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Abstract 
Motivation: Accurately mapping the brain at the micro-scale is still a challenge in cellular neuroscience. 
While notable success has been reached in the field of tissue clarification and confocal imaging to 
obtain high-fidelity maps of three-dimensional neuron organization, neuron segmentation is still far 
away of ground-truth and manual segmentation performed by experts may be needed. The need of an 
expert is in part related to the limited success of the algorithms and tools performing single-neuron 
segmentation from 3D microscopic image data available in the State of Art, in part to the non-complete 
information given by these methods, which typically perform neuron tracing and thus limit the interpret-
ability of results. 
Results: In this paper, a novel algorithm for segmenting single neurons in their own arrangement within 
the brain is presented. The algorithm performs a region growing procedure with local thresholds based 
on the pixel intensity statistics typical of confocal acquisitions of biological samples and described by a 
mixture model. The algorithm is developed and tested on 3D confocal datasets obtained from clarified 
tissues. We compare the result of our algorithm with those obtained by manual segmentation performed 
by 6 different experts in terms of neuron surface area, volume and Sholl profiles. Statistical analysis 
performed on morphologic features extracted from the segmented structures confirms the feasibility of 
our approach. 
Availability: The Smart Region Growing (SmRG) algorithm used in the analysis along with test confo-
cal image stacks is available on request to the authors. 
Contact: alejandrocallara@gmail.com  
Supplementary information: Supplementary data are available on request to the authors. 

 
 

1 Introduction  

Digitalizing a complete and high-fidelity map of the neurons populating a mammalian brain is a central endeavour for neuroscience research, since 
it represents the first step for the delineation of the full Connectome (Alivisatos et al., 2012). Single-neuron reconstructions from empirical data 
can aid generating models to make predictions about higher-level brain organization, studying the normal development of dendritic and axonal 
arbours and documenting neuro-pathophysiological changes (Budd et al., 2015).  
Doubtless, confocal and two-photon microscopy are the cardinal tools for studies of the cellular morphology and brain cyto-architecture (Wilt et 
al., 2009; Ntziachristos, 2010). These cutting-edge technologies, coupled with clarification methods, that act on the penetration limits imposed by 
light scattering (see the review of (Richardson and Lichtman, 2015) for more details) making the biological tissues transparent, have enabled the 
inspection of the global arrangement of large brain neuron populations (i.e. up to 500 µm in thickness) at cellular (i.e. sub-micrometeric) resolution. 
A fundamental limitation to unravel the intricate brain micro-architecture is the limited success of the algorithms and the tools available in litera-
ture. In fact, despite the efforts reported by the scientific community, as witnessed by the DIADEM (DIgital reconstructions of Axonal and DEndrite 
Morphology) challenge in 2009-2010 (Gillette et al., 2011) and the BigNeuron project in 2005 (Peng et al., 2015), a robust algorithm or tool per-
forming single-neuron segmentation from datasets representing dense-packed neurons in their native arrangement within the brain still lacks. 
Moreover, most of these approaches just perform three-dimensional neuron tracing, giving scarce information about neuron morphology (i.e. sur-
face and volume of the whole cell, dendrite diameters).  
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The neuron tracing methods available can be categorized, as suggested by (Acciai et al., 2016), into global processing, local processing and meta-
algorithm approaches. While the global approaches process the whole datasets, the local processing considers local features around relevant struc-
tures and meta-algorithms just enhance particular aspects of existing methods to manage large-scale images.  
Due to their ability in managing signal variability, local tracing methods represent the ideal candidate for single-neuron segmentation from confocal 
or two-photon microscopy datasets. In fact, even after the clarification of the biological samples, deeper layers in the specimen are imaged with 
lower photon intensity due to light scattering, refraction and absorption, as well as photobleaching and spherical aberration (Diaspro, 2001). All 
these phenomena, along with the biological fluorescence variability (i.e. the non-uniform distribution of the fluorophores through the sample), 
lead to both on-plane and intra-plane pixel intensity heterogeneities within the dataset acquired.  
The core idea of local methods is to segment objects based on local hard (Li et al., 2008) or soft (Wang et al., 2009) clustering such as local binary 
fitting (LBF) or gaussian fitting (LGF). This procedure is generally applied without specific spatial constrains, even though some efforts have been 
done to integrate hard clustering in a region growing approach (RG) (Mostafa et al., 2016). Region growing is a pixel intensity and seed generation-
based image segmentation method (Brice and Fennema, 1970). First, a seed point belonging to a region of interest (ROI) is chosen, manually or 
automatically. Then, the neighboring pixels of the seed are iteratively examined to determine whether they should be added to the ROI or not 
based on some predefined rule (i.e. a homogeneity predicate). The performance of this procedure may be influenced by the seed selection and by 
the choice of the rule used by the RG scheme (Baswaraj et al., 2012), which typically depends on the intrinsic properties of the image. 
Image properties derive principally from the image formation process. Confocal microscopy is based on a sampling procedure of successive points 
in a focal plane that creates a spatial representation of the distribution of fluorescent probes within a sample. Hence, each pixel contains a discrete 
measure of the detected fluorescence within a sample period, represented by a photon count, and certain amount of noise, deriving from different 
sources (Pawley and Pawley, 2006; Calapez and Rosa, 2010). Given the nature of the measure, statistical methods represent a well suited way for 
describing the image and to date different models have been proposed to depict the confocal image properties such as the Poisson model (Pawley 
and Pawley, 2006), the Gaussian model (Calapez et al., 2002) and mixture models (MM, Calapez and Rosa, 2010). A quantitative comparison between 
these models has been reported elsewhere, defining MM as the best descriptor of the sharp peaks and the long tails characteristic of background 
and low fluorescence distributions (Calapez and Rosa, 2010). 
In this light, we developed a new Smart Region Growing (SmRG) algorithm to segment single neurons from 3D confocal image stacks obtained 
from clarified samples.  SmRG is an automatic (semi-automatic) framework that combines a RG procedure and MM describing the confocal micros-
copy signal statistics. We describe the SmRG algorithm workflow for single-neuron segmentation. To assess the algorithm accuracy, we evaluate 
the SmRG performance on segmented Purkinje cells (PCs) from 3D image stacks of clarified mouse cerebella acquired using a confocal microscope. 
The results are compared with those obtained from manual segmentation (Magliaro et al., 2017).  

2 Materials and Methods  

An outline of SmRG   

The SmRG is a region growing algorithm based on the local features of confocal images. Precisely, it exploits the statistics of the background and 
signal distribution coming from confocal acquisitions and a linear mixture model to determine the probability at which a given pixel (voxel) can be 
considered as part of the specimen of interest or the background. The homogeneity predicate to grow regions is then designed depending upon 
these probabilities. 
The SmRG algorithm is developed in Matlab (The Mathworks-Inc, USA) and exploits the negative binomial parametrization as in 
https://github.com/mscipio/MATLABtools___nbin_mu. 

The mixture model 

In its original version (Calapez and Rosa, 2010), the model is supposed to describe K different fluorescence levels or classes; the k-th-class is described 
by the linear mixture model 
 

𝜓௞(𝑦) = 𝛼௞𝜓஻(𝑦 − 𝐾଴) + (1 − 𝛼௞)𝜓ௌ௞(𝑦 − 𝐾଴)   (1) 
 

where 𝑦, 𝐾଴ and αk denote respectively the pixel intensity level, the system offset and the mixture parameter. 𝜓஻ is the distribution for the back-
ground pixels and is modeled according to a discrete normal distribution, with variance 𝑣஻  and mean 𝐾଴, and 𝜓ௌ௞ is the intensity distribution of the 
k-th class pixels, described by a negative-binomial distribution with parameters 

𝑝௞ =  
ఓೄೖ

௩ೄೖ
       (2) 

and 

𝑟௞ =  
ఓೄೖ

మ

௩ೄೖିఓೄೖ
     (3) 
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For region growing purposes however, it is reasonable to assume the presence of a single class k of pixels, at least locally. In this case, the complete 
model for a pixel 𝑦௟ is described by the 5-parameter distribution 
 

𝜓(𝑦௟; 𝐾଴, 𝑣஻ , 𝛼, 𝑟, 𝑝) = 𝛼
ଵ

௓(௩ಳ)
exp ቀ−

(௬೗ି௄బ)మ

ଶ௩ಳ
ቁ + (1 − 𝛼)

୻(௬೗ି௄బା௥)

(௬೗ି௄బ)!୻(௥)
𝑝௥(1 − 𝑝)௬೗ି௄బ  (4) 

where all the parameters are real valued except for 𝐾଴ which is an integer and α ∈ [0,1]. 
The model fitting is done by means of an Expectation-Maximization (EM) algorithm in which: 

1. 𝑝 and 𝑟 are obtained by the method of moments 
2. 𝐾଴ and 𝑣஻are given by the maximization of the log-likelihood 

𝐿(Θ|𝑌, 𝑋) =  ∑ ln୫ୟ୶ ௒
௬ୀ௠௜௡ ௒ (𝜓)    (5) 

3. 𝛼 is given by the posterior density     
                                        

𝛼 =  
∑ ఈ೤

ౣ౗౮ ೊ
೤సౣ౟౤

ே
       (6) 

The region growing procedure 

 
The SmRG region growing procedure begins by selecting a seed, manually or automatically. In the first case, the user is asked to give the seed 
position by clicking on the image, while in the latter two different routines are performed. Initially, the algorithm searches for spherical objects 
within the stack and, if at least one sphere is found, the seed is chosen as the center of the sphere. Otherwise, the MM described in (equation) is 
fitted globally and seeds are determined as those pixels that certainly belong to the signal (𝛼=0). 
After seed detection, the homogeneity predicate is derived locally on a 32x32x3 sub-volume (crop) centered on the seed. The smart behavior of 
SmRG performs at this step: a Hartigan’s dip test (Hartigan and Hartigan, 1986) is performed on the crop intensity distribution to test for unimodality 
against multimodality. In the latter case, the segmentation proceeds with Otsu’s method (Otsu, 1979), a well-known thresholding technique for 
multimodal distributions (Guo et al., 2012). Otherwise, the MM is fitted on the sub-volume pixel intensity distribution and the homogeneity pred-
icate is defined as those pixels with 𝛼 < 0.01. Every pixel that satisfies the homogeneity predicate and is spatially connected to the seed is added to 
the ROI.  
New seeds are chosen from the segmented ones. For each segmented plane the regional maxima of the distance transform (Maurer and Raghavan, 
2003) are taken as new seeds. The algorithm iterates for each new seed and the process stops when there are no more pixels to add. Moreover, 
anytime the MM is fitted, the mean absolute error (MAE) between the fitted model and the empirical distribution is calculated. If the MAE is bigger 
than a settable threshold, the cropped volume in which the fitting fails is saved for visual inspection.  
The result of the SmRG is a segmented 3D structure that allows for subsequent morphological operations such as the calculation of neuron surface 
and volume and dendrite diameters and lengths (Figure 1). 

PCs Segmentation evaluation 
For evaluating the performance of the algorithm in terms of segmentation precision and accuracy, we used confocal datasets representing neurons in their 
native arrangement within the brain. The same n=3 PCs from 3D image stacks of murine cerebellum slices clarified as in (Magliaro et al., 2016) and 
acquired using a confocal microscope (Nikon A1) were segmented using both the SmRG algorithm and ManSegTool (Magliaro et al., 2017), a tool for 
manual segmentation of 3D stacks (each neuron was segmented manually by 6 experts). To quantify the goodness of neuron segmentation we evaluated 
the differences between the SmRG segmentation and a manual segmented gold standard by comparing features extracted from both segmentations. As 
relevant morphological features for our algorithm we considered the surface area, the volume and the Sholl analysis (Sholl, 1953) of segmented structures. 
To compare Sholl profiles we calculated the total area under the curve (AUC) using the trapezoidal rule: this allows to have a single measure for each 
profile (Binley et al., 2014). Statistical differences between the features in the gold standard and those coming from automatic segmentation were evalu-
ated by means of the Friedman’s test with replicates. Specifically, surface area, volume and AUC of Sholl profiles represented blocking factors (rows, 
nuisance effects) with replicates (neurons #1, #2 and #3) and users and SmRG represented treatments (column). 

3 Results 
Figure 2 shows an example of the same neuron segmented by an expert and by the SmRG algorithm: SmRG can follow the neurite arborization, without 
missing primary branches, as well as smaller structures; moreover, the structure obtained with SmRG is characterized by a smooth three-dimensional 
structure that allows the extraction of different morphological information.  
The morphological features extracted from the segmented neurons (i.e. surface area, volume and AUC of Sholl profiles) are shown in Figure 3, while a 
detailed Sholl analysis is reported in Figure 4. The Friedman’s test showed no statistically significant differences between automatic (SmRG) and manual 
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(ManSegTool) segmentation in terms of surface area, volume and Sholl profiles of the segmented structure; a detailed ANOVA table of the Friedman’s 
test is reported in Figure 5.  

4 Discussion 
The reconstruction of single-neuron morphology from three-dimensional image stacks represents a primary step in neuro-research, aiming at revealing 
the complex relationships between brain structure and function. Despite remarkable attempts to address this issue, the problem is still far from being 
solved. On one hand, automatic general-purpose robust methods to deal with the large variability of neuro-image datasets are still lacking; on the other, 
while considerable efforts have been made in the field of neuron tracing, little attention has been paid to the morphology of segmented structures as if of 
secondary importance. 
SmRG is an open-source Matlab-based algorithm purposely developed to segment complex structures in a three-dimensional environment represented by 
confocal image stacks, while preserving important and useful information about the morphology of the segmented objects. The algorithm is based on a 
region growing scheme that allows to follow the signal variability locally and on mixture models aiming at defining a homogeneity predicate for the 
segmentation. Our results (Figure 5) suggest that SmRG performance in terms of extracted features from segmented structures is comparable to those 
obtained from a manual segmentation gold-standard.  
SmRG was developed and tested on confocal image stacks of Purkinje cells from clarified mouse cerebella. The higher signal-to-noise ratio (SNR) and 
contrast-to-noise ratio (CNR) of clarified images (Magliaro et al., 2016), along with the results of this work suggest that this procedure should always be 
performed before segmentation when possible. 
Unlike other tools and algorithms, the SmRG output allows the extraction of additional features about the segmented neurons (i.e. neurite thickness, 
neuron surface and volume). Preserving this information may be helpful for studies that rely on neuron morphology, such as simulating the neuron 
electrophysiological behavior based on empirical microscopic data and cell characterization.  
It remains an open question whether a general-purpose algorithm should be possible, considering the great variability of different cell-imaging methods. 
However, it is a common view that segmentation procedures depend on the goal of the segmentation itself (Zhang, 1996). In this view, SmRG is not 
supposed to fill this gap, but to represent the last step of an imaging workflow that comprises tissue clarification and confocal imaging. 

5 Conclusions 
We integrated a region growing procedure and mixture models to isolate single neurons from confocal image stacks obtained after tissue clarification. To 
our knowledge, although statistical methods represent a natural candidate for describing confocal image intensity distribution, their integration in spatial 
constrained segmentation procedures such as region growing are limited. We believe that such integration may help considerably developing new ap-
proaches to neuron segmentation. Moreover, SmRG output allows for subsequent 3D analysis of segmented structures in terms of surface area and volume 
of segmented structures. It is our view that this kind of information, which is often neglected in the state of art, may lead to a more accurate neuron 
classification. 
In (Magliaro et al., 2016) a quantitative analysis of the effects of clarification on the SNR and CNR of confocal images is reported. It may be of particular 
interest evaluating the effects of clarification on neuron segmentation, since algorithms for this kind of data seems to lack in the state of art. From this 
point of view, our algorithm can represent a first step in this direction. 
From a biological perspective, one of the problems that could benefit from digital neuron reconstruction is the characterization of cell type by morphology, 
including in wild-type and model animals, as well as in healthy and diseased human individuals (Acciai et al, 2016).  
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Figure 1. An example of the output of SmRG representing a Purkinje cell from mouse 
cerebellum 
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Figure 2. A) Gold-standard manual segmentation. B) SmRG automatic segmentation. C) Merge of manual (green) and automatic 
(red) segmentation. 

Figure 3. A) Neuron volume. B) Neuron surface. C) AUC of Sholl profiles. Friedman’s test was performed with Volume, Area and 
AUC as blocking factors (rows, nuisance effects) with replicates (neurons #1, #2 and #3), and with users and SmRG as treatments 
(column). No statistical differences were observed (p-value=0.8233).   
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Figure 4, Sholl profiles for different neurons and Users. The AUC corresponds to the area under the curve. 

Figure 5. Friedman’s ANOVA table.  
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