scheme in Figure 3G. Red lines show the results of the global fit to the 
experimental data in black.
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Figure 5. Mechanism of Danusertib binding to Aurora A at 25 °C. (A) Danusertib bound to the DFG-out 
conformation of Aurora A is shown highlighting important active-site residues in stick representation (PDB 
2J50 (Fancelli et al., 2006)). (B) The increase in fluorescence upon Danusertib binding is fitted to a double 
exponential. (C) Plot of kobs,Binding versus the concentration of Danusertib for the fast phase yields k2 = 0.4 ± 
0.1 μM-1s-1 and k-2 = 4.6 ± 3 s-1 and the kobs,IF for the slow phase (D) reaches a plateau around 16 ± 2 s-1. (E) 
Dissociation of Danusertib from Aurora A at 25 °C after a 30-fold dilution of the Aurora A/Danusertib 
complex measured by Trp-fluorescence quenching and fitting with single exponential gives a value of k-3 = 
(3.2 ± 0.3) x 10-4 s-1.(F) Double-jump experiment (2 s incubation time of 1 μM Danusertib to Aurora A 
followed by 60 s long dissociation step initiated by a wash with buffer) was measured by Creoptix WAVE 
waveguide interferometry to properly define the value of k-2 = 6.8 ± 0.4 s-1. (G) Macroscopic dissociation 
constant (KD) determined by Creoptix WAVE waveguide interferometry: surface-immobilized Aurora A was 
incubated with various concentrations of Danusertib (0.1 nM (black), 0.2 nM (blue), 0.4 nM (purple), 0.8 nM 
(red), 2.4 nM (green), 7.2 nM (pink), 21.6 nM (cyan), and 64.8 nM (orange)) and surface mass accumulation 
was observed until establishment of equilibrium. (H) A plot of the final equilibrium value versus Danusertib 
concentration yields a KD = 1.1 ± 0.4 nM. (I) Binding scheme of Danusertib (labeled D) highlighting a three-
step binding mechanism, containing both conformational selection and induced-fit step. Red lines in (B, F) 
and black line in (E) are the results from global fitting. Kinetic constants shown in I determined from 
global fitting (Figure 6). Fluorescence traces are the average of at least five replicate measurements (n > 5), 
and error bars and uncertainties given in C-E, H,and I denote the (propagated) standard deviation in the 
fitted parameter.
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Figure 5-figure supplement 1. (A) Kinetic trace at 35 °C of 18.2 μM Danusertib binding to 0.1 μM Aurora 
A. The red line represents the best fit of the trace to a double exponential function. The initial fast increase
in fluorescence is a convolution of the fast binding and induced-fit steps, whereas the slower phase gives
an observed rate constant of approximately 0.1 s-1, suggestive of a third process (i.e., conformational
selection). (B) Double-jump experiments measured with Creoptix WAVE waveguide intereferometry at 25
°C using Danusertib and a 0.2, 0.4, 0.8 and 2 s incubation time. In the first step of the double 
jump, Danusertib is incubated with surface-immobilized Aurora A kinase before washing with 
buffer alone initiates dissociation in a second step. All traces show a single exponential decay with an 
observed rate constant of 6 s-1 and its amplitude increases with longer incubation time as more 
AurAout:D is formed. (C) Dilution of the Aurora A/Danusertib complex formed after 1 hour incubation. 
The slow dissociation of Aurora A/Danusertib (limited by k-3) was measured by Creoptix WAVE 
waveguide interferometry and fitted to a single exponential with a value of k-3 = (2 ± 0.6) x 10-4 s-1. (D) 
Representative selection of emission spectra obtained after the addition of increasing concentrations of 
Danusertib (0 - 11.25 nM from dark to light blue) to Aurora A (excitation at 295 nm). Plot of the 
increase in fluorescence intensity at 368 nm versus Danusertib concentration yields a KD value of 
0.4 ± 0.1 nM determined by fitting the data to Equation 6. Fluorescence trace in A is the average of 
five replicate measurements (n = 5), and the uncertainties given in D denotes the standard deviation in the 
fitted parameter.
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Figure 5-figure supplement 2. Kinetics of Gleevec binding to Aurora A at 25 °C to determine DFG-in/ 
DFG-out equilibrium in apo Aurora A at 25 °C. (A) 0.5 μM Aurora A was mixed with shown Gleevec 
concentrations. The increase in fluorescence intensity of slow phase reflects the conformational 
selection step (see Figure 3A). (B) kobs,CS of the slow phase as a function of the Gleevec concentration is 
an inverse hyperbolic function and fitting to Equation 1 gives k1 = 0.09 ± 0.01 s-1 and k-1 = 0.06 ± 0.005 
s-1. Corresponding binding scheme is depicted. Fluorescence traces are the average of at least five 
replicate measurements (n > 5), and error bars and uncertainties given in B denote the standard 
deviation in the fitted parameter.
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Figure 6. Global fits of Danusertib binding and dissociation kinetics to Aurora A at 25 °C. Binding 
kinetics was monitored by stopped-flow fluorescence for different concentrations of Danusertib 
(indicated) to 0.5 μM Aurora A, and dissociation kinetics (kobs,off) by Creoptix and fluorimeter (see Figure 
5). Fluorescence traces are the average of at least five replicate measurements (n > 5). Global fitting 
was performed using the KinTek Explorer software using the model shown in Figure 5I.
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k-1 = 0.06 ± 0.005 s-1

k2 = 0.45 ± 0.03 μM-1s-1 k3 = 19 ± 2  s-1

k-3 = (7.1 ± 0.5) x 10-4 s-1

D

k-2 = 6.3 ± 0.3  s-1

at 25 oC

Creoptix k          = (2 ± 0.006) x 10-4 s-1      slow-off
obs

Fluorimeter k         = (3.2 ± 0.3) x 10-4 s-1      slow-off
obs

Kinetic Partitioning: Aurora A with Danusertib

k obs
slow-off

=       k-2 x k-3

k-2 + k3 + k-3

=       6.3 x (7.1 x 10-4)
 6.3 + 19 + (7.1 x 10-4)

k obs
slow-off

=     (1.77 ± 0.2) x 10-4 s-1

Figure 6-figure supplement 1. Kinetic partitioning of Aurora A with Danusertib. The 
apparent discrepancy between the experimentally observed off rates and the microscopic rate 
constant, k-3, can be explained by considering the kinetic partitioning. Uncertainties given denote the 
(propagated) standard deviation in the fitted parameter.
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Figure 7. Mechanism of AT9283 drug binding to Aurora A at 25 °C. (A) The increase in fluorescence at 25 
°C upon AT9283 binding fitted to a double exponential. (B) The plot of kobs,Binding versus AT9283 
concentration for the fast phase yields k2 = 3.4 ± 0.5 μM-1s-1 and an underdetermined intercept (k-2) and 
(C) the kobs of the slow phase reaches a plateau around 0.8 ± 0.2 s-1. (D) Dilution of the Aurora A/AT9283 
complex formed after 1 hour incubation. The slow dissociation was measured by Creoptix WAVE 
waveguide interferometry and fitted with a double exponential with rate constants of (1.1 ± 0.02) x 10-2 s-1 

and (0.1 ± 0.01) x 10-2 s-1. (E) Double-jump experiments (1 s incubation time of 1 μM AT9283 to Aurora A 
followed by 60 s long dissociation step initiated by a wash with buffer) was measured by Creoptix WAVE 
waveguide interferometry to properly define the value of k-2 = (1.0 ± 0.1) x 10-2 s-1. (F) 
Macroscopic dissociation constant (KD) determined by Creoptix WAVE waveguide interferometry: 
surface-immobilized Aurora A was incubated with various concentration of AT9283 (0.03 nM (black), 
0.27 nM (blue), 0.8 nM (purple), 2.4 nM (green), 7.2 nM (red), 21.6 nM (cyan), and 64.8 nM 
(orange)) and surface mass accumulation was observed until establishment of equilibrium. (G) A plot 
of the final equilibrium value versus AT9283 concentration yields a KD = 2.1 ± 1.8 nM. (H) Binding 
scheme for AT9283 (labeled AT) highlighting a four-steps binding mechanism, that contains binding to 
two different states, a conformational selection mechanism and an induced-fit step. Kinetic constants 
shown in H were determined from global fitting (see Figure 8). Fluorescence traces are the average of at 
least five replicate measurements (n > 5), and error bars and uncertainties given in B,C,G and H denote the 
(propagated) standard deviation in the fitted parameter.
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Figure 7-figure supplement 1. (A) Kinetic partitioning of Aurora A with AT9283. The apparent 
discrepancy between the experimentally observed off rates and the microscopic rate constant, k-3, can be 
explained by considering the kinetic partitioning. (B) Double-jump experiments measured by Creoptix 
WAVE waveguide interferometry at 25 °C of AT9283 at 1 and 3 s incubation time before induction of 
dissociation by a buffer wash are best described with a single exponential function of (k = 0.01 s-1). 
Uncertainties given in A denote the (propagated) standard deviation in the fitted parameter.
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Figure 8. Global fits of AT9283 binding and dissociation kinetics to Aurora A at 25 °C. Binding kinetics 
was monitored by stopped-flow fluorescence at different concentrations of AT9283 (indicated) to 0.5 μM 
Aurora A. Dissociation kinetics were obtained for fully equilibrated drug/kinase complex (kobs,off) or for the 
initial encounter complex (koff,djump) by using a 1 hour or a short 2 s incubation of the kinase with AT9283, 
respectively, before inducing dissociation by a buffer wash using Creoptix WAVE waveguide 
interferometry. Global fitting was performed with KinTek Explorer software using the model in Figure 7H 
(reduced χ2  = 3.2). Fluorescence traces are the average of at least five replicate measurements (n > 5).
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Figure 8-figure supplement 1. Alternative binding models of AT9283 to Aurora A cannot explain the 
experimental data. (A) Our initial three-state binding scheme, where AT9283 binds only the DFGin state 
of Aurora A and is followed by an induced-fit step, is incorrect. The best global fit (shown in red) did not 
describe the data as can be seen by visual inspection and from the reduced χ2 value of 36. (B) An 
alternative model, where AT9283 can bind to Aurora A irrespective of the state of the DFG-loop, and 
binding is followed by an induced-fit step did not result in adequate fits (data not shown) and a reduced 
χ2  value of 52. In both cases the values for the interconversion between AurAout and AurAin were taken 
from the Gleevec experiment (Figure 5-figure supplement 2). Fluorescence traces are the average of at 
least five replicate measurements (n > 5).
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Figure 9. X-ray structures of Aurora A bound to inhibitor AT9283 reveal multiple binding modes. 
(A) AT9283 (pink) bound to the active site of Aurora A (PDB 2W1G, (Howard et al., 2009)) shows the 
DFGin-loop conformation and a salt bridge between K162 and E181. (B) Aurora A dimer (light and 
dark blue ribbon) in complex with AT9283 (pink) and inhibiting monobody (Mb, grey), showing 
DFGout-loop and broken K162 and E181 salt bridge (PDB 6CPG).
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Figure 9-figure supplement 1

Data collection and refinement statistics for dephosphorylated Aurora A in complex with monobody 
and AT9283 

Aurora A + Mb + AT9283 
(6CPG) 

Data collection 
Space group P 21 21 21 
Cell dimensions 

 a, b, c (Å) 63.86, 69.7, 175.56 
    , ,  (°)  90, 90, 90 
Resolution (Å) 43.14 – 2.80 (2.87 – 2.80)a 

Rmeas 0.189 (1.268) 
I/ (I) 8.9 (1.1) 
CC1/2 0.986 (0.625) 
Completeness (%) 99.2 (98.8) 
Redundancy 5.4 (5.3) 

Refinement 
Resolution (Å) 36.17 – 2.80 
No. reflections 19556 (1845) 
Rwork / Rfree 0.2792/ 0.3350 
No. atoms 

 Protein 5122 
 Ligand/ion 56 
 Water 

B factors 
 Protein 78.84 
 Ligand/ion 81.05 
 Water 

R.m.s. deviations
Bond lengths (Å) 0.003 
Bond angles (°) 0.98 

The number of crystals for each structure is 2.  
a Values in parentheses are for highest-resolution shell. 
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Figure 10. Mechanism of ATP binding to Aurora A at 10 °C. (A) Binding of mant-ATP to Aurora A was 
followed by an increase in fluorescence with biphasic kinetics. The plot of kobs versus concentration of 
mant-ATP of fast phase (B) yields k2 = 0.8 ± 0.2 μM-1s-1 and k-2 = 50 ± 8 s-1 and the slow phase (C) 
reached a plateau around 21 ± 1 s-1 (k3 + k-3). (D) Dissociation kinetics of 10 μM Aurora A/10 μM mant-
ATP complex was measure after a 10-fold dilution into buffer and yields kobs,off = 17.2 ± 1 s-1. (E, F) 
Macroscopic dissociation constant of Aurora A with mant-ATP measured by fluorescence energy 
transfer. (E) Emission spectra (excitation at 290 nm) of 1 μM Aurora A (green), 160 μM mant-ATP 
(red), and 1 μM Aurora A/160 μM mant-ATP (blue). (F) The change in fluorescence at 450 nm (ΔF450) 
versus mant-ATP concentrations yields KD = 22 ± 6 μM. (G) Global fitting (red) of all kinetics data 
(black) in KinTek Explorer to the binding scheme shown in (H) results in the kinetic constants given in 
the scheme and gives an overall KD = 48 ± 8 μM, calculated from all rate constants. Fluorescence 
traces are the average of at least five replicate measurements (n > 5), and error bars and uncertainties 
given in B, C, D, F, and H denote the (propagated) standard deviation in the fitted parameter.
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