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Abstract

Macromolecular complexes that exhibit continuous forms of structural flexi-

bility pose a challenge for many existing tools in cryo-EM single-particle analy-

sis. We describe a new tool, called multi-body refinement, which models flexible

complexes as a user-defined number of rigid bodies that move independently

from each other. Using separate focused refinements with iteratively improved

partial signal subtraction, the new tool generates improved reconstructions for

each of the defined bodies in a fully automated manner. Moreover, using prin-

cipal component analysis on the relative orientations of the bodies over all par-

ticles in the data set, we generate movies that describe the most important

motions in the data. Our results on two test cases, a cytoplasmic ribosome

from Plasmodium falciparum, and the spliceosomal B-complex from yeast, illus-

trate how multi-body refinement can be useful to gain unique insights into the

structure and dynamics of large and flexible macromolecular complexes.
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Please note that this bioRxiv submission is ahead of the availability of the

multi-body software in relion-3.0. We take great care in distributing stable

software, but this does take time. We will announce the (beta-)release of re-

lion-3.0 through the ccp-em mailing list (https://www.jiscmail.ac.uk/CCPEM)

and on twitter (@SjorsScheres).

1. Introduction

In electron cryo-microscopy (cryo-EM) single-particle analysis, biological

macromolecules are embedded in a thin layer of vitrified buffer and imaged in a

transmission electron microscope. In principle, this represents a single-molecule

imaging technique that provides unique information about the structure of in-

dividual macromolecular complexes. However, because the electron dose needs

to be carefully limited to reduce radiation damage, cryo-EM images are typi-

cally extremely noisy and one needs to combine projections of many molecules

supposedly in the same state to reliably recover high-resolution information. In

recent years, with the development of direct-electron detectors and improved

image processing procedures, this technique has allowed structure determina-

tion of many macromolecular complexes with enough detail to allow de novo

atomic modelling (Fernandez-Leiro and Scheres, 2016).

Because macromolecular complexes often undergo conformational transitions

as part of their functional cycles, many cryo-EM samples contain mixtures of

different conformations. This type of structural heterogeneity may co-exist with

incomplete complex formation or samples that have not been purified to homo-

geneity. In order to achieve high-resolution reconstructions, the presence of

multiple different structures in the data needs to be dealt with during cryo-EM

single-particle analysis. Many popular image classification approaches are based
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on competitive refinement of a user-defined number of references. These meth-

ods effectively divide the data into a discrete number of subsets or classes, each

of which is assumed to be structurally homogeneous, e.g. see (Heymann et al.,

2004; Gao et al., 2004) for early applications. Particularly useful are so-called

unsupervised classification approaches, which do not require prior knowledge

about the structural heterogeneity in the data. Unsupervised classification of

a discrete number of three-dimensional states became possible with the intro-

duction of maximum likelihood classification methods (Scheres et al., 2007),

which have since then been implemented in multiple image processing packages

(Sorzano et al., 2004; Scheres, 2012b; Lyumkis et al., 2013; Punjani et al., 2017;

Grant et al., 2018). Using many classes, competitive multi-reference refinement

approaches have also been used to deduce energy landscapes from Boltzmann

distributions of the relative number of particles assigned to each of the class for

flexible molecular complexes like the 26S proteasome (Haselbach et al., 2017)

and the spliceosome (Haselbach et al., 2018).

However, discrete classification approaches are ultimately not well suited

when macromolecular complexes exhibit continuous molecular motions. In prin-

ciple, an infinite amount of classes would be needed to describe a continuum,

and given a finite data size the number of particles per class would approach

zero. When a limited number of classes is used instead, each class will still con-

tain residual structural heterogeneity. Several approaches have been proposed

to deal with continuous heterogeneity in cryo-EM data. Moreover, classification

based on multi-reference refinement aims to optimise the metric used in the

target function (e.g. a marginal likelihood), which is not necessarily the opti-

mal classification to understand the conformational transitions in the data. An

early approach to describe continuous heterogeneity used normal-mode analy-

sis to deduce macromolecular motions from low-resolution maps (Tama et al.,

2002), and such predictions have also been used to guide alignment and discrete

classification of cryo-EM images (Jin et al., 2014). An approach that in principle

allows one to extract any three-dimensional state along a continuum is based

on manifold embedding (Dashti et al., 2014). In this approach, each particle
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image represents a point in a multi-dimensional hyperspace, and a continuous

manifold is deduced from the cloud of all points in the data set. Moving along

this manifold then represents moving along the continuum of conformational

changes. The manifold would ideally be calculated from the particle images

alone, but currently available methods require prior alignment of the particles

against a single consensus reference. This may limit its effectiveness in cases

where orientational and conformational assignments are intertwined.

Perhaps a favourable case of continuous structural heterogeneity is when the

molecular motion can be described by two or more rigid bodies that maintain

their own internal structure but differ in their relative orientations. This model

relies on the observation that tertiary protein structure often remains relatively

constant upon domain movement. In case of such rigid-body motions, masked

or focused refinements provide an efficient way to obtain high-resolution recon-

structions. In this approach, at every iteration of the refinement process one

masks away all density from the reference structure that does not correspond to

a user-defined part of the complex. Thereby, the variability in the orientation

of that part relative to the rest of the complex is ignored, and the part can be

reconstructed to higher resolution. This procedure allowed atomic modeling in

the presence of continuous variability in the relative orientations of ribosomal

subunits for the yeast mitochondrial ribosome (Amunts et al., 2014) and the

Plasmodium falciparum cytoplasmic ribosome (Wong et al., 2014). Later, this

approach was improved by partial signal subtraction, where density correspond-

ing to the rest of the complex is subtracted from the experimental particle im-

ages prior to performing focused refinements (Bai et al., 2015; Zhou et al., 2015;

Ilca et al., 2015). Partial signal subtraction typically uses a so-called consensus

refinement of all particles against a single reference, and subtracts projections

of the resulting consensus reconstruction in the directions of the consensus ori-

entations from the experimental images. A limitation of the focused refinement

approach is that each domain that is refined separately needs to be large enough

to allow alignment of the individual subtracted particle images. To overcome

this problem, a new approach called WarpCraft was described recently for the
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structure determination of transcription pre-initiation complexes with TFIIH

and Mediator (Schilbach et al., 2017). WarpCraft uses normal mode analysis

on a pseudo-atomic model of the cryo-EM map to restrain the motions between

different regions in the map, thereby allowing reconstructions of much smaller

regions than in focused refinement. However, there will exist a balance between

separating highly flexible structures into many pieces and the amount of data

available to reconstruct each piece.

In general, dealing with both discrete and continuous structural hetero-

geneity in cryo-EM data sets not only allows one to obtain higher-resolution

maps, but also provides unique insights into the conformational landscape of

macromolecular complexes. The presence of continuous forms of structural het-

erogeneity represents one of the most important open questions in cryo-EM

single-particle analysis. Nowadays, many groups apply combinations of different

approaches to disentangle structural heterogeneity in high-resolution cryo-EM

data sets, and optimal results depend strongly on user expertise in designing

this strategy (Fernandez-Leiro and Scheres, 2016).

Here, we introduce a new approach to describe continuous structural hetero-

geneity in cryo-EM single-particle data in a user-friendly and fully automated

manner. This approach, called multi-body refinement, builds on the approach

of focused refinement with partial signal subtraction, and relies on the user to

divide the reconstructed map from a consensus refinement into a discrete num-

ber of independently moving bodies. The multi-body model provides a balance

between being able to describe large conformational transitions, while still being

able to average (parts of) projections from the entire data set. During every

iteration of multi-body refinement, the best relative orientation of each body

is determined for every particle, while the signal from the other bodies is sub-

tracted on-the-fly. By keeping track of the relative orientations of all bodies

for each particle from the previous iteration, the partial signal subtraction is

continually improved. Moreover, we use the refined relative orientations of all

bodies upon convergence of the multi-body refinement to generate movies of

the principal motions that exist within the data set. We first used an early
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implementation of our multi-body refinement to improve the density of mobile

domains in the spliceosomal tri-snRNP complex (Nguyen et al., 2015). Since

then, an approach that updates the relative orientations of different parts of

a molecule was also implemented by others (Schoebel et al., 2017). In this

paper, we formally introduce the multi-body approach and its implementation

in relion, and describe its application to two test cases: the cytoplasmic ri-

bosome (Wong et al., 2014) from Plasmodium falciparum, and the spliceosomal

B-complex from yeast (Plaschka et al., 2017). These results showcase how multi-

body refinement can improve cryo-EM reconstructions and provide insights into

the conformational landscape of large and flexible macromolecular complexes.

2. Approach

2.1. Theoretical background

Multi-body refinement in relion is based on the assumption that all par-

ticles in a cryo-EM data set comprise the same macromolecular complex, i.e.

it is stoichiometrically homogeneous. Where multi-body refinement deviates

from the standard approach for refinement of a single structure (or class) in

relion (Scheres, 2012a), is in the assumption that the macromolecular com-

plex of interest behaves as B separate rigid bodies. These bodies are identical

in all particles, but their relative orientations are permitted to vary among the

particles.

In Fourier space, the model is described as follows:

Xi = CTFi

(

B
∑

b=1

Pφb
Vb

)

+Ni , (1)

where:

• Xi is the 2D Fourier transform of the projection image of the ith particle,

with i = 1, . . . , N .

• CTFi is the 2D contrast transfer function for Xi.
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• Vb is the 3D Fourier transform of the bth rigid body. Its 3D Fourier com-

ponents are assumed to be independent, zero-mean, Gaussian-distributed

with variance τ2b , which varies with spatial frequency.

• Pφb
represents the operation that extracts a slice out of the 3D Fourier

transform of the bth body, and φb defines the orientation of that body

with respect to the particle, comprising a 3D rotation and a phase shift

according to a 2D translation in the image plane.

• Ni is independent, zero-mean Gaussian noise in the 2D complex plane

with variance σ2
i , which varies with spatial frequency..

In analogy to standard refinement in relion, optimisation of a regularised,

marginal likelihood function is performed using expectation-maximisation (Scheres,

2012b). Because the sum of the B bodies represents the same underlying 3D

structure as in the standard refinement, the main difference in multi-body re-

finement is a B-fold increase in the number of hidden variables φb to describe

the orientations of all bodies in every particle. Based on the model in Eq (1),

the likelihood P (Xi|φ,Θ
(n)) of observing the ith experimental image given the

current model parameter set Θ(n) and any combination φ of all orientations φb

can be calculated as a multivariate Gaussian centred on the difference between

the particle and the corresponding reference projection:

P (Xi|φ,Θ
(n)) ∝ exp

(

∣

∣

∣

∣

∣

Xi − CTFi

∑B

b=1 Pφb
Vb

σ2
i

∣

∣

∣

∣

∣

2
)

. (2)

To prevent having to integrate for each body b over the orientations φb′ of

all the other bodies b′ 6= b, we treat each body b separately and assume that

the most likely orientations of the other bodies as determined for that particle

in the previous iteration (φ∗
ib′) are the correct ones. Thereby, we can rewrite Eq

(2) as:

P (Xi|φb,Θ
(n)) ∝ exp

(

∣

∣

∣

∣

Sib − CTFiPφb
Vb

σ2
i

∣

∣

∣

∣

2
)

, (3)
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where Sib is the ith particle, from which the CTF-modulated reference projec-

tions of all the other bodies b′ 6= b have been subtracted:

Sib = Xi − CTFi

B
∑

b′ 6=b

Pφ∗

ib′
Vb′ (4)

By calculating all Sib on-the-fly during every expectation step, we can use Eq

(3) to obtain posterior distributions Γiφb
of all orientations φb being the correct

one for the ith particle given the model estimates at the current iteration (n):

Γ
(n)
iφb

=
P (Xi|φb,Θ

(n))P (φb|Θ
(n))

∫

φ′

b

P (Xi|φ′
b,Θ

(n))P (φ′
b|Θ

(n))dφ′
b

, (5)

where P (φb|Θ
(n)) expresses prior information about φb. In our current imple-

mentation, P (φb|Θ
(n)) is implemented as a Gaussian function centred on the

rotations and translations of the consensus refinement (see below), and with

user-defined standard deviations.

During the maximisation step the posterior distributions are used to obtain

updated estimates for each body Vb, and the optimal orientations φ∗
ib of all

bodies in every particle using:

V
(n+1)
b =

∑N

i=1

∫

φb

Γ
(n)
iφb

PT

φb

CTFiSib

σ2

i

dφb

∑N

i=1

∫

φb

Γ
(n)
iφb

PT

φb

CTF2

i

σ2

i

dφb +
1
τ2

b

, (6)

φ
∗(n+1)
ib = max

φb

Γ
(n)
iφb

. (7)

Thereby, multi-body refinement is closely related to focused refinement with

partial signal subtraction (Bai et al., 2015). However, whereas partial signal

subtraction is typically performed once with a consensus model prior to starting

a focused refinement, in multi-body refinement the partial signal subtraction

is performed at every iteration with updated estimates for the reconstructed

bodies and their relative orientations. A schematic overview of the multi-body

approach is shown in Figure 1.
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align

reconstruct

for all X
i

- - -

align

reconstruct

align

reconstruct

iterate until convergence

 
φ*

iM  
φ*

iR  
φ*

iC 

 
Pφ*

iM  
φ*

iC  
Pφ*

iM  
Pφ*

iM 

consensus map and φ
i

Figure 1. A schematic overview of multi-body refinement. After a consensus 3D
auto-refinement in RELION, the three-dimensional consensus map is split into B separate
bodies using user-defined masks. In this example, B = 3 and the letters ’M’ (orange), ’R’
(green) and ’C’ (puple) each represent a body, and the corresponding spherical masks are
shown with transparency. During multi-body refinement, one performs focused refinement for
all experimental particle images Xi, with local rotational and translational searches around
the orientations from the consensus refinement. The yellow crosses in the reference projec-
tions for the focused refinements of each body indicate the centre-of-mass of each body’s mask,
around which all rotations are made. For each body, partial signal subtraction is performed
with projections along the current estimates for the respective orientations of the other B− 1
bodies. This leads to B subtracted versions of each experimental particle image during ev-
ery iteration, which are aligned against projections of the corresponding body. The resulting
optimal orientations φ∗

i
for each body are used for the partial signal subtraction in the next

iteration. Iterative alignment and reconstruction of all three bodies is repeated until conver-
gence, which is when resolutions no longer improve and changes in the relative orientations of
all bodies become small.
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data_

loop_

_rlnBodyMaskName

_rlnBodyRotateRelativeTo

_rlnBodySigmaAngles

_rlnBodySigmaOffset

M_mask.mrc 2 10 2

R_mask.mrc 1 10 2

C_mask.mrc 2 10 2

Figure 1 - supplement 1. The body definition STAR file. Example of a STAR file
that defines the bodies in Figure 1. The column labelled rlnBodyMaskName defines the file
names for the corresponding masks; the relative orientations of each body are defined by the
columns (rlnBodyRotateRelativeTo); and the priors on the rotations and translations of the
bodies are given by rlnBodySigmaAngles and rlnBodySigmaOffset, respectively.

2.2. Implementation details

Multi-body refinement has been implemented as a continuation of a stan-

dard 3D auto-refine job (in the program relion refine mpi), and is hardware-

accelerated on both CPU or GPU (Kimanius et al., 2016). We will refer to

the previous standard refinement as the consensus refinement. It provides an

initial estimate for the reconstructed density of each body, relative orientations

for all particles with respect to the consensus reconstruction, and estimates for

the resolution-dependent variance in the experimental noise σ2
i .

The definition of the B separate bodies is provided by the user through a

dedicated metadata file in STAR format (Figure 1 - supplement 1). The table in

this file contains a single row for each body, where the entry rlnBodyMaskName

points to a real-space mask that defines the outline of the corresponding body.

Because sharp edges on masks cause artefacts in the Fourier-space refinements

inside relion, the user should provide masks with soft edges, i.e. they contain

grey values between zero outside the body, and one inside the body. Although

Eq (1) only holds for non-overlapping masks, our actual implementation also

allows for overlapping masks between the different bodies, and the program

will subtract only the non-overlapping parts of the masks of the other bodies

when calculating Sb
i for the focused refinements. For example, in Figure 1,

when calculating the subtracted image for the first body, the program will only
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M R M R

C

M R

C

M

R not M

C not (M or R)

M not R

R

C not (M or R)

M not C

R not (M or C)

C 

B

M

R

C

M

R not M

C not R

M not R

R

C not R

M

R not (M or C)

C 

A

M

R

C M

R

C

Figure 1 - supplement 2. Overlapping body masks. A Overlapping masks for the
example shown in Figure 1. For the partial signal subtraction for focused refinement of the
’M’ body, the density of the ’R’ body within the ’R’ mask but not within the ’M’ mask will be
subtracted, together with the density of the ’C’ body within the ’C’ mask, but not within the
’R’ mask (left). Partial signal subtraction for focused refinement of the ’R’ body comprises the
density of the ’M’ body within the ’M’ mask that does not overlap with the ’R’ mask and the
density of the ’C’ body within the ’C’ mask that does not overlap with the ’R’ mask (middle).
Similarly, for focused refinement of the ’C’ body, partial signal subtraction comprises the
density of the entire ’M’ body and the density of the ’R’ body within the ’R’ mask that does
not overlap with either the ’M’ mask or the ’C’ mask. A total of seven different masked maps
needs to be stored in computer memory. B As in A, but for an example where all three masks
overlap with each other. A total of nine different masked maps needs to be stored in computer
memory.
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MM RRRrot
tilt psi

Figure 1 - supplement 3. Relative body orientations. The density for each body is
placed with the centre-of-mass of its mask (indicated with orange and green dots for the ’M’
body and ’R’ body, respectively) at the centre of the three-dimensional box, and all rotations
are around this centre. Each body rotates relative to a neighbouring body, as defined using
the rlnBodyRotateRelativeTo column in the input body STAR file (Figure 1 - supplement
1). In this example, the ’M’ body rotates relative to the ’R’ body. The rotation is expressed
in Euler angles around an axis perpendicular to the vector between the centre-of-mass of the
two bodies to prevent ambiguities in Euler-angle definitions around zero values for the second
Euler angle (tilt). The cone illustrates the width at half the maximum value (FWHM) of a
Gaussian-shaped prior on the rot-tilt tuple. A separate Gaussian-shaped prior exists on the
third Euler angle (psi).

subtract projections of the second body corresponding to the volume that does

not overlap with the first body; and of the volume of the third body that does not

overlap with the first or the second body (Figure 1 - supplement 2A). Likewise,

when calculating subtracted images for the second body, only the volume of the

first body that does not overlap with the second will be subtracted, and only the

volume of the third body that does not overlap with the first or second body

will be subtracted, etc. Because bodies that are higher up in the STAR file

are subtracted first, and only non-overlapping parts of subsequent bodies are

subtracted, one should position larger bodies above smaller ones in the STAR

file. This treatment of overlapping bodies results in an overhead in required

computer memory, as besides the 3D Fourier transforms of the B bodies, one

also needs to store Fourier transforms of their non-overlapping parts. Therefore,

if all bodies overlap with all other bodies, B2 3D Fourier transforms are stored

in memory (see Figure 1 - supplement 2B).

The optimal orientations φ
∗(n+1)
ib for all bodies of all particles are stored in

additional tables (called data images body b, with b being the body number)
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in the data.star file that is written out at every iteration. These orientations

are defined as residual rotations and translations that need to be applied on

top of the orientations from the consensus refinement. Internally, every body

is reconstructed with the centre-of-mass of its mask in the centre of the par-

ticle box, and rotations are performed around this centre. The entry called

rlnBodyRotateRelativeTo in the bodies STAR file defines the vector around

which the rotations of the corresponding body are made: from its own centre-

of-mass to the centre-of-mass of the body defined by this entry. For example,

according to the STAR file defined in Figure 1 - supplement 1, the letters ’M’

and ’R’ rotate relative to each other, while the letter ’C’ rotates relative to the

letter ’R’. This description of rotations permits meaningful priors, P (φb|Θ
(n)),

for the residual rotations of the bodies: the entries rlnBodySigmaAngles de-

fine the standard deviation (10 degrees for the bodies defined in Figure 1 -

supplement 1) of a Gaussian-shaped prior on the Euler angles of the three

bodies. Thereby, larger rotations are down-weighted and rotational searches

are limited from -30 to +30 degrees (i.e. +/- 3 times the standard deviation)

around the consensus rotation for each of the three Euler angles. To avoid

ambiguities in rotations where the second Euler angle (rlnAngleTilt) is close

to zero, the stored Euler angles represent a rotation around a vector that is

orthogonal to the vector between the centres-of-mass of the bodies. Thereby,

the residual rotations are all around the Euler-angle values rlnAngleRot=0,

rlnAngleTilt=90 and rlnAnglePsi=0 (see Figure 1 - supplement 3). The

entries for rlnBodySigmaOffset in the bodies STAR file define the standard

deviation (in pixels) of a Gaussian prior on the translational offsets for each of

the bodies, which again are relative to the translations for the entire particles

as defined in the consensus refinement.

Running as a continuation of a consensus 3D auto-refinement, the multi-

body refinement will estimate the power of the signal τ2b for each body from the

Fourier shell correlation (FSC) between two independently-refined half-sets of

the data. Because the individual bodies occupy a relatively small volume in the

particle box, the option --solvent correct fsc is activated by default. This
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option performs an internal correction to the FSC curves that accounts for the

convolution effects of the mask, much like the post-processing job-type does in

the standard relion approach (Chen et al., 2013). The multi-body refinement

approach is started from user-defined initial sampling rates for the rotations and

translations, which are automatically increased during the refinement process.

At every iteration the algorithm assesses whether the resolution is still increasing

and whether the orientational assignments are still changing. The orientations

of an individual body will be kept fixed once the angular sampling becomes finer

than the estimated accuracy of the rotations for that body, and the algorithm

converges once the resolutions no longer increase, changes in the orientations

become small, and the sampling rate is finer than the angular accuracies of all

bodies.

In case of extensive structural heterogeneity, the initial extent of the body

masks will be hard to assess in blurry parts of the consensus reconstruction.

In such cases, an initial multi-body refinement may be run with a relatively

large mask that comprises the entire blurry region of each body. The resulting

maps after the first multi-body refinement may then allow the definition of

tighter masks for one or more of the bodies. To allow a second multi-body

refinement to proceed from the higher-resolution reconstructions of the bodies

in the first multi-body refinement, one can then provide an optional column in

the body STAR file called rlnBodyReferenceName, which points towards the

initial reference map for each of the bodies. An example of this is given below

for the spliceosome test case.

2.3. Analysis of multi-body orientations

Besides potentially improved densities for the individual bodies, multi-body

refinement also outputs the optimal orientations φ∗
ib for all bodies and for all

particles in the data set. This information can be used to assess the molec-

ular flexibility in the macromolecular complex. To this end, we have imple-

mented a program called relion flex analyse. This program has two main

applications. Firstly, it can write out subtracted images which may be useful
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in subsequent focused refinements or classifications outside the framework of

multi-body refinement. To allow smaller image sizes and more meaningful pri-

ors in the subsequent refinements, the subtracted images are centered on the

projected centre-of-mass of the remaining density after subtraction.

Secondly, the relion flex analyse program can also perform a principal

component analysis on the relative orientations of the bodies of all particles

in the data set. For the principal component analysis, the three Euler angles

describing the relative orientations of the bodies are taken into account, together

with the two translations in the projection plane. In order to compare the two

translational offsets in different projection directions, they are converted into

three translations on the three-dimensional Cartesian grid of the reconstructions

by setting the translations along the projection direction to zero. Thereby,

principal component analysis is performed on six variables per body, one of

which is always zero. The corresponding columns in the principal component

analysis are normalised by the squared difference of the intensity values in the

maps for each of the bodies after rotating them one degree or translating them

one pixel in each of the directions. For each specified eigenvector, the program

then outputs a user-specified number of maps (M = 10 by default). This is done

by dividing the particles in M equi-populated bins according to the eigenvalue

corresponding to the eigenvector of interest. For each bin, the reconstructed

densities of all bodies are positioned relative to each other according to the

rotations and translations that correspond to the centre of that bin, and a

combined map is generated by adding all repositioned body densities together.

This generates M combined maps for the entire complex with different relative

orientations of the bodies, each corresponding to the median orientations for

1/Mth of the particles in the data set. These maps can then be used to generate

a movie that visualises the motion along that eigenvector. Movies can be made,

for example, using the “Volume Series” utility in UCSF Chimera (Pettersen

et al., 2004) or using CueMol (www.cuemol.org), which we used to generate the

images and movies in this paper. When analysing these movies, it is useful to

consider that the principal components describe the largest variations in the data
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along orthogonal degrees of freedom, and that general motions in the data are

formed by linear combinations of multiple principal components. Alternatively,

the program can also be used to output a subset of particles within a user-

specified range of eigenvalues for one of the eigenvectors. The latter can be

used to classify particles based on their extend of a specific motion in the data

set. An example of the latter is shown below for the ribosome test case.

3. Results

3.1. A ribosome test case

The multi-body refinement approach was tested on two previously published,

experimental data sets. The first data set comprises 105,247 particle images of

a Plasmodium falciparum ribosome bound to the drug emetine (Wong et al.,

2014). This data set is available as entry 10028 on the EMPIAR data base

(Iudin et al., 2016), and is used as a standard benchmark for relion. We used

the so-called polished particles, i.e. particle images after movie-refinement and

radiation damage weighting in relion (Scheres, 2014).

The consensus refinement was started from a 60 Å low-pass filtered version

of EMDB entry 2660, and yielded an overall resolution estimate of 3.2 Å after

standard relion post-processing to account for the solvent effects of the mask

on the FSC curve (Chen et al., 2013). The estimated B-factor for sharpening

this map was -61 Å2 (Rosenthal and Henderson, 2003). In accordance with

results described previously (Wong et al., 2014), the consensus map showed

excellent density for the large ribosomal subunit, but the density was worse in

the small subunit. In particular, the so-called head region of the small subunit

exhibited much more fuzzy density than the rest of the complex. Therefore, we

decided to split to the ribosome into three bodies, which we named ’LSU’ for

the large subunit; ’SSU’ for the small subunit without the head; and ’head’ for

the head region (Figure 2A). The corresponding masks were made using a 30 Å

low-pass filtered version of the consensus map to define the boundary with the

solvent region, and relied on available atomic models (PDB entries 3J79 and
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3J7A) to determine the boundaries between the bodies. By placing soft-edges

with a width of 11 Å on the boundaries of the masks, all three bodies overlapped

with each other.

In a first multi-body refinement, the standard deviation of the Gaussian prior

on the rotations was set to 10 degrees for all three bodies, and the standard de-

viations on the body translations were all set to 2 pixels. The LSU and SSU

were set to rotate with respect to each other, while the head was rotating with

respect to the SSU. Multi-body refinement was started using an initial angular

sampling rate of 1.8o and an initial translational sampling rate of 0.25 pixels.

Convergence occured after 16 iterations, which took 16 hours on a single GPU

work station with four nvidia 1080Ti GPUs, a 3.2 GHz Intel Xeon CPU, and

256 Gb of RAM. Upon convergence, the solvent-corrected resolution estimates

for the three bodies were: 3.1 Å for the LSU, 3.2 Å for the SSU, and 3.7 Å

for the head. To test the influence of the mask boundaries on the results, we

repeated the multi-body refinement with masks where the boundaries between

the three bodies were defined by spheres that were manually positioned using

the Volume Eraser tool in UCSF Chimera (Pettersen et al., 2004) to approxi-

mate the boundaries between the LSU, SSU and head. To test the influence of

the standard deviations of the priors on the rotations and translations of the

bodies, we also repeated multi-body refinement with standard deviations of 5

and 20 degrees on the rotations, and standard deviations of 1 and 5 pixels on

the translations of all three bodies. For all repeated multi-body refinements,

the estimated resolutions in the three bodies did not differ by more than a

single resolution shell from the first multi-body-refinement, indicating that the

approach is relatively robust to the choice of these parameters.

To assess the improvement in reconstructed density after multi-body refine-

ment, we post-processed the maps after the consensus refinement using the three

body masks and compared the resulting maps with the post-processed maps of

the three bodies after multi-body refinement (Figure 2B,C). The same B-factor

of -61 Å2 was applied to all maps. The improvements for the LSU and SSU were

modest, with average resolution in the LSU improving from 3.2 to 3.1 Å, and
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Figure 2. A The ribosome consensus map with the three transparent body masks (LSU, SSU
and head) superimposed. B Slices through the density of the three bodies after the consensus
refinement (top) and after multi-body refinement (down). C Local resolution estimates (in
Å) calculated in relion after the consensus refinement (left) and after multi-body refinement
(right). D The contributions of all eigenvectors to the variance. The first eigenvector, for
which the maps at the extremes are shown in panel F, is highlighted in red. E Histograms
of the first and second eigenvalue for all particles in the data set. The first eigenvalue shows
a bimodal distribution. The data set was split into two subsets: particles with the first
eigenvalue smaller than -14 (red arrow) and particles with the first eigenvalue larger than -14
(blue arrow). F Refined maps for the two subsets in the same colors. As observed in the
movie along the first eigenvector, the SSU rolls with respect to the the LSU and the head
swivels with respect to the SSU, cf Movie 1.
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Figure 2 - supplement 1 Fourier shell correlation curves calculated from independently
refined halves of the data for the three bodies after consensus refinement (dashed lines) and
after the second multi-body refinement (solid lines).

in the SSU from 3.3 to 3.2 Å, and visual inspection of the maps did not reveal

major improvements (not shown). The improvements for the head were larger.

In this region, the average resolution improved from 4.0 to 3.7 Å, and the re-

constructed density improved considerably upon visual inspection. In particular

in the region furthest away from the centre of the ribosome, the reconstructed

density for the head improved to such an extent that previously unmodelled

regions became interpretable.

Application of the principal component analysis in the relion flex analyse

program revealed that approximately 30% of the variance in the rotations and

translations of the three bodies is explained by the first two eigenvectors (Fig-

ure 2D). Movies of the reconstructed body densities repositioned along these

eigenvectors reveal that the first eigenvector corresponds to a rolling-like mo-

tion of the SSU with respect to the LSU and a concomittant swiveling of the

head (Movie 1), whereas the motion along the second eigenvector is more rem-

iniscent of a ratchet-like motion of the SSU with respect to the LSU together

with a displacement of the head (Movie 2). With the exception of the first eigen-

value, histograms of all eigenvalues were monomodal. For the first eigenvalue,

a shoulder was visible on the negative side of the histogram, indicating that the

structural heterogeneity along the first eigenvector may not be continuous. We

19

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 22, 2018. ; https://doi.org/10.1101/286856doi: bioRxiv preprint 

https://doi.org/10.1101/286856
http://creativecommons.org/licenses/by/4.0/


then used the relion flex analyse program to write out two separate STAR

files with 11,431 particles for which the first eigenvalue is less than -14, and

93,816 particles for which the first eigenvalue is greater than -14 (Figure 2E).

Separate refinements of these subsets, yielded overall resolution estimates of

4.4 and 3.2 Å, respectively. The differences between the two maps reveal sim-

ilar differences in the orientation of the SSU and head as observed in Movie

1 (Figure 2F). This source of discrete structural heterogeneity had remained

undetected in our previous analysis (Wong et al., 2014).

3.2. A spliceosome test case

The second data set on which we tested multi-body refinement comprised

327,490 polished particles of a spliceosomal B-complex from yeast (Plaschka

et al., 2017). With the submission of this paper, we also submitted this data set

to the EMPIAR data base, where it is now available under entry XXXX. In the

original study describing this data set (Plaschka et al., 2017), different parts of

the complex were refined separately using focused refinement with partial image

subtraction. Here, we used four masks that were generated in the original study

for multi-body refinement: ’core’ for the centre of the tri-snSNP structure, ’foot’

for the tri-snSNP foot domains, ’helicase’ for the helicase domain, and ’SF3b’ for

the SF3b subunits (Figure 3A). Note that the centre of the tri-snSNP structure

is often called ’body’ in the spliceosome literature, but we chose to call it the core

to prevent confusion with the more general definition of body in this paper. The

body masks were generated using a combination of the Volume Eraser tool in

UCSF Chimera (Pettersen et al., 2004) and relion mask create. The masks

were large enough to enclose the blurred, weak densities at the periphery of

the complex, i.e. in the foot, helicase and SF3b domains. To reduce memory

consumption, polished particles used in the previous study (Plaschka et al.,

2017) were down-sampled to 1.7 Å per pixel and re-windowed into a 320 pixel

box. All refinements were perfomed without Fourier space padding by specifying

the --pad 1 option.

The consensus refinement was started from the B complex map in (Plaschka
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Figure 3. A The four body masks used for the first splicesome multi-body refinement are
shown in transparent on top of the consensus map on the left; the resulting density after
the first multi-body refinement and the masks used for the second multi-body refinement
are shown on the right. B Slices through the density of the four bodies after the consensus
refinement (top) and after multi-body refinement (down). C Local resolution estimates (in
Å) calculated in relion after the consensus refinement (left) and after multi-body refinement
(right). D The contributions of all eigenvectors to the variance. The second eigenvector,
for which the maps at the extremes are shown in panel E, is highlighted in red. E Motion
represented by the second eigenvector, cf Movie 4. The helix that connects the core of the
spliceosome and the LSm ring of the SF3b body that gets broken during the repositioning
of the bodies in the eigenvector movies and the combined maps is indicated with an asterisk
(also see main text).

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Resolution (1/Å)

F
ou

rie
r 

S
he

ll 
C

or
re

la
tio

n

CORE global
FOOT global
HELICASE global
SF3b global
CORE multibody
FOOT multibody
HELICASE multibody
SF3b multibody

FSC=0.143

Figure 3 - supplement 1 Fourier shell correlation curves calculated from independently
refined halves of the data for the four bodies after consensus refinement (dashed lines) and
after the second multi-body refinement (solid lines).
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multi-body focused classi�cation & re�nement

Figure 3 - supplement 2 Local resolution estimates (in Å) for the SF3b region after multi-
body refinement (left) and after subsequent partial signal subtraction in relion flex analyse

followed by focused classification and refinement of the best class (right).

et al., 2017), which was low-pass filtered to 40 Å. The overall resolution after

the consensus refinement, using a mask around the entire complex for post-

processing, was 4.3 Å. The estimated B-factor for map sharpening was -148

Å2. When postprocessed with individual masks for the four bodies, the core,

foot, helicase and SF3b gave resolutions of 3.9, 4.2, 4.6 and 9.2 Å, respectively.

Consistent with these values, the density for the SF3b was weak and blurred

(Figure 3C, D).

For multi-body refinement, the core and the foot were set to rotate against

each other. The helicase and the SF3b were set to rotate relative to the core.

The initial angular sampling rate was set to 1.8◦, and the initial translational

sampling range and rate were set to 3 and 0.75 pixels, respectively. The standard

deviations of the angular and the translational prior were set to 10◦ and 2

pixels for all bodies. The multi-body refinement converged in 15 iterations,

which took 33 hours on the same GPU workstation as used for the ribosome

case. Upon covergence, the estimated resolutions for the core, foot, helicase and

SF3b domains were 3.8, 4.0, 4.5 and 5.1 Å, respectively.

Next, we ran a second round of multi-body refinement using tighter masks

that were generated from the body reconstructions from the first multi-body re-

finement. These masks were generated by low-pass filtering the reconstruction
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for each body from the first multi-body refinement to 30 Å, extending the bina-

rised maps by 10 pixels, and adding a soft edge of 5 pixels. In addition, we used

7 Å low-pass filtered maps of each body obtained in the first multi-body refine-

ment as initial references for the second run using the rlnBodyReferenceName

label in the body STAR file. The second multi-body refinement converged in 12

iterations, and took 40 hours on our GPU workstation. The resolutions of the

core, foot and helicase remained essentially the same as in the first multi-body

refinement (3.7, 4.0 and 4.5 Å, respectively), while that of the SF3b improved

to 4.4 Å (Figure 3C; Figure 3 - supplement 1). Despite the reasonable overall

resolutions for each of the bodies, the densities for the U4 Sm ring within the

helicase domain and the LSm ring and Rse1’s β-propeller B (BPB) within the

SF3b domain remained relatively fuzzy, indicating remaining flexibilities and/or

compositional heterogeneity within these bodies.

In an attempt to address the remaining structural heterogeneity within the

SF3b body, and as an illustration of how multi-body refinement can be combined

with existing refinement approaches, we then used the relion flex analyse

program to subtract the other three bodies from all experimental particles, and

performed a focused 3D classification on the SF3b without alignments. Using

six classes, we identified a single class (containing 126,186 particles) with better

defined density than the other classes. A separate refinement of this class led

to a SF3b map with improved local resolution of its central region (Figure 3 -

supplement 2) and an overall resolution of 4.0 Å. Subsequent focused refinements

and classifications with partial signal subtraction on only the LSm ring did not

yield better resolution maps (not shown).

We also examined the effect of wider search ranges for the rotations and

translations of the bodies by changing the standard deviation of the angular

and the translational priors to 20 degrees and 4 pixels. The resulting resolutions

were within one or two resolution shells of those with the default values of 10

degrees and 2 pixels, which is consistent with the observations for the ribosome

dataset.

principal component analysis by relion flex analyse revealed that the
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first two components describe approximately 30 % of the variance in the rota-

tions and translations (Figure 3D). In contrast to the ribosome discussed above,

the histograms were unimodal, suggesting that these motions were of a con-

tinuous nature. The first component corresponded to a rocking motion of the

SF3b over the core (Movie 3). The second represented concerted rocking of the

helicase and SF3b (Movie 4). Interestingly, the latter motion may resemble an

early phase of the transition from the B complex (this structure) to the Bact

complex, where the SF3b regions moves towards the U6 snRNA ACAGAGA

stem to form the spliceosome active site (Yan et al., 2016; Rauhut et al., 2016;

Plaschka et al., 2017).

4. Discussion

The main assumption in conventional cryo-EM single-particle analysis is

that every experimental particle is a two-dimensional projection of a common

three-dimensional structure. This assumption no longer holds in the presence

of continuous structural heterogeneity in the data set. Instead, multi-body

refinement assumes that the continuous structural heterogeneity can be mod-

elled as independent movements between rigid bodies, i.e. bodies that adopt

the same structure but have different relative orientations among the data set.

This assumption is probably reasonable for many macromolecular complexes,

as tertiary protein structure often remains intact upon changes in quaternary

structure. This is because within individual protein domains, the chemical en-

vironment of each amino acid does not change much upon movements of the

entire domain. a major advantage of the multi-body model is that it allows one

to use the entire data set for the reconstruction of each body, i.e. no subdivision

of the data is required to describe the structural heterogeneity. The usefulness

of this model is illustrated by the observation that multi-body refinement yields

marked improvements over consensus refinement in the maps of flexible domains

for both the ribosome and the spliceosome. For both test cases, parts of the con-

sensus map that were not interpretable in terms of an atomic model improved
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to resolutions around 4 Å after multi-body refinement. Therefore, multi-body

refinement will be a useful tool in generating atomic models for domains that

adopt multiple different orientations with respect to the rest of the complex.

Whereas the internal structure of protein domains may change little when a

body moves relative to a neighbour, significant changes in the chemical environ-

ment are expected for amino acids at the interfaces between the bodies. As one

domain moves relative to another, continuous or multiple discrete conforma-

tional changes may occur at the interface. Ultimately, these changes may also

affect the internal structure of the protein domains, in which case multi-body

refinement would no longer be justified, but in general the structural variability

will be largest at the interfaces. Our implementation allows the definition of

overlapping body masks. Thereby, each body can be defined to include the in-

terface with its neighbouring bodies. Provided this interface density is not large

enough to affect the particle alignments, the resulting blurry density may help

to better understand the nature of the structural variability at these interfaces.

Our implementation outputs a separate reconstruction for each of the bod-

ies, which may then be used to build atomic models for the different bodies.

Often, the experimentalist may want to combine these separately built atomic

models into a single atomic model describing the entire complex. Such a com-

bined atomic model can then be used to make figures for publication, or for

submission to the Protein Data Bank. For example, in the original study on the

spliceosomal B-complex, a combined atomic model was generated by rigid-body

fitting the models that were built into maps resulting from separate focused

refinements with partial signal subtraction, and a similar procedure could be

used after multi-body refinement. However, we note that this representation of

a single atomic model for the entire complex is in principle not supported by the

data. Besides creating a false impression of structural homogeneity, in particu-

lar the conformations of residues at the interfaces of the rigid-body fitted atomic

models may not reflect the true interface of the relative orientation of the bod-

ies observed in the combined model. For example, a helix connecting the core

of the spliceosome and the LSm ring of the SF3b body (marked by asterisks in
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Figure 3D, E, G) looks broken in combined multi-body reconstructions, which is

chemically unfeasible. This is where the rigid body assumption no longer holds.

In reality, the interface should rearrange to keep the helix intact. As many dif-

ferent interface structures may exist in the data set, reconstruction of all these

different densities and the generation of atomic models for these may not be

possible. One could propose to keep the atomic models for each of the bodies

separate, as this would prevent the impression of a well-defined structure at the

interface. However, such a solution would still not reflect the variability in con-

formations of residues at the interface, and would be more difficult to analyse

by non-experts. How to tackle the problem of reflecting continuous structural

heterogeneity with atomic models will require community-wide discussion.

Multi-body refinement improved the maps for flexible parts of both the ribo-

some and spliceosome test cases. Similar improvements can also be achieved by

existing focused refinement or classification approaches with partial signal sub-

traction. In fact, in the original study describing the spliceosomal B-complex,

parts of the SF3b region were reconstructed to higher resolutions (3.9 Å) than

achieved in multi-body refinement (4.4 Å). Multi-body refinement has the ad-

vantage of iteratively improving the partial signal subtraction, whereas focused

refinement and classification is typically done with fixed subtracted particle

images. On the other hand, combining multiple focused classifications and/or

refinement runs, each with its own user-specified sampling and mask parame-

ters, is more flexible than the fully automated multi-body refinement but re-

quires more user expertise. To combine the advantages of both approaches,

the relion flex analyse program can output subtracted images according to

the iteratively-refined relative orientations from a multi-body refinement. The

resulting subtracted particle images can then be used in subsequent focused

classifications and/or refinements. An additional advantage of this program

over previously existing subtraction tools in relion is the centering at the pro-

jected centre-of-mass of the subtracted particle images, which allows the use of

more meaningful priors and smaller box sizes. The use of this procedure was

illustrated for the SF3b region of the spliceosome, where focused classification

26

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 22, 2018. ; https://doi.org/10.1101/286856doi: bioRxiv preprint 

https://doi.org/10.1101/286856
http://creativecommons.org/licenses/by/4.0/


and refinement after subtraction in the relion flex analyse program led to a res-

olution of 4.0 Å, which is close to the resolution of 3.9 Å obtained for this region

in the original study.

Besides improved reconstructed density for flexible domains, multi-body re-

finement also provides information about the relative orientations of all bodies

for every particle in the data set. The proposed principal component analysis

on the relative rotations and translations of all bodies allows convenient visu-

alisation of the principal motions that exist within the data set through the

generation of movies. These movies provide the user with unique insights into

how different bodies move with respect to each other, which bodies move to-

gether with others, etc. However, we do again point out that (as outlined above

for the analysis of atomic models) densities at the interfaces between different

bodies are not well-defined in these movies. For the ribosome, analysis of the

movies for the first two eigenvectors revealed the presence of the typical ribosome

motions of rolling and ratcheting of the SSU relative to the LSU. In addition,

the presence of a bimodal histogram for the first eigenvector indicated the pres-

ence of non-continuous heterogeneity in the rolling motion. Classification of the

particles based on the first eigenvalue was used to obtain two separately refined

maps of the two states, which confirmed the motion observed along that eigen-

vector. For the spliceosome, rotations of the helicase and SF3b with respect to

the core were observed. Interestingly, the motion corresponding to the second

eigenvector resembles an early phase of the transition from the B complex to the

Bact state in the spliceosome functional cycle (Yan et al., 2016; Rauhut et al.,

2016; Plaschka et al., 2017). These results illustrate that the movies generated

by the relion flex analyser program may be useful in exploring biologically

relevant molecular motions.

One of the main limitations of multi-body refinement, and focused refinement

in general, is that when the size of individual bodies decreases the signal becomes

too weak for reliable alignment of the subtracted particle images. Refinement

of single-particles with molecular weights below 100 kDa becomes progressively

difficult, although smaller particles have been refined, and phase-plate imaging
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(Khoshouei et al., 2017) can help to reduce the size limits. In the case of perfect

partial signal subtraction, similar limits on the minimum size of the bodies are

expected for multi-body refinement. In practice, partial signal subtraction will

contain errors, and larger bodies may be required. The smallest body presented

in this paper, the foot of the spliceosome, has a molecular weight of approxi-

mately 290 kDa. The current implementation allows keeping very small bodies

fixed (by setting the standard deviations on their rotational and translational

priors to zero). Thereby, at least the consensus density can be subtracted for the

alignment of the other bodies. Ultimately, one would aim to introduce depen-

dencies between the alignments of bodies, such that simultaneous alignment of

many small bodies would become feasible. This would allow modelling of much

more complicated forms of continuous structural heterogeneity, and is a topic

of active research in our groups and by others. The approach in WarpCraft

(Schilbach et al., 2017) represents a step in that direction. Alternatively, one

might use the priors P (φb|Θ
(n)) to expresses similarities in the orientations of

neighbouring regions.

Meanwhile, the multi-body approach presented here offers a convenient tool

to improve the reconstructed density of flexible regions in macromolecular com-

plexes that can be described as multiple moving rigid bodies, and to provide

unique insights into the nature of these movements. The computer programs

described in this paper will be distributed as part of release 3.0 of relion, which

is completely free for any user. As this software is distributed as open-source,

others can contribute their own modifications and improvements of the pre-

sented algorithms, as has happened for partial signal subtraction approaches in

the past (Zhou et al., 2015; Ilca et al., 2015; Schoebel et al., 2017). Based on the

observations described here, we anticipate that multi-body refinement, possibly

combined with existing classification and refinement approaches, will be a use-

ful tool to extract more information from cryo-EM data sets on macromolecular

complexes exhibiting continuous structural heterogeneity.
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