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SUMMARY 
 

Major cell fate decisions are governed by sequence-specific transcription factors 

(TFs) that act in small cell populations within developing embryos. To understand 

how TFs regulate cell fate it is important to identify their genomic binding sites in 

these populations. However, current methods cannot profile TFs genome-wide at 

or near the single cell level. Here we adapt the CUT&RUN method to profile 

chromatin proteins in low cell numbers, mapping TF-DNA interactions in single 

cells and individual pre-implantation embryos for the first time. Using this 

method, we demonstrate that the pluripotency TF NANOG is significantly more 

dependent on the SWI/SNF family ATPase BRG1 for association with its genomic 

targets in vivo than in cultured cells—a finding that could not have been made 

using traditional approaches. Ultra-low input CUT&RUN (uliCUT&RUN) enables 

interrogation of TF binding from low cell numbers, with broad applicability to rare 

cell populations of importance in development or disease. 

 

 

INTRODUCTION 

Cellular heterogeneity presents a significant obstacle to the study of complex systems in 

metazoans (Yuan et al., 2017). Key developmental processes are often initiated in small 

populations of cells that expand and differentiate to generate complex tissues within the 

embryo. In adults, rare tissue-specific stem cells act in response to stimuli or damage to 

maintain tissue homeostasis. In addition, cells in some cancer types with properties of 
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stem cells facilitate regeneration of the tumor mass after therapy. Because of the 

important roles of rare stem and progenitor cell populations in each of these settings, 

sensitive methods for characterizing their regulation and functions are necessary to 

better understand development and disease. 

 Cell fate decisions are orchestrated in large part by the concerted actions of TFs 

and chromatin remodeling proteins. Expression of lineage-specific TFs leads to the 

activation and repression of specific sets of genes that dictate cell identity, while 

chromatin remodeling proteins facilitate and help enforce changes in gene expression 

(Young, 2011). The functions of developmental TFs and chromatin remodeling enzymes 

are interdependent—while some TFs direct chromatin remodeling proteins to specific 

regulatory regions, chromatin remodeling at enhancers is necessary for binding of other 

TFs with roles in directing cell fate (Zaret and Mango, 2016). Accordingly, 

comprehensive maps of the binding sites of TFs and chromatin regulators are 

necessary to understand how gene expression patterns are rewired during cell fate 

changes.  

Unfortunately, current methods for mapping the genomic locations of TFs and 

chromatin remodeling enzymes are insufficiently sensitive to allow mapping in small 

populations of cells. As an alternative strategy, methods for identification of “open” 

chromatin regions have enabled inference of regulatory elements such as enhancer and 

silencer elements, which are generally accessible to non-sequence-specific enzymes 

that generate DNA breaks (Buenrostro et al., 2013; Crawford et al., 2004; Sabo et al., 

2004). Highly sensitive modifications of two such methods, ATAC-seq and DNase-seq, 

have recently enabled analysis of chromatin accessibility in single cells, allowing 
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examination of epigenomic variability and identification of cell type-specific chromatin 

features (Buenrostro et al., 2015b; Cusanovich et al., 2015; Jin et al., 2015). While 

these techniques are extremely powerful for discovery of regulatory features, in many 

cases it is not possible to identify the regulatory proteins that render chromatin structure 

accessible at each site. Chromatin remodeling enzymes generally bind without 

preference for DNA sequence, preventing identification of DNA sequence motifs specific 

for these factors within open chromatin regions. Even for sequence-specific TFs, many 

enhancers include binding sites for multiple TFs. Furthermore, groups of related TFs 

often bind similar motifs. Therefore, high confidence assignment of accessible 

chromatin peaks to any one TF is not possible in most cases. 

Chromatin immunoprecipitation (ChIP) is a widely used technique for exploring 

protein-DNA interactions on chromatin. Modifications to traditional ChIP protocols have 

been developed in recent years to profile TF binding in small populations of cells, 

including ChIPmentation, carrier-assisted ChIP-seq, ULI-NChIP, µChIP, and DROP-

ChIP (Brind'Amour et al., 2015; Dahl et al., 2016; X. Liu et al., 2016; Rotem et al., 2015; 

Schmidl et al., 2015). Several of these techniques enable mapping of abundant histone 

modifications such as H3K4me3 and H3K27me3 in fewer than 1,000 cells. However, 

ChIP-based methods for mapping chromatin occupancy of TFs currently require 10,000 

cells or more to observe reproducible peaks of enrichment (Schmidl et al., 2015; Zwart 

et al., 2013). An alternative approach utilizing overexpression of bacterial Dam 

methylase fused to TFs allows profiling from as few as 1,000 cells (Tosti et al., 2017). 

However, overexpression of fusion proteins may not be feasible in some settings and 

could potentially lead to occupancy at non-physiological locations. Because of these 
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difficulties, the genomic landscape of TF binding in single cells, individual pre-

implantation embryos, or other rare populations has been thus far inaccessible. 

 CUT&RUN is a recently described method for genome-scale profiling derived 

from ChIC, in which a recombinant protein A-micrococcal nuclease (MNase) fusion 

protein is recruited via antibodies to the genomic locations of chromatin proteins, and 

underlying DNA fragments are liberated from bulk chromatin by endonucleolytic 

cleavage (Schmid et al., 2004; Skene and Henikoff, 2017a). CUT&RUN has a number 

of advantages over traditional ChIP-based techniques, most importantly specific DNA 

digestion by targeted MNase results in low background leading to increased enrichment 

and a decreased requirement for high read coverage. CUT&RUN has been successfully 

used to map H3K27me3 genome-wide using as few as 100 cells and the insulator 

protein CTCF from as few as 1,000 (Skene and Henikoff, 2017b).  

Despite these advances, there are still no methods capable of profiling TF 

occupancy genome-wide in single cells or individual embryos. In this study, we adapt 

the CUT&RUN method for ultra-low input by modifying several steps in the original 

protocol. These modifications enable us to profile the genomic occupancies of several 

chromatin proteins in small populations of cells, individual pre-implantation mouse 

embryos, and even in single cells. Using this technique, we then test the extent to which 

properties of TF binding previously measured in cell culture are shared in vivo—a 

question that could not be addressed using traditional mapping approaches. We 

focused on the pluripotency TF NANOG, which has previously been shown to display 

minimal requirement for the SWI/SNF family ATPase BRG1 for binding to its genomic 

targets in cultured mouse embryonic stem cells (mESCs) (King and Klose, 2017). 
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Interestingly, we find that NANOG is highly dependent on BRG1 for association with its 

genomic targets in mouse blastocysts, suggesting NANOG is significantly more 

sensitive to the underlying chromatin environment for association with its targets in vivo. 

Together, we show that uliCUT&RUN is able to profile the occupancy of DNA binding 

proteins from extremely small populations, permitting the study of TF binding in 

biologically relevant populations in vivo that are difficult to obtain in large numbers. 

 

RESULTS AND DISCUSSION 

Adaptation of CUT&RUN for very low cell numbers 

In order to profile chromatin proteins from fewer than 1,000 cells, we altered the 

original CUT&RUN protocol to optimize for ultra-low input (see methods); we denote the 

modified protocol as “ultra-low input CUT&RUN” (uliCUT&RUN). We used uliCUT&RUN 

to profile occupancy of the insulator protein CTCF and of histone H3 lysine 4 tri-

methylation (H3K4me3), a mark of active promoter regions, from populations of mESCs 

ranging in number from 500,000 to 10. Based on the different size distributions of 

MNase footprints for sequence-specific binding factors and nucleosomes (Skene and 

Henikoff, 2017a), we selected reads of less than 120 bp in length after paired-end 

sequencing of CTCF libraries and 150-500 bp reads for H3K4me3 (Figure S1A-B). 

Focusing on the genomic locations of CTCF and H3K4me3 previously identified by 

ChIP-seq from millions of mESCs—taken as the “gold standard” here—we observed 

significant enrichment of CTCF and H3K4me3 relative to surrounding regions at each 

cell number tested (Figure 1A-B and S1C-D). In contrast, control samples lacking a 

primary antibody (referred to as “no antibody”) exhibited minimal enrichment over the 
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same regions. Nucleosome-sized reads from CTCF uliCUT&RUN maps revealed the 

expected pattern of well-positioned nucleosomes immediately flanking CTCF binding 

sites (Figure S1E), further validating these data. Over a broad range of cell numbers, 

we found that peaks of uliCUT&RUN enrichment strongly overlapped with peaks from 

high input ChIP-seq data (Figure 1C-D and S1F-G). Consistent with these findings, 10, 

50, and 500 cell maps of both CTCF and H3K4me3 were very similar to high cell 

number maps at numerous genomic locations (examples shown in Figure 1E-F). 

Collectively, these findings demonstrate consistent and sensitive mapping of two distinct 

chromatin proteins from low numbers of cells using uliCUT&RUN. 

 

Robust profiling of pluripotency TFs from 50 cells by uliCUT&RUN 

CTCF and H3K4me3 have proven to be among the most robust epitopes for 

ChIP-based studies, raising the question of whether uliCUT&RUN can effectively map a 

broader array of DNA-binding factors. To explore the general utility of uliCUT&RUN for 

mapping diverse DNA-binding proteins, we generated 50,000 and 50 cell profiles for 

several TFs, histone modifications, and a nucleosome remodeling enzyme in mESCs. In 

each case, uliCUT&RUN profiles from both 50 and 50,000 cells showed enrichment at 

genomic locations previously determined by high input ChIP-seq (Figure 2A-I and S2A-

C). We note that even in control experiments lacking a primary antibody, TF binding 

sites exhibited a subtle aggregate enrichment relative to surrounding regions, consistent 

with the fact TF-bound regions are hypersensitive to nucleases, including the 

untargeted protein A-MNase used in these controls (Figure 2G-I). However, the no 

antibody controls exhibited minimal correlation with ChIP-seq enrichment at the level of 
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individual genes (Figure 2A-F). These findings confirm the specificity of uliCUT&RUN 

maps for each factor tested, in both 50,000 and 50 cell samples. 

Next, we compared peaks of uliCUT&RUN enrichment for each factor obtained 

from low and high cell numbers. For TFs SOX2 and NANOG, the majority (76-96%) of 

“gold standard” binding sites were identified in both the 50 and 50,000 cell samples, and 

approximately half (47%) of OCT4 binding sites were identified from 50 cell 

uliCUT&RUN profiling (Figure 2J). Maps of the SWI/SNF ATPase Brg1, as well as two 

well-studied histone modifications, H3K27me3 and H3K27ac, revealed moderate 

overlap with established binding sites in 50 cell samples (Figure 2J). Furthermore, for all 

factors examined, 50 and 50,000 cell peaks were highly overlapping with each other 

(Figure S2D). Finally, the established DNA sequence motifs corresponding to OCT4, 

SOX2, and NANOG were significantly enriched within the 50 and 50,000 cell 

uliCUT&RUN peaks corresponding to each factor (Figure S2E), further demonstrating 

the specificity of uliCUT&RUN TF maps. Collectively, these data demonstrate an 

increase in sensitivity of at least three orders of magnitude for TF mapping relative to 

ChIP-based approaches. 

 

Single cell TF profiling using uliCUT&RUN 

In principle, the capacity of uliCUT&RUN to profile TF occupancy from 10-50 

cells enables interrogation of even the most limited biological samples, such as 

preimplantation embryos or small tissue specimens. However, single cell experiments 

can capture features of gene regulation missed in studies of cell populations (Z. Liu and 

Tjian, 2018; Stubbington et al., 2017). We therefore examined the feasibility of single 
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cell TF mapping experiments using uliCUT&RUN. To this end, we sorted single mESCs 

into individual wells of a 96-well plate and performed uliCUT&RUN with antibodies 

specific for CTCF, SOX2, or NANOG (see methods). Initial studies at low sequencing 

depth showed variable levels of enrichment across individual cells (Supplementary 

Table 1 and Figure 3A). Nonetheless, deeper sequencing revealed that single-cell 

libraries captured overall enrichment of all three factors at their established binding sites 

(Figure 3B-D). 

As with single cell ATAC-seq and DNase-seq, which capture only a small fraction 

of the accessible sites identified from large populations of cells (Buenrostro et al., 

2015b; Cusanovich et al., 2015; Jin et al., 2015), single cell uliCUT&RUN captured a 

portion of TF binding sites from high input ChIP-seq maps (Supplementary Table 1). 

However, compared to the fraction of high input ATAC-seq peaks (Q. Liu et al., 2017) 

identified by single cell ATAC-seq (Buenrostro et al., 2015b), single cell uliCUT&RUN 

libraries identified “gold standard” TF binding sites at a higher rate on average (Figure 

S3), demonstrating uncommonly high sensitivity of single cell profiling using the 

uliCUT&RUN method. For both methods, the incomplete identification of high cell 

number peaks likely reflects both the technical challenge of recovering every fragment 

of DNA released from a single nucleus and meaningful biological variation. In particular, 

TF binding sites within peaks from high cell number maps are likely occupied in only a 

fraction of all cells in the population. Accordingly, weak to moderate peaks may 

represent TF binding in a small minority of cells.  

Finally, to test whether single cell uliCUT&RUN libraries were more likely to 

identify the most highly occupied TF binding sites throughout the genome, we divided 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2018. ; https://doi.org/10.1101/286351doi: bioRxiv preprint 

https://doi.org/10.1101/286351
http://creativecommons.org/licenses/by-nc-nd/4.0/


high input ChIP-seq peaks into quintiles based on their level of enrichment from most 

enriched (1st quintile) to least (5th quintile). We sorted each overlapping single cell 

uliCUT&RUN peak into the quintile containing its matching ChIP peak and found that 

single cell peaks were overrepresented among the top quintiles (Figure 3E), consistent 

with our expectations. Collectively, these findings reveal that uliCUT&RUN maps of 

single cells are accurate but necessarily incomplete representations of CTCF, SOX2, 

and NANOG binding in mESCs. Future applications of single cell uliCUT&RUN should 

uncover differences in TF occupancy between distinct cell types or different locations of 

cells in vivo, among other uses. 

  

Association of NANOG with its genomic targets is dependent on BRG1 in vivo  

OCT4, SOX2, and KLF4, and NANOG are critical for pluripotency in inner cell 

mass cells of blastocyst stage embryos, as well as their cultured counterparts, ESCs 

(Young, 2011). In mESCs, BRG1—the catalytic component of the esBAF nucleosome 

remodeling complex that activates enhancers by creating open chromatin structure—is 

required for association of OCT4 with approximately 60% of its normal genomic binding 

sites (Hainer and Fazzio, 2015; Hodges et al., 2018; Hu et al., 2011; King and Klose, 

2017). In contrast, chromatin association of SOX2 and NANOG is only modestly 

dependent on BRG1 function (Hainer and Fazzio, 2015; King and Klose, 2017), 

suggesting that continuous chromatin remodeling is dispensable for sustained binding 

of these factors at most loci. However, the establishment of pluripotency factor binding 

as the zygote develops into the blastocyst has not been investigated. BRG1 is 

maternally deposited in oocytes and functions starting at zygotic genome activation 
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(Bultman, 2006), whereas NANOG is expressed only at late morula and blastocyst 

stages (Chambers et al., 2003; Mitsui et al., 2003). Therefore, although NANOG binding 

is largely unaffected in BRG1-depleted mESCs, BRG1 may be required to open 

chromatin structure prior to the blastocyst stage in order to allow initial NANOG binding. 

Such a possibility has not been addressed on a genome-wide level because blastocysts 

are composed of ~30-80 cells and are therefore poorly suited to ChIP-based 

approaches. 

To test the possibility that BRG1 is critical for chromatin association of NANOG in 

vivo, we adapted uliCUT&RUN to map binding of factors in single blastocysts (see 

methods). Pilot experiments mapping localization of CTCF in individual blastocysts 

demonstrated reproducible enrichment at “gold-standard” CTCF binding sites identified 

in ESCs (Figure 4A-B). These initial experiments demonstrate that uliCUT&RUN can be 

adapted for use in single pre-implantation embryos. Next, we tested the effect of BRG1 

(gene name: Smarca4) depletion on genome-wide association of NANOG. We injected 

one cell mouse embryos with previously validated endoribonuclease prepared siRNAs 

(esiRNAs) targeting Smarca4, Nanog, or EGFP (Fazzio et al., 2008; Hainer et al., 

2015), cultured each embryo to the early blastocyst stage (~30-50 cells), and mapped 

NANOG enrichment using uliCUT&RUN. Knockdown (KD) of each factor was confirmed 

by RT-qPCR using the cytoplasmic fraction that is normally discarded during the 

CUT&RUN procedure, as well as immunostaining of a parallel set of embryos (Figure 

S4A-C). Consistent with previous studies (Carey et al., 2015), Smarca4 KD had no 

observable effect on Nanog expression in the inner cell mass but caused a modest 

increase in Nanog expression in trophoblast cells (Figure 4C), resulting in moderately 
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elevated Nanog levels overall (Figure S4A-B). Relative to EGFP KD, Nanog KD strongly 

reduced NANOG enrichment at its genomic binding sites, demonstrating the specificity 

of in vivo uliCUT&RUN (Figure 4D). Interestingly, Smarca4 KD also caused a strong 

reduction of NANOG enrichment across the genome (Figure 4D-E). As a physiologically 

relevant example, we zoomed in on the distal enhancer of the Nanog gene, where 

NANOG has been shown to bind and regulate its own expression (Boyer et al., 2005; 

Levasseur et al., 2008; Loh et al., 2006). We observed NANOG enrichment at this site 

in all control blastocysts, whereas enrichment was low or undetectable in three of four 

Smarca4 KD embryos (Figure 4F).  

We next quantified the extent to which NANOG binding depends on BRG1 in 

blastocysts and mESCs. In aggregate, we observed a 73.5% average reduction of 

NANOG enrichment—almost matching the enrichment observed in nonspecific control 

maps—in blastocysts following Smarca4 KD (Figure 4G). In contrast, analysis of 

published ChIP-seq data from Smarca4 knockout mESCs (King and Klose, 2017) 

revealed 27.1% aggregate reduction (Figure 4H), demonstrating that NANOG 

association with its target sites is much more dependent on BRG1 function in vivo than 

in mESCs. Critically, previous studies showed that depletion of Smarca4 did not disrupt 

development to the blastocyst stage (Bultman et al., 2000; Kidder et al., 2009) and we 

observed no developmental delays or morphological changes upon Smarca4 KD, ruling 

out this potential confounding factor. However, given the important roles for BRG1 in 

regulation of gene expression, potential indirect effects of Smarca4 KD on NANOG 

localization cannot be ruled out. 
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 In summary, we have shown that uliCUT&RUN is a powerful method for mapping 

the genomic locations of chromatin proteins, allowing for the first time the mapping of 

TFs from single cells and individual pre-implantation embryos. The increase in 

sensitivity for TF mapping is at least 1,000-fold relative to ChIP-based approaches. 

Using uliCUT&RUN, we demonstrate that NANOG is significantly more dependent on 

esBAF for chromatin association in vivo than in ESCs—a result that would not have 

been attainable using conventional mapping methods. This raises the possibility that 

other developmentally important TFs may have different requirements for chromatin 

association in embryos than has been observed in cell culture studies. We conclude 

that uliCUT&RUN is a powerful tool for interrogation of TFs in limited populations of 

cells, with high potential applicability in many additional in vivo contexts. 
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Figure 1. Localization of chromatin proteins from low cell numbers using uliCUT&RUN. 

(A) uliCUT&RUN data for CTCF and no antibody (No Ab) for indicated cell numbers. Heatmap 

rows correspond to normalized read density surrounding CTCF binding sites (center) called 

from GSE11431 with 2 kb of adjacent sequence on each side. Rows are ranked from highest 

ChIP-seq enrichment (top) to lowest (bottom). (B) uliCUT&RUN data for H3K4me3. Data are 

centered on peaks called from GSE31039 and organized as in (A). (C-D) Number and 

percentage of high input ChIP-seq peaks identified by uliCUT&RUN for CTCF (C) or H3K4me3 

(D) from indicated cell numbers. (E-F) Browser tracks comparing normalized read enrichment at 

sites of CTCF (E) or H3K4me3 (F) enrichment. 
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Figure 2. Sensitive mapping of TFs and chromatin proteins using uliCUT&RUN. 

(A-F) uliCUT&RUN enrichment of indicated chromatin proteins from 50 and 50,000 mESCs. 

Heatmaps are organized as in Figure 1, depicting uliCUT&RUN enrichment at ChIP-seq binding 

sites for OCT4 (GSE11724, A); SOX2 (GSE11724, B); NANOG (GSE11724, C); BRG1 

(GSE14344, D); H3K27ac (GSE31039, E); and EZH2 (GSE49435, F). (G-I) Average enrichment 

over all binding sites of OCT4 (G), SOX2 (H), or NANOG (I). ***p<2.2´10-16 (K–S test; see 

methods for details). (J) Percentage of high input ChIP-seq peaks identified by uliCUT&RUN 

using 50 or 50,000 cells.  
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Figure 3. Single cell TF mapping by uliCUT&RUN. 

(A) Enrichment at known CTCF binding sites for single cells subjected to uliCUT&RUN. For 

each cell, average enrichment over CTCF binding sites is shown as a one-dimensional 

heatmap. (B-D) Heatmaps depicting single cell uliCUT&RUN data for CTCF (B), SOX2 (C), or 

NANOG (D). ChIP binding sites with no uliCUT&RUN read coverage within the 4 kb window are 

not shown. (E) The distribution of single cell uliCUT&RUN peaks within five high input ChIP-seq 

quintiles from most enriched (1) to least (5) are shown. 
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Figure 4. Chromatin association of NANOG is dependent on BRG1 in vivo. 

(A) CTCF or no antibody uliCUT&RUN maps of single blastocysts are shown as heatmaps 

sorted by high input CTCF ChIP-seq data from mESCs. (B) One dimensional heatmaps 

showing aggregate enrichment over CTCF binding sites. (C) NANOG immunofluorescence (red) 

of EGFP or Smarca4 KD blastocysts. Boundaries of each inner cell mass are highlighted (dotted 

lines) and DAPI stained nuclei are shown in blue. (D) One dimensional heatmaps of EGFP or 

Smarca4 KD embryos (four per group) subjected to uliCUT&RUN with NANOG antibody or no 

antibody. (E) Quantification of aggregate NANOG enrichment in embryos. Peak minus baseline 

is plotted for each embryo (see methods). *p<0.05; Mann–Whitney test. (F) Browser tracks 

showing NANOG enrichment in EGFP or Smarca4 KD embryos (ESC data are shown for 

reference). The Nanog distal enhancer (DE) is highlighted. (G-H), Changes in NANOG 

enrichment following Smarca4 depletion in (G) blastocysts measured by uliCUT&RUN or (H) 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2018. ; https://doi.org/10.1101/286351doi: bioRxiv preprint 

https://doi.org/10.1101/286351
http://creativecommons.org/licenses/by-nc-nd/4.0/


previously published ESC ChIP-seq data (King and Klose, 2017). Blastocyst replicates 

corresponding to each KD were averaged, as were ESC replicates corresponding to each KO. 

 

 

METHODS 

Cell culture 

E14 mouse ES cells (Hooper et al., 1987) were cultured as previously described (Chen 

et al., 2013). Cells have been verified that they are of male mouse origin through 

sequencing performed in this and previous studies and were previously tested to ensure 

they were free of mycoplasma. 

 

Antibodies 

Antibodies used in this study were H3K4me3 (Millipore 05-745R), H3K27ac (Abcam 

ab4729), H3K27me3 (Millipore 07-449), CTCF (Millipore 07-729), OCT4 (Thermofisher 

701756), SOX2 (Active Motif 39843), NANOG (Active Motif 61419), and BRG1 (Bethyl 

Labs A300-813).  

 

uliCUT&RUN procedure and library preparation 

Nuclei prep: The CUT&RUN protocol was modified from Skene and Henikoff (Skene 

and Henikoff, 2017a); their detailed protocol is available online 

(http://blocks.fhcrc.org/steveh/papers/CUT&RUN_protocol.htm). Mouse ES cells were 

counted using a TC-10 cell counter (Biorad) and diluted to respective cell amounts. 

Cells were pelleted at 600g for 3 minutes at 4°C, the supernatant was discard and cells 

were washed with 1mL cold PBS. Cells were pelleted at 600g for 3 minutes at 4°C, the 
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supernatant was discard and cells were resuspended in 1mL cold nuclear extraction 

(NE) buffer (20mM HEPES-KOH, pH 7.9, 10mM KCl, 0.5mM Spermidine, 0.1% TritonX-

100, 20% glycerol, freshly added protease inhibitors). Nuclei were pelleted at 600g for 3 

minutes at 4°C, the supernatant was discard and nuclei were resuspended in 600µL NE 

buffer. During the cell washes, Concanavalin A beads (Polysciences) were prepared. 

For 500,000 nuclei 200µL bead slurry was used, for 50,000 nuclei 150µL bead slurry 

was used, for 5,000 nuclei, 100µL bead slurry was used, for 500 nuclei and 50 nuclei 

50µL bead slurry was used, and for 10 nuclei 20µL bead slurry were used. Beads were 

transferred to a microfuge tube containing 3X volume cold Binding buffer (20mM 

HEPES-KOH, pH 7.9, 10mM KCl, 1mM CaCl2, 1mM MnCl2). Beads were washed twice 

in 1mL cold Binding buffer and resuspended in 300µL binding buffer. Nuclei were added 

to beads with gentle vortexing and incubated for 10 minutes at room temperature. 

 

Antibody binding: After nuclei binding, the supernatant was discarded and bead-bound 

nuclei were blocked with 1mL cold Blocking buffer (20mM HEPES, pH 7.5, 150mM 

NaCl, 0.5mM Spermidine, 0.1% BSA, 2mM EDTA, freshly added protease inhibitors) 

which was added with repeated gentle pipetting and incubated for 5 minutes at room 

temperature. The supernatant was discarded and nuclei/beads were washed in 1mL 

cold Wash Buffer (20mM HEPES, pH 7.5, 150mM NaCl, 0.5mM Spermidine, 0.1% BSA, 

freshly added protease inhibitors) and resuspended in 250µL cold Wash Buffer. Primary 

antibody was added with gentle vortexing of bead-bound nuclei in 250µL cold Wash 

Buffer to a final concentration of 1:100. Samples were incubated with rotation at 4°C for 

2 hours. The supernatant was discarded and samples were washed twice in 1mL cold 
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Wash Buffer. The supernatant was discarded and samples were resuspended in 250µL 

cold Wash Buffer. 

 

Protein A-micrococcal nuclease (pA-MN) binding and cleavage: pA-MN (kindly provided 

by Steven Henikoff) was added with gentle vortexing of the nuclei in 250µL cold Wash 

Buffer to a final concentration of 1:400. Samples were incubated with rotation at 4°C for 

1 hour. The supernatant was discarded and samples were washed twice in 1mL cold 

Wash Buffer. The supernatant was discarded and samples were resuspended in 150µL 

cold Wash Buffer. Samples were equilibrated to 0°C on ice water for 5-10 minutes. To 

initiate cleavage, 3µL 100mM CalC2 was added during gentle vortexing, samples were 

flicked quickly to mix and returned to ice water. After 5 minutes of digestion, reactions 

were stopped with addition of 150µL 2XSTOP buffer (200mM NaCl, 20mM EDTA, 4mM 

EGTA, 50ug/mL RNaseA, 40ug/mL glycogen, 10pg/mL yeast spike-in DNA). Samples 

were incubated at 37°C for 20 minutes to digest RNA and release DNA fragments. 

Samples were centrifuged at 16,000g for 5 minutes and supernatants were transferred 

to a new microfuge tube while pellets and beads were discarded. Following addition of 

3µL 10% SDS and 2.5µL 20mg/mL Proteinase K, samples were mixed by inversion and 

incubated at 70°C for 10 minutes. DNA was purified using phenol/chloroform/isoamyl 

alcohol (PCI) extraction followed by chloroform extraction and precipitated with 

glycogen and ethanol. DNA was pelleted with a high-speed spin at 4°C, washed, air 

dried for ~5 minutes and resuspended in 36.5µL 0.1XTE. 
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Library preparation: Libraries were prepared using a modification of the Henikoff 

protocol 

(http://blocks.fhcrc.org/steveh/papers/Codomo_Solexa_library_prep_protocol.docx). 

DNA end-repair, phosphorylation, and A-tailing was performed in a single reaction, as 

follows. T4 DNA Polymerase (NEB) was diluted 1:20. 5µL 10X T4 DNA ligase buffer 

(NEB), 2.5µL 10mM dNTPs, 1.25µL 10mM ATP, 3.13µL 40% PEG4000, 0.63µL T4 

PNK (NEB), 0.5µL diluted T4 DNA Polymerase, and 0.5µL Taq polymerase 

(homemade) was added to 36.5µL of CUT&RUN enriched DNA. Samples were 

incubated at 12°C for 15 minutes, 37°C for 15 minutes, followed by 72°C for 20 minutes 

in a thermocycler. Samples were put on ice immediately and the following adapter 

ligation reaction was performed. PE Illumina adapters with inline barcodes were used 

for these experiments. 55µL of 1X Quick ligase buffer (NEB), 5µL Quick ligase (NEB), 

and 5µL of 1.5µM adapter mix was added to 50µL of A-tailed DNA and samples were 

incubated at 20°C for 15 minutes in a thermocycler. Immediately following adapter 

ligation, samples were purified using Ampure XP beads (Beckman Coulter). Beads were 

warmed to room temperature during adapter ligation and 38µL well-mixed beads were 

added to libraries. Samples were mixed thoroughly and incubated for 15 minutes at 

room temperature. Following solution clearing on a magnetic rack, supernatants were 

discarded and beads were washed two times with 200µL 80% EtOH. Samples were 

briefly spun, residual liquid was discarded, and beads were allowed to air dry for ~5 

minutes. DNA was eluted from beads by resuspending beads in 30µL 10mM Tris-HCL 

pH 8.0 and incubation at room temperature for 2 minutes. Following solution clearing on 

a magnetic rack, 27.5µL DNA was transferred to a 0.2mL PCR tube and libraries were 
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amplified by PCR as follows. 10µL 5X KAPA buffer, 1.5µL 10mM dNTPs, 5µL 20µM PE 

PCR 1.0, 20µM PE PCR 2.0, 1µL KAPA HotStart HiFi polymerase (KAPA) was added 

to 27.5µL of library DNA. The following PCR program was used: 98°C 45 seconds, 

98°C 15 seconds, 60°C 10 seconds, steps two and three were repeated the specified 

number of times, followed by 72°C 1 minute. For DNA isolated from 500,000 or 50,000 

cells 14 cycles was used, for DNA isolated from 5,000 cells 16 cycles was used, for 

DNA isolated from 500 cells 17 cycles was used, for DNA isolated from 50 cells 19 

cycles was used, for DNA isolated from 10 cells 21 cycles was used. The number of 

PCR cycles was originally determined using qPCR following 5 cycles of initial 

amplification using a procedure previously described for ATAC-seq library preparation 

(Buenrostro et al., 2013; 2015a). Following library amplification, samples were loaded 

on an agarose gel and DNA corresponding to 150-700 bp was gel extracted using 

Qiagen gel extraction buffer and Econospin columns. The size distribution of libraries 

was determined using a Fragment analyzer, and libraries were sequenced on an 

Illumina NextSeq500. 

 

Single Cell uliCUT&RUN 

Single cell uliCUT&RUN samples were prepared as above with the following alterations 

to the protocol. Single cells were sorted into individual wells of a 96-well plate containing 

100µL NE buffer using a BD FACSAria II Cell Sorter. 15µL of Concanavalin A beads 

were washed twice with Binding buffer, resuspended in 50µL of Binding buffer, and 

added directly to the wells containing individual cells. During the 10-minute binding 

incubation, samples were mixed by pipetting and transferred to 1.5mL microfuge tubes. 
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After discarding the cytoplasmic fraction and blocking the sample in Blocking buffer, 

beads were washed and resuspended in 125µL Wash buffer. Primary antibody was 

added during gentle vortexing in 125µL wash buffer to a final concentration of 1:100. 

Following a 2-hour incubation with rotation at 4°C and washing, beads were 

resuspended in 125µL Wash buffer and pA-MN was added to a final concentration of 

1:400, in 125µL Wash buffer during gentle vortexing. Following two washes, beads were 

resuspended in 150µL Wash buffer and equilibrated to 0°C in ice water for 5-10 

minutes. 3µL 100mM CaCl2 was added during gentle vortexing and digestion was 

permitted to proceed for 30 minutes. Chelation of the reaction was performed with 

2XSTOP buffer containing only 1pg/mL yeast spike-in DNA. Release of fragments and 

extraction was performed as above. Library preparation was performed as above with 

the following changes. Libraries were amplified for 22 cycles and samples were size 

selected twice by running two successive agarose gels. 

 

Embryo collection and microinjections 

Superovulated FVB females were mated with FVB males and zygotes were collected 

~17-19 hours post-hCG. Zygotes were washed in M2 medium with hyaluronidase to 

remove surrounding cumulus cells, followed by additional 3 washes in M2. Zygote 

microinjections were performed on Zeiss AxioVert200 microscope using an Eppendorf 

Femtojet microinjector. Approximately 5pL of esiRNAs against GFP, Brg1 and Nanog 

were injected per zygote, at the concentration of 0.5µg/µL. Zygotes were subsequently 

placed in KSOM media in 5% CO2, 5% O2 incubator and cultured until the blastocyst 

stage. Blastocysts were washed twice in M2 and the zona pellucida was removed by 
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acid Tyrode solution, followed by two additional M2 washes. Individual blastocysts were 

then pipetted into NE buffer. 

 

RT-qPCR 

RNA was isolated from the cytosolic fraction of blastocysts using Agencourt RNAClean 

XP beads (Beckman Coulter). Isolated RNA was used to synthesize cDNA with a 

mixture of oligo-dT and random hexamers (Promega). cDNA was used in quantitative 

PCR reactions with Smarca4 or Nanog specific primers and a FAST SYBR mix (KAPA 

Biosystems) on an Eppendorf Realplex. 

 

Immunofluorescence 

Zygotes were harvested and microinjected as above and cultured to the blastocyst 

stage. The zona pellucida was removed and embryos were fixed in 4% PFA. 

Immunostaining was performed as previously described 

(http://www.ijdb.ehu.es/web/paper.php?doi=052073mt). Antibodies against NANOG and 

BRG1 were used at 1:200 dilution. The secondary antibody used was AlexaFluor 546 

goat anti-rabbit IgG (Molecular Probes) at 1:500 dilution. Stained blastocysts were 

either mounted on coverslips or in drops of Vectashield mounting medium with DAPI to 

retain their three-dimensional structure. Microscopy was performed on AxioObserver.Z1 

/7  microscope using 63X/1.4 NA oil objective (coverslips) or 40x/1.3 NA oil objective 

(drops). 

 

Blastocyst uliCUT&RUN 
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Blastocyst uliCUT&RUN samples were prepared as above with the following alterations. 

Harvested blastocysts were washed twice in M2 and the zona pellucida was removed 

by Acid Tyrode solution, followed by two additional M2 washes. Individual blastocysts 

were then pipetted into 300µL NE buffer, centrifuged for 2 minutes at 600g, and 

incubated on ice for 10 minutes. 20µL of Concanavalin A beads were washed twice with 

Binding buffer, resuspended in 150µL of Binding buffer, and added directly to tubes. 

Samples were incubated at room temperature for 10 minutes. Blocking, incubation with 

primary antibody, and incubation with pA-MN was performed as above. Following two 

washes, beads were resuspended in 150µL Wash buffer and equilibrated to 0°C in ice 

water for 5-10 minutes. 3µL 100mM CaCl2 was added during gentle vortexing and 

digestion was permitted to proceed for 30 minutes. Chelation of the reaction was 

performed with 2XSTOP buffer. Release of fragments and extraction was performed as 

above. Library preparation was performed as above with the following changes. 

Libraries were amplified for 18 cycles and samples were size selected twice by running 

two successive agarose gels. 

 

uliCUT&RUN data analysis 

Paired-end reads were trimmed to 25 bases, barcodes were removed, and reads were 

then aligned to mm10 using Bowtie2 with the parameter -X 1000. Duplicates were then 

removed using Picard (http://broadinstitute.github.io/picard/). Reads with low quality 

score (MAPQ < 10) were removed. Reads were separated into the following size 

classes: <120bp for TF occupancy and 150-500bp for nucleosome occupancy. These 

reads were processed in HOMER (Heinz et al., 2010). Genome browser tracks were 
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generated from mapped reads using the “makeUCSCfile” command. Mapped reads 

were aligned over specific regions using the “annotatePeaks” command to make 20 bp 

bins over regions of interest and sum the reads within each bin. Peaks were called 

using the “findPeaks” command, and peaks were compared using the “mergePeaks” 

command. Motifs were identified using the “findMotifs” command. Published ChIP-seq 

datasets compared to CUT&RUN data were: CTCF (GSE11431); H3K4me3 

(GSE31039); OCT4 (GSE11724); SOX2 (GSE11724); NANOG (GSE11724); BRG1 

(GSE14344); H3K27ac (GSE31039); and EZH2 (GSE49435). These datasets were 

aligned, converted to mm10 using LiftOver, and processed in HOMER. Peaks were 

called using the “findPeaks” command. 

 To test for enrichment of low and high cell number uliCUT&RUN samples over 

background, we summed the normalized reads within 100 bp surrounding each binding 

site and performed a Kolmogorov–Smirnov test (K–S test) of whether the distributions of 

peak enrichment values were significantly different for factor-specific antibodies and no 

antibody controls. To test for differences in NANOG enrichment in control and Smarca4 

KD blastocysts, we subtracted background enrichment from peak enrichment in each 

KD. Average peak height for each embryo was calculated by summing the average 

reads within the 100 bp surrounding NANOG peaks. Average background was 

calculated by summing the reads from -2000 to -1000 bp and dividing by 10 to generate 

an average background read density per 100 bp. Background was subtracted from peak 

for each embryo for the data plotted in Figure 4E. A Mann–Whitney U test was used to 

assess whether differences in EGFP and Smarca4 KD embryos were significant. 
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ATAC-seq data analysis 

ATAC-seq datasets analyzed were from H1 ESC 50,000 cells (GSE85330) and 27 

randomly selected H1 ESC single cells (GSE65360). Paired-end reads were trimmed to 

24 bases and reads were then aligned to hg19 using Bowtie2 with the parameter -X 

2000. Duplicates were removed using Picard (http://broadinstitute.github.io/picard/). 

Reads with low quality score (MAPQ < 10) and reads mapping to the mitochondrial 

genome (chrM) were removed. Reads were separated into size classes as described 

(Buenrostro et al., 2013) and only nucleosome free reads (less than 100 bp) were used 

for subsequent analyses.  Peaks were called using the “findPeaks” command. 

Overlapping peaks were identified using the “mergePeaks” command. 
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Supplemental Figure 1. Profiles of CTCF and H3K4me3. (A-B) Density plots of the 
read size distributions of CTCF (A) or H3K4me3 (B) uliCUT&RUN from various numbers 
of cells. (C) Average enrichment surrounding previously published CTCF binding sites 
of 1-120 bp uliCUT&RUN reads from CTCF and no antibody control experiments from 
indicated numbers of cells. (D) Average enrichment surrounding previously published 
H3K4me3 binding sites of 150-500 bp uliCUT&RUN reads from H3K4me3 and no 
antibody control experiments. (E) 150-500 bp uliCUT&RUN reads from CTCF 
uliCUT&RUN libraries shown in (C), revealing well-positioned nucleosomes flanking 
CTCF binding sites. (F) Overlap of CTCF binding sites identified by uliCUT&RUN for 
various cell numbers. For each uliCUT&RUN experiment, the number of peaks 
overlapping with published CTCF binding sites was determined as described in the text. 
The color of each box reflects the fraction of binding sites in the lower cell number 
library that are shared with the higher cell number for each comparison. The number 
listed in each box is the number of overlapping peaks. (G) Overlap of H3K4me3 binding 
sites. Data are depicted as in (F).   
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Supplemental Figure 2. Comparisons of factor enrichment from low and high cell 
number experiments. (A-C) Average enrichment of uliCUT&RUN reads surrounding 
ChIP-seq identified binding sites of each factor from indicated numbers of cells. 
Enrichment of 1-120 bp reads shown for BRG1 (A) and 150-500 bp reads shown for 
H3K27me3 (B) and H3K27ac (C). Significance of enrichment of each factor over no 
antibody controls was tested using a K–S test (see methods). ***p<2.2´10-16. (D) 
Shown are Venn diagrams depicting the overlap of peaks from 50 and 50,000 cell 
uliCUT&RUN experiments. Peaks for each factor at each cell number corresponding to 
known binding sites were identified for 50,000 cells (yellow) and 50 cells (blue) their 
degree of overlap (green) was determined. (E) Motifs enriched in peaks of enrichment 
from 50 and 50,000 cell uliCUT&RUN experiments mapping OCT4, SOX2, and 
NANOG. Shown are the top five most significant motifs enriched within each sample, 
including the DNA logo, its corresponding TF, and its p-value. See methods for details. 
Note, for the OCT4 50 cell uliCUT&RUN experiment, only four motifs had significant p-
values and are shown.  
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Supplemental Figure 3. Peak identification by two single cell epigenomic profiling 
methods. Plotted are the percent of high input ATAC-seq (left) and uliCUT&RUN (right) 
peaks identified in single cell experiments. Blue dots denote the averages. The percent 
of ATAC-seq peaks from high input H1 hESCs (GSE85330) identified in each of 27 
randomly selected H1 single cell ATAC-seq libraries (GSE65360) are shown. Similarly, 
the fraction of high input ChIP-seq peaks for CTCF, SOX2, and NANOG identified by 
single cell uliCUT&RUN for the same three factors are plotted. The percentage of 
uliCUT&RUN peaks identified for each cell can be found in Supplementary Table 1. 
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Supplemental Figure 4. Efficient knockdown (KD) in mouse blastocysts upon 
injection of validated esiRNAs. (A) RT-qPCR of cytoplasmic RNAs from embryos 
injected with indicated esiRNAs at the one cell stage and cultured to blastocysts. 
**P<0.01, two-tailed Student’s t-test. N.S., not significant. Error bars represent one 
standard deviation. (B-C) Immunofluorescence for NANOG (B) or BRG1 (C) in 
blastocyst stage embryos upon KD of Nanog or Smarca4, respectively by injection of 
esiRNAs at the one cell stage, as above. 
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