
Full-length de novo viral quasispecies assembly

through variation graph construction

Jasmijn A. Baaijens∗, Bastiaan Van der Roest†, Johannes Köster‡§,
Leen Stougie∗¶‖, Alexander Schönhuth∗∗∗‖††

Abstract

Viruses populate their hosts as a viral quasispecies: a collection of genetically related mutant
strains. Viral quasispecies assembly is the reconstruction of strain-specific haplotypes from read
data, and predicting their relative abundances within the mix of strains, an important step for
various treatment-related reasons. Reference-genome-independent (“de novo”) approaches have
yielded benefits over reference-guided approaches, because reference-induced biases can become
overwhelming when dealing with divergent strains. While being very accurate, extant de novo
methods only yield rather short contigs. It remains to reconstruct full-length haplotypes to-
gether with their abundances from such contigs. We present Virus-VG as a de novo approach to
viral haplotype reconstruction from pre-assembled contigs. Our method constructs a variation
graph from the short input contigs without making use of a reference genome. Then, to obtain
paths through the variation graph that reflect the original haplotypes, we solve a minimiza-
tion problem that yields a selection of maximal-length paths that is optimal in terms of being
compatible with the read coverages computed for the nodes of the variation graph. We output
the resulting selection of maximal length paths as the haplotypes, together with their abun-
dances. Benchmarking experiments on challenging simulated and real data sets show significant
improvements in assembly contiguity compared to the input contigs, while preserving low error
rates compared to the state-of-the-art viral quasispecies assemblers. Virus-VG is freely available
at https://bitbucket.org/jbaaijens/virus-vg.

1 Introduction

The ensemble of genetically related, but different mutant viral strains that populate infected
people are commonly referred to as viral quasispecies (Domingo et al., 2012). Each of these
strains comes with its own genomic sequence (henceforth referred to as haplotype). The final
goal of primary viral quasispecies analysis is the reconstruction of the individual haplotypes—
optimally at full length—and also to provide estimates of their abundances. The unknown
number of different, strain-specific haplotypes and their variance in abundance establish the
theoretical issues that characterize viral quasispecies assembly. They explain why this form
of assembly is difficult, despite the shortness of virus genomes. These issues are further ac-
centuated by the fact that neither next-generation nor third-generation sequencing reads, by

∗Centrum Wiskunde & Informatica, Amsterdam, Netherlands
†University Medical Center Utrecht, Utrecht, Netherlands
‡University of Duisberg-Essen, Essen, Germany
§Dana Farber Cancer Institute, Harvard Medical School, Boston, United States
¶Vrije Universiteit, Amsterdam, Netherlands
‖INRIA-Erable
∗∗Utrecht University, Utrecht, Netherlands
††Corresponding author (alexander.schoenhuth@cwi.nl)

1

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2018. ; https://doi.org/10.1101/287177doi: bioRxiv preprint 

https://bitbucket.org/jbaaijens/virus-vg
https://doi.org/10.1101/287177
http://creativecommons.org/licenses/by-nd/4.0/


their combinations of error rates and length, allow for immediate reconstruction and abundance
estimation of haplotypes (Beerenwinkel et al., 2012; Rose et al., 2016).

State-of-the-art approaches currently allow for two options: (i) full-length reconstruction of
haplotypes based on statistical, usually reference genome dependent measures, or (ii) de novo
reconstruction of (optimally haplotype-specific) contigs.

Approaches of type (i) assume that the sequencing reads are aligned to a reference genome
and make use of model-based clustering algorithms (Zagordi et al., 2011; Barik et al., 2017; Ahn
and Vikalo, 2018), Dirichlet process mixture models (Prabhakaran et al., 2014), hidden Markov
models (Töpfer et al., 2013), sampling schemes (Prosperi and Salemi, 2012), or combinatorial
methods (Knyazev et al., 2018), respectively. However, as was demonstrated in Baaijens et al.
(2017); Töpfer et al. (2014), resorting to external auxiliary means (such as reference genomes)
can bias the reconstruction procedure significantly.

Approaches of type (ii) comprise generic (meta)genome assemblers as well as specialized
viral quasispecies assemblers, both of which are not helped by external measures (“de novo”)
hence are not affected by external biases. Metagenome assemblers are designed to reconstruct
multiple genomes simultaneously, but in viral quasispecies tend to collapse strains (Rose et al.,
2016). It was further shown by Baaijens et al. (2017) that among generic de novo assemblers
SPAdes (Bankevich et al., 2012) was the only approach to identify strain-specific sequences,
however only in case of sufficiently abundant strains. De novo viral quasispecies assemblers
(e.g. Hunt et al. (2015); Yang et al. (2012)) generally aim at constructing suitable consensus
reference genomes, which may serve as a template for more finegrained studies (for example if
curated reference genomes have become too divergent, which is a frequent scenario). To the
best of our knowledge, the only methods that truly aim at de novo viral quasispecies assembly
at strain resolution are SAVAGE (Baaijens et al., 2017), MLEHaplo (Malhotra et al., 2016)
and PEHaplo (Chen et al., 2018). However, the contigs produced by these methods, while
strain-specific, in general do not represent full-length haplotypes.

We present Virus-VG, an algorithm that turns strain-specific contigs into full-length, strain-
specific haplotypes, thus completing the de novo viral quasispecies assembly task. For that,
we construct a variation graph from the contigs, without the help of a (curated) reference
genome, where we use the contigs from SAVAGE (Baaijens et al., 2017). We obtain full-length
haplotypes as a selection of maximal-length paths in the variation graph, each of which reflects
a concatenation of subpaths associated with the input contigs. The selected paths are optimal
in terms of differences between their estimated abundances and the read coverages computed
for the nodes they traverse.

Variation graphs are data structures that have recently become very popular as reference
systems for (evolutionarily coherent) collections of genomes (Paten et al., 2017). Using such
genome structures instead of standard linear reference genomes has been shown to reduce ref-
erence bias (Dilthey et al., 2015; Paten et al., 2017) and to come with a few other, significant
advantages (Novak et al., 2017; Rosen et al., 2017). Methods presented for constructing varia-
tion graphs so far, however, mostly require a linear reference genome as a point of departure.
Here, we point out how to construct variation graphs de novo, by first sorting the contigs in an
appropriate way and then making use of progressive multiple alignment techniques (vg msga,
part of the vg toolkit by Garrison et al. (2017)). In this, we present an approach for full-
length, high-quality reconstruction of the haplotypes of a viral quasispecies that is entirely de
novo, which, to the best of our knowledge, is a novelty.

Our method depends on the enumeration of maximal-length paths in a variation graph,
whose number is exponential in the number of nodes of the graph. However, since all these
paths enumerated are to respect the subpaths associated with the input contigs, their number
will decrease on increasing contig length. Thanks to advances in sequencing technology, input
contig length will inevitably increase, which points out that our method, as per its design, will
be able to deal with future technological developments smoothly.

Benchmarking experiments demonstrate that Virus-VG yields substantial improvements over
the input contigs assembled with SAVAGE in terms of spanning the full length of the haplotypes.
Thereby, the increase in length comes at negligible or even no losses in terms of sequential

2

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2018. ; https://doi.org/10.1101/287177doi: bioRxiv preprint 

https://doi.org/10.1101/287177
http://creativecommons.org/licenses/by-nd/4.0/


accuracy. Further, we find our strain abundance estimates to be also highly accurate. Finally, we
find our method to (substantially) outperform alternative approaches, all of which are reference
based—we recall that there are no alternative de novo approaches so far—both when working
with bootstrap and curated reference genomes.

Note on Related Work: RNA Transcript Assembly. The problem of RNA transcript assem-
bly has been cast in terms of variations of minimum path cover optimization problems that
are—regarding a few relevant aspects—similar in spirit to the optimization problem we formu-
late (Bernard et al., 2014; Pertea et al., 2015; Rizzi et al., 2014; Tomescu et al., 2013; Trapnell
et al., 2010). Most importantly, Rizzi et al. (2014) introduce node and edge abundance errors
and Tomescu et al. (2013) show a minimum path cover with subpath contraints to be polynomi-
ally solvable. However, to the best of our knowledge, no method simultaneously employs both
subpath constraints and abundance error minimization in its problem formulation. Moreover,
applying these RNA transcript assemblers to the viral quasispecies problem is not so straight-
forward: a collection of reference genomes representing all possible haplotypes is required as
input, while in our setting such information is not available.

2 Methods

Notation. A variation graph (V,E, P ) is a directed graph that is constructed from a set of
input sequences, which represent members of a (evolutionarily coherent) population of sequences.
Each node v ∈ V is assigned to a subsequence seq(v). An edge (u, v) ∈ E indicates that the
concatenation seq(u)seq(v) is part of one of the input sequences. P is a set of paths (a sequence
of nodes linked by edges) that represent genome-specific sequences; thereby, P can, but need
not, represent the input sequences themselves. A node v ∈ V with no incoming edges is called
source. A node v ∈ V with no outgoing edges is called sink.

Workflow. Our method consists of two basic steps:
(1) The computation of a contig variation graph V G′ = (V ′, E′, P ′) where each path p ∈ P ′

represents an input contig. We refer to the path representing contig c as p(c). Together
with V G′, we compute a function a′ : V ′ → R where a′(v′) for v′ ∈ V ′ represents the
abundance of an individual node, measured by the amount of original reads (from which
the contigs were computed) that align to seq(v′).

(2) The transformation of V G′ into a genome variation graph V G = (V,E, P ) where each
path p ∈ P reflects a full-length haplotype. We also compute a function a : P → R where
a(p) for p ∈ P reflects the abundance of the haplotype represented by p. The set of paths
P together with their abundances a(p) establish the final output of our method.

The input for determining V G′ in (1) are the contigs. For computation of a′, we make use of the
original reads from which the input contigs were computed; one can determine the abundance
a′(v′) of single node v′ ∈ V ′ as the (length normalized) count of reads whose alignments touch
upon v′.

The input for computation of V G and a in (2) are V G′ and a′. Since V ⊆ V ′ and E ⊆ E′,
as will become clear later, we can apply a′ also to nodes in V G. The computation of V G is
established as the solution of an optimization problem that aims to determine full-length paths
(paths formed by a concatenation of contigs of maximal length) such that the difference of path
abundances a(p) and node abundances a′(v) for paths p of which v makes part is minimal. We
emphasize here that the numbers a′(v) can be directly computed from the input, whereas the
a(p)’s correspond to decision variables in an optimization problem.

We will describe the construction of the contig variation graph (1) in full detail in Section 2.1.
The transformation into the (final) genome variation graph (2) is divided into two steps: (a)
the enumeration of candidate paths, which is described in Section 2.2.1, and (b) the solution
of an optimization problem that aims at selecting a subset of candidate paths through their
path abundance values which are optimal in terms of being compatible with node abundances
in Section 2.2.2. The complete workflow is illustrated in Figure 1.

3

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2018. ; https://doi.org/10.1101/287177doi: bioRxiv preprint 

https://doi.org/10.1101/287177
http://creativecommons.org/licenses/by-nd/4.0/


G   A   G   C   T   A

G   A   C   C   T   A

T   A     -    -   A   T

T   A    C   G   A   T

A   T   A   C

A   T   C   C 

G   A   G   C   T   A   -    -    A   T   A   C
G   A   C   C   T   A   C   G   A   T   C   C

GA

G

C CTA CG AT A

C

C

G A

G

C C T A C G A T A

C

C

A

B

C

D

E

F

Viral haplotypes

Contigs (input)

Initial contig

variation graph

Contig 

variation graph

Candidate 

paths
 

Genome variation 

graph (output)

Multiple

sequence

alignment

Graph

compression

Path

enumeration

Path

abundance

optimization

Figure 1: Virus-VG workflow.

2.1 Contig variation graph construction

Input. The input is a data set of next-generation sequencing reads and a set of contigs
assembled from them, for which we use the specialized de novo viral quasispecies tool SAVAGE
(Baaijens et al., 2017). We assume that there are no contigs which are an exact subsequence
of another contig, which applies for SAVAGE (and commonly applies for the output of many
assembly programs). The contig variation graph with its node abundances is constructed in
three steps.

Step 1: Multiple Sequence Alignment (MSA). We construct the initial contig
variation graph by building an MSA of the contigs using vg msga (Garrison et al., 2017), which
progressively combines long sequences into a variation graph. For this construction to work on
a collection of contigs that do not all cover the same region, the order in which the contigs
are aligned and added to the graph is crucial. Here, we sort the contigs by starting with the
longest contig, then iteratively selecting the contig with longest possible overlap with any of the
previously selected contigs, until all contigs have been selected. For finding all pairwise overlaps
between contigs we use minimap2 (Li, 2018). Determining the best sorting heuristic in terms of
speed and quality is subject to future work. After sorting the contigs, we apply vg msga; the
resulting MSA is represented as a variation graph and for every contig the corresponding path
through the graph is stored.

Step 2: Compression and contig-path construction. We compress the initial contig
variation graph similar to the construction of a compressed de Bruijn graph (Mäkinen et al.,
2015). The absence of branches on a path ensures that every source-sink path has to traverse it
at full length. Therefore, each non-branching path (vi1 , . . . , vik) can be merged (contracted) into
a single node v′i, with in-neighbors N−(v′i) = N−(vi1) and out-neighbors N+(v′i) = N+(vik).
Also the contributing contig sets of vi1 , . . . , vik are taken together and stored in the new node
v′i. Note that after this step, a node can represent a sequence instead of a single nucleotide.

In addition, we determine for each contig c the sub-path p(c) in this (compressed) graph
that represents c. Let p(c) = (vi1 , . . . , vik) be this sub-path. Note that due to the compression
step, the sequence seq(c) represented by a contig c might only be a subsequence of its path
sequence seq(vi1)...seq(vik). However, this does not bear any consequence on the definition of
any haplotype the contigs make part of.

The resulting compressed graph, together with the contig paths P ′ is our contig variation
graph V G′ = (V ′, E′, P ′), illustrated in Figure 1, panel D.

4

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2018. ; https://doi.org/10.1101/287177doi: bioRxiv preprint 

https://doi.org/10.1101/287177
http://creativecommons.org/licenses/by-nd/4.0/


Step 3: Node abundance. We finally compute a′ : V ′ → R, which assigns node abun-
dances a′(v′) to nodes v′ ∈ V ′ of the contig variation graph. These node abundances a′(v′)
reflect the average base coverage of the piece of sequence seq(v′). For computation of a′(v′) we
make further use of the vg-toolkit (Garrison et al., 2017), which allows to align the original
sequencing reads to our contig variation graph. The abundance a′(v′) is calculated as the sum
of all bases in all reads that align with seq(v′), divided by the length of seq(v′).

2.2 From contig to genome variation graph

The input for the following procedure is the contig variation graph V G′ = (V ′, E′, P ′) together
with a′ : V ′ → R that we have just described. The procedure for constructing the genome
variation graph V G = (V,E, P ) from V G′ and a′ consists of three steps. First, we compute a
set of candidate paths, which are all maximal length paths in (V ′, E′) that are “concatenations”
of paths from P ′. Second, we select a subset of candidate paths that are optimal with respect
to a minimization problem, which provides us with the final, maximal-length paths P and path
abundances a : P → R. Third, we remove nodes and edges from (V ′, E′) that are not traversed
by paths from P , which yields the final graph (V,E). Since only paths in P are supposed
to reflect true haplotypes, it is reasonable to assume that any node not being included in a
haplotype is a sequencing artifact. The third step is a straightforward procedure. We will
describe the first two steps in more detail in the following.

2.2.1 Candidate path generation.

The goal is to compute the set of all paths through (V ′, E′) that are maximal-length concate-
nations of paths from P ′, where we understand a concatenation of two paths as the merging of
them along a common substring. Thereby, this common substring is a suffix of the first path
and a prefix of the second path. We will refer to these paths as candidate paths Pcand in the
following (see also Figure 1, Panel E). Generating candidate paths happens in five steps outlined
below.

Step 1: Trimming paths p ∈ P ′. Due to common issues in contig computation, uncor-
rected sequencing errors are often located on the extremities of the contig. We therefore shorten
all paths p ∈ P ′ by their extremities and remove the tails if these contain nodes v′ for which
a′(v′) is below a given threshold. By default, we allow to trim paths p ∈ P ′ by a removal of
nodes that together amount to no more than τ = 10bp on either end.

Step 2: Enumerating pairwise concatenations. We allow concatenating pairs of
paths with matching suffix-prefix pairs. In more detail, let p1, p2 ∈ P ′, represented by series
of nodes (u1, ..., um) and (v1, ..., vn) from V ′. Then p1 can be concatenated with p2, written
p1 →c p2, if for some l we have um−l+1 = v1, um−l+2 = v2, ..., um = vl, that is, the suffix of
length l of p1 matches the prefix of length l of p2.

In order to enable correction of persisting sequencing errors, we further consider to concate-
nate pairs of paths p1, p2 which do have one or more non-matching nodes, but only under the
following condition. Let u∗ := um−l+i 6= vi =: v∗ be the respective non-matching nodes in
p1, p2 respectively, then only if min{a′(u∗), a′(v∗)} < α, where α is a user-defined threshold, we
concatenate p1 and p2. This threshold reflects the minimal node abundance a′(v) for which we
trust node v; for more details, see Appendix A.

Step 3: Removing concatenations lacking physical evidence. Subsequently, we
remove concatenations p1 →c p2 if there are q1, q2 such that q1 →c q2, q1 →c p2, q2 →c p2,
but there is no q3 for which p1 →c q3 and q3 →c p2 and there is q4 such that p1 →c q4.
The situation reflects that the concatenation of paths q1 →c p2 enjoys corroborating physical
evidence, provided by q2, while there is no such corroborating evidence for the concatenation

5

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2018. ; https://doi.org/10.1101/287177doi: bioRxiv preprint 

https://doi.org/10.1101/287177
http://creativecommons.org/licenses/by-nd/4.0/


p1 →c p2. At the same time, p1 concatenates well with q4 such that the removal of p1 →c p2
does not turn p1 into a dead end.

Step 4: Enumerating maximal length paths Pcand. In this step, the pairwise con-
catenations from step 2 that remain after step 3 are combined to paths of maximal length. This
is achieved through a breadth-first search type procedure. We maintain a set of active paths
Pact, which is the set of paths to be extended in the current iteration. We also maintain a set
of maximal paths Pmax that reflects the set of maximal length paths collected.

1. Initialization: We determine all p ∈ P ′ for which there are no q →c p and put them both
into Pact and Pmax.

2. Iteration: We replace each p ∈ Pact with all q ∈ P ′, for which p →c q without q∗ such
that p→c q

∗ →c q. Simultaneously, we extend each p̂ ∈ Pmax that ends in p, by appending
q (while respecting the overlap). In case q is already part of p̂, we do not append q to
p̂ but instead add q as a new path to Pmax, thereby breaking any possible loops due to
repetitive elements.

3. Output: If for all p ∈ Pact there are no q with p→c q, we output Pmax as our candidate
path set Pcand.

The enumeration algorithm lists all candidate paths in time linear in the output size, which,
however, may be exponential in the number of paths p ∈ P ′.

Step 5: Correcting paths for errors. After enumerating all candidate paths, we apply
a final correction step to every such path. Since we allow concatenating paths from P ′ where
suffix-prefix pairs do not match in all nodes (see Step 2), we may have positions in candidate
paths where contig paths p ∈ P ′ make ambiguous statements. All such ambiguous positions
refer (by construction) to low abundance nodes v′ (i.e., a′(v′) < α). We resolve the ambiguity
by selecting the node v∗ from all contributing paths p ∈ P ′ with maximal abundance a′(v∗).

2.2.2 Minimization for haplotype selection and abundance estimation

Input. For this final part of the method, the input is the set of candidate haplotype paths
Pcand and the node abundances a′(v). In general this set of paths is much larger than the
actual number of haplotypes, so Pcand will contain many false haplotypes. Here we filter them
out by estimating the abundance a(p) for each path (haplotype) p ∈ Pcand through solving a
minimization problem. In a subsequent step, haplotype paths with an abundance of (almost)
zero will be removed as being most likely false haplotypes. This leaves the set of haplotypes to
be output.

Determining path abundances a(p). We determine path abundance values a(p) for
every p ∈ Pcand, such as to minimize the sum of or, equivalently, the average of node abundance
errors. Let f(x, y) be an error function to be chosen later. Then for node v the node abundance
error is defined as the value of f(x, y) with x the node abundance a′(v) and y the sum of the
abundances of the haplotype paths going through the node v, which is

∑
p3v a(p). Recall that

the node abundance values a′(v) are obtained from read alignments to the contig variation graph
(Section 2.1, Step 3). The objective then becomes minimizing the sum of the node abundance
errors over all nodes v ∈ V ′:

min
∑
v∈V ′

f

(
a′(v),

∑
p3v

a(p)

)
.

We need to add non-negativity contraints a(p) ≥ 0 on the path abundances. Since we have
already taken all subpath constraints into account when enumerating the candidate haplotype
paths, the minimization problem does not need any further constraints.

Note that the effectiveness of this objective function depends heavily on the error function
used as well as the correctness of node abundances a′(v). These abundance values are not

6

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2018. ; https://doi.org/10.1101/287177doi: bioRxiv preprint 

https://doi.org/10.1101/287177
http://creativecommons.org/licenses/by-nd/4.0/


exact measurements, but based on read alignments to the graph as described above; coverage
fluctuations can thus lead to under- or overestimated node abundance values. In this case, a
simple linear objective function is preferred over a quadratic error function, because the former
allows big errors in certain nodes to be compensated by small errors in other nodes. We also
observed that normalizing the errors w.r.t. the true node abundance does not improve results,
because this means that errors in nodes with low abundance values are penalized very strongly.
For this reason, we use the error function f(x, y) = |x−y| in our objective and the optimization
problem becomes

min
∑
v∈V ′

∣∣∣a′(v)−
∑
p3v

a(p)
∣∣∣ s.t. 0 ≤ a(p) ∀ p ∈ Pcand. (1)

This is a convex programming formulation, which can, by a standard trick, easily be linearized
and solved using the LP solver from the Gurobi Optimizer1.

Output: haplotype selection and final abundances. The outcome of the min-
imization problem (1), yields for each p ∈ Pcand an optimal abundance value a∗(p). We now
select the set of haplotype paths as output of the procedure, by removing any haplotypes with
an estimated abundance below a user defined threshold γ. In other words, as output we give
the set P = {p ∈ Pcand | a∗(p) ≥ γ} (Figure 1, panel F). After this haplotype selection step, we
redo the optimization step on the selected haplotype paths (prefixing a(p) to 0 for every path p
with a∗(p) < γ), thus ensuring that our final abundance estimates are as accurate as possible.

Note on related work. The minimization problem we are treating here can be considered
as a combination of problems presented in Rizzi et al. (2014) and Tomescu et al. (2013). The
combination of these problems would require an unambiguous way to have subpath abundances
contribute to cumulative abundances on the nodes. It is not immediately evident how to do
so. In our setting it is straightforward how path abundances a(p) contribute to the estimated
abundances of the nodes on the paths. Exploring these relationships is interesting future work.

3 Results

We present results for Virus-VG on three challenging simulated data sets and one gold-standard
(real) benchmark. We compare our method with the viral quasispecies assemblers ShoRAH
(Zagordi et al., 2011) and PredictHaplo (Prabhakaran et al., 2014), which are widely approved
and state-of-the-art in terms of full-length reconstruction of viral haplotypes. Although a com-
parison to the RNA transcript assemblers from Rizzi et al. (2014) and Tomescu et al. (2013)
would be interesting, this is not so straightforward: these methods require as input a collection
of reference genomes representing all possible transcripts (or in our case, viral haplotypes). Since
we do not have such information, we could not apply these methods to our data.

For parameters to be set, guidelines, their default choices, and further reasoning, see Ap-
pendix A in the Supplementary Material. For an analysis of runtime and memory usage of
Virus-VG, see Appendix B in the Supplementary Material.

3.1 Data sets

For evaluating correctness of our algorithm and benchmarking experiments, we selected the
two most challenging simulated data sets (HCV, ZIKV) presented by Baaijens et al. (2017)
and generated one additional data set (Poliovirus). These data sets represent typical viral
quasispecies ultra-deep sequencing data and consist of 2x250bp Illumina MiSeq reads which
were simulated using SimSeq2. In addition to simulated data, we also consider a real Illumina
MiSeq data set commonly used for benchmarking, referred to as the labmix.

1http://www.gurobi.com
2https://github.com/jstjohn/SimSeq

7

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2018. ; https://doi.org/10.1101/287177doi: bioRxiv preprint 

http://www.gurobi.com
https://github.com/jstjohn/SimSeq
https://doi.org/10.1101/287177
http://creativecommons.org/licenses/by-nd/4.0/


10-strain HCV mixture. This is a mixture of 10 strains of Hepatitis C Virus (HCV), subtype
1a, with a total sequencing depth of approximately 20,000x (i.e. 400,000 reads). The haplotypes
were obtained from true HCV genomes in the NCBI nucleotide database and have a pairwise
divergence varying from 6% to 9%. Paired-end reads were simulated at relative frequencies
between 5% and 13% per haplotype, i.e., a sequencing depth of 1000x to 4600x per haplotype.

15-strain ZIKV mixture. This is a mixture of 15 strains of Zika Virus (ZIKV), consisting of
3 master strains extracted from the NCBI nucleotide database and 4 mutants per master strain.
The pairwise divergence varies between 1% and 12% and the reads were simulated at relative
frequencies varying from 2% to 13.3%. The total sequencing depth for this data set is again
20,000x.

6-strain Poliovirus mixture. This is a mixture of 6 strains of Poliovirus (type 2), with a total
sequencing depth of approximately 20,000x. The haplotypes were obtained from true Poliovirus
genomes from the NCBI database (see Appendix C in the Supplement). Paired-end reads were
simulated at exponentially increasing relative frequencies of 1.6% to 50.8%.

Labmix. This is a real Illumina MiSeq (2x250 bp) data set with an average coverage of
20,000x, sequenced from a mixture of five known HIV strains (HXB2, NL4-3, 89.6, YU2, JRCSF)
with relative strain frequencies between 10% and 30%. This data set was presented as a gold-
standard benchmark by Di Giallonardo et al. (2014) and is publicly available3. Currently,
predictions of all methods, including our own, are hampered by highly repetitive regions such as
the long terminal repeats on the HIV genome; see also Baaijens et al. (2017). Hence, we decided
to remove these a priori by excluding any reads that map to these known repeat sequences.
Note that with the advent of long read sequencing technologies, it is likely that this problem
disappears in the future.

3.2 Assembly evaluation criteria

We use QUAST (Gurevich et al., 2013) for evaluating our experiments and report the number
of strains (or contigs), the fraction of the target genomes that was reconstructed, the N50
and NGA50 measures, and observed error rates. Here, the target genome consists of all true
haplotypes known to be present in a sample. The N50 measure, defined as the length for which
the collection of all contigs of that length or longer covers at least half the assembly, gives
an indication of assembly contiguity. The NGA50 measure is computed in a similar fashion,
but only aligned blocks are considered (obtained by breaking contigs at misassembly events
and removing all unaligned bases). This measure reports the length for which the total size
of all aligned blocks of this length or longer equals at least 50% of the total length of the true
haplotypes; the NGA50 value is undefined if a target coverage of 50% cannot be reached. Finally,
the error rates we present are computed as the sum of the N-rate (i.e. ambiguous bases) and
mismatch- and indel rates (compared to the ground truth). Further assembly statistics can be
found in the Supplementary Material.

3.3 Improvements of final haplotypes over input contigs

The first two rows of Table 1a, SAVAGE and Virus-VG, display the statistics for the input
contigs and the final, maximal-length haplotypes computed here, respectively, for the HCV
datasets. While SAVAGE presents 26 fragmented contigs, Virus-VG presents 10 full-length
haplotypes, each of which represents one of the original haplotypes, thereby encompassing the
10 original haplotypes that established the basis for simulating reads. Further, Virus-VG covers
99.3% of the target genomes, similar to the original 99.4% provided by the input contigs, and
these full-length haplotypes come at a negligible error rate of 0.001%. In summary, our approach
yields near-perfect results on this (supposed to be challenging) dataset.

For the 15-strain ZIKV dataset (Table 1b) we again achieve substantial improvements in
terms of haplotype assembly contiguity. We obtain 20 full-length haplotypes covering 14 out

3https://github.com/cbg-ethz/5-virus-mix

8

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2018. ; https://doi.org/10.1101/287177doi: bioRxiv preprint 

https://github.com/cbg-ethz/5-virus-mix
https://doi.org/10.1101/287177
http://creativecommons.org/licenses/by-nd/4.0/


# strains∗ target (%) N50 NGA50 ER(%)

SAVAGE 26 99.4 8964 8964 0.001
Virus-VG 10 99.3 9281 9203 0.001
PredictHaplo 9 73.8 7636 7608 0.059
ShoRAH 639 56.9 7570 7570 4.294

(a) 10-strain HCV mixture (simulated Illumina MiSeq)

# strains∗ target (%) N50 NGA50 ER(%)

SAVAGE 100 98.8 2954 3801 0.023
Virus-VG 20 92.8 10202 10210 0.115
PredictHaplo 8 53.3 10270 10267 0.126
ShoRAH 493 26.3 10117 10117 4.392

(b) 15-strain ZIKV mixture (simulated Illumina MiSeq)

# strains∗ target (%) N50 NGA50 ER(%)

SAVAGE 59 83.7 1089 1643 0.019
Virus-VG 14 80.7 7316 7428 0.064
PredictHaplo 3 16.6 7461 - 1.825

(c) 6-strain Poliovirus mixture (simulated Illumina MiSeq)

# strains∗ target (%) N50 NGA50 ER(%)

SAVAGE 68 97.9 1026 1450 0.066
Virus-VG 23 90.6 2130 4642 0.324
PredictHaplo 6 100.0 8825 8825 1.066
ShoRAH 250 100.0 8775 8775 3.910

(d) Labmix: real 5-strain HIV mixture (Illumina MiSeq)

Table 1: Assembly results per dataset. ER = Error Rate, computed as the sum of
the fraction of ’N’s (ambiguous bases) and the mismatch- and indel rates. ShoRAH
could not process the Poliovirus data. ∗This column indicates the number of contigs
in the assembly; if these are not full-length, this does not reflect the number of
strains.

of 15 strains, while the original input contigs consisted of 89 highly fragmented, and relatively
short sequences. As a result, we observe an NGA50 value of 10210 for Virus-VG, reflecting
full-length haplotypes, compared to an N50 of 3801 for SAVAGE. For the 6-strain Poliovirus
mixture we obtain similar results, yielding a major improvement of NGA50 values (1643 for
SAVAGE compared to 7428 for Virus-VG) at the cost of a minor decrease in target haplotypes
reconstructed (83.7% for SAVAGE compared to 80.7% for Virus-VG).

On both the ZIKV and Poliovirus data, we observe a slight increase in error rate after
applying our method; however, Virus-VG leaves with an error rate of 0.115% (ZIKV) and 0.064%
(Poliovirus), which is still extremely low. A thorough analysis turns up that this increase is due
to errors in the input contigs that become more expressed only after having assembled the full-
length haplotypes, so these errors are not primarily due to the method presented here. Moreover,

9

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2018. ; https://doi.org/10.1101/287177doi: bioRxiv preprint 

https://doi.org/10.1101/287177
http://creativecommons.org/licenses/by-nd/4.0/


0.0 0.1 0.2 0.3
truth

0.00

0.05

0.10

0.15

0.20

0.25

0.30

es
tim

at
e

Dataset = HCV

0.0 0.1 0.2 0.3
truth

Dataset = ZIKV

0.0 0.1 0.2 0.3
truth

Dataset = Poliovirus

Method
PredictHaplo
ShoRAH
Virus-VG

Figure 2: Haplotype abundance estimation: true frequencies versus estimated fre-
quencies, evaluated per method, per dataset. The diagonal indicates the position of
perfect estimates, i.e., estimated value equal to true value. We only plot frequencies
up to 0.3 to avoid shifting the majority of points to the lower left corner due to
outliers.

the full-length contiguity of the haplotypes clearly offsets the minute shift in accuracy.
Finally, we analyze performance on a real benchmark, the labmix, and observe the same be-

haviour for Virus-VG: a significant improvement in NGA50 values (1450 for SAVAGE compared
to 4642 for Virus-VG) but also an increase in error rate (0.066 for SAVAGE compared to 0.324
for Virus-VG). However, it is important to realize that the true sequences considered here may
not fully represent the sample, because extremely high mutation rates allow the virus to mutate
and recombine in vitro before sequencing.

3.4 Comparison with the state-of-the-art

Rows 3 and 4 in Tables 1a-1d display results for state-of-the-art methods PredictHaplo (Prab-
hakaran et al., 2014) and ShoRAH (Zagordi et al., 2011), run with default parameter settings.
Both of these methods are reference-guided, hence cannot immediately be compared with Virus-
VG, which operates entirely de novo. To simulate a de novo type scenario for these reference-
guided approaches, we provided them with a bootstrap reference genome computed by running
(Yang et al., 2012, VICUNA), a state-of-the-art tool for generating consensus virus genomes, on
the input reads. We also tested alternative methods (Malhotra et al., 2016, MLEHaplo), (Barik
et al., 2017, QSdpR), (Ahn and Vikalo, 2018, aBayesQR), and (Chen et al., 2018, PEHaplo),
but found them unsuitable for the (not at all unusual) datasets considered here, or unable to
complete their jobs within 96 hours.

We first evaluated both PredictHaplo and ShoRAH on our simulated data and, in all cases,
we found our method to have (quite significant) advantages, in terms of accuracy, number
of strains, and strain-specific genomes covered. As was already observed earlier Baaijens et al.
(2017), reference-guided methods greatly depend on the quality of the reference genome provided
and have to deal with biases towards the reference genome. This results in error rates which are
1.1–59 times higher than Virus-VG for PredictHaplo, and more than 12 times higher than Virus-
VG for ShoRAH. At the same time, these methods miss a big fraction of the target haplotypes
on all data sets except the labmix.

PredictHaplo and ShoRAH both had difficulty processing the Poliovirus data. A possible
explanation is the high divergence between the virus strains and the reference genome used,
leading to gaps in coverage when considering alignments to the reference genome, which tends
to confuse reference-guided methods. In particular, two of the six strains have a big deletion
(more than 1000bp) compared to both the reference genome and the other four strains; this
may also explain the failure to run ShoRAH even using a bootstrap reference genome, as well
as the extremely low target reconstructed for PredictHaplo. These results again highlight the
advantage of a fully de novo approach compared to reference-guided methods.

10

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2018. ; https://doi.org/10.1101/287177doi: bioRxiv preprint 

https://doi.org/10.1101/287177
http://creativecommons.org/licenses/by-nd/4.0/


3.5 Haplotype abundance estimation

We also evaluated the accuracy of the abundance estimates obtained for each haplotype of the
simulated data sets, since we know the exact true frequencies for each of the strains. The
reconstructed sequences were aligned to the ground truth sequences and assigned to the closest
matching strain. For each ground truth strain, we summed the abundance estimates of the
sequences assigned to it, thus obtaining a total estimate for this strain. Then we compared
this estimate to the true strain abundance and computed the absolute frequency estimation
errors. In case of any missing strains, the true frequencies were normalized first, taking only the
assembled sequences into account for a fair comparison.

Our method predicts highly accurate abundances for the reconstructed strains, with an
average absolute estimation error of 0.1% on the HCV data, 0.3% on the ZIKV data, and 0.6% on
the Poliovirus data. In comparison, PredictHaplo achieves an average absolute estimation error
of 0.9% (HCV), 4.9% (ZIKV), and 10.6% (Polio), while ShoRAH is even further off with 8.5%
(HCV) and 39% (ZIKV). Relative estimation errors show a similar pattern (see Supplementary
Material).

Figure 2 shows the true haplotype frequencies versus the estimated frequencies per method.
Note that to improve readibility, outliers (frequency > 0.3) are not shown in this figure. On
the Poliovirus data there are no results for ShoRAH or PredictHaplo, because the first could
not process this data set while the latter found less than a single strain. On HCV and ZIKV
data, however, we observe that Virus-VG outperforms the other methods in terms of frequency
estimation, with estimates that are closest to the true values. An immediate interpretation of
these findings is that accuracy in estimating abundance is inevitably linked with accuracy in
haplotype reconstruction, which may explain our overall advantages.

4 Discussion

We have presented an algorithm that turns viral strain-specific contigs, such as available from
a de novo assembler like SAVAGE (Baaijens et al., 2017), into full-length, viral strain-specific
haplotypes, without the use of a reference genome at any point. We first construct a contig
variation graph, which arranges haplotype-specific contigs sampled from a viral quasispecies in
a convenient and favorable manner. We then enumerate all maximal length paths through this
graph that maximally concatenate the contig subpaths. Last, we solve a minimization problem
that assigns abundance estimates to maximal length paths that are optimal in terms of being
compatible with abundances computed for the nodes in the graph. We finally output the optimal
such set of paths together with their abundances, by which we have completed the de novo viral
quasispecies assembly task.

In benchmarking experiments, we have demonstrated that our method yields major improve-
ments over the input contigs in terms of assembly length, while preserving high accuracy in terms
of error rates. Compared to state-of-the-art viral quasispecies assemblers—all of which operate
in a reference genome dependent manner—our method produces haplotype-resolved assemblies
that are both more complete, in terms of haplotypes covered, and more accurate, in terms of
error rates. We believe that (a) this reflects the strength of a fully de novo approach, because we
avoid to deal with reference-induced biases. We also believe that (b) this is a result of directly
integrating haplotype abundance estimation into reconstruction of haplotypes.

Still, improvements are possible. Our current optimization problem employs the absolute
difference to determine the abundance estimation error. As future work, we consider the ex-
ploration of probabilistic error models, e.g., by modeling path abundance as being Poisson
distributed Medvedev et al. (2010) and calculating the likelihood of the observed node abun-
dances.

Further, we had already alluded to that the number of candidate paths is exponential in the
number of input contigs, which could theoretically be overwhelming when dealing with highly
fragmented assembly output. Our runtime benchmarks show that this is not an issue with
practical datasets. Nevertheless, we will consider more efficient alternative solutions in future

11

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2018. ; https://doi.org/10.1101/287177doi: bioRxiv preprint 

https://doi.org/10.1101/287177
http://creativecommons.org/licenses/by-nd/4.0/


work, based on a flow formulation of the problem that we recently found, yielding a yet to be
implemented polynomial time algorithm.

Funding

This work was supported by the Netherlands Organisation for Scientific Research (NWO)
through Vidi grant 679.072.309.

References

Ahn, S. and Vikalo, H. (2018). aBayesQR: A bayesian method for reconstruction of viral
populations characterized by low diversity. J Comput Biol , 25, 637–648.

Baaijens, J. et al. (2017). De novo assembly of viral quasispecies using overlap graphs. Genome
Res, 27(5), 835–848.

Bankevich, A. et al. (2012). SPAdes: A new genome assembly algorithm and its applications to
single-cell sequencing. J Comp Biol , 19(5), 455–477.

Barik, S. et al. (2017). QSdpR: Viral quasispecies reconstruction via correlation clustering.
Genomics.

Beerenwinkel, N. et al. (2012). Challenges and opportunities in estimating viral genetic diversity
from next-generation sequencing data. Front Microbio, 3, 239.

Bernard, E. et al. (2014). Efficient RNA isoform identification and quantification from RNA-Seq
data with network flows. Bioinformatics, 30(17), 2447–2455.

Chen, J. et al. (2018). De novo haplotype reconstruction in viral quasispecies using paired-end
read guided path finding. Bioinformatics, page bty202.

Di Giallonardo, F. et al. (2014). Full-length haplotype reconstruction to infer the structure of
heterogeneous virus populations. Nucleic Acids Res, 42, e115.

Dilthey, A. et al. (2015). Improved genome inference in the MHC using a population reference
graph. Nat Genetics, 47, 682–688.

Domingo, E. et al. (2012). Viral quasispecies evolution. Microbiol Mol Biol Rev , 76(2), 159–216.

Garrison, E. et al. (2017). Sequence variation aware genome references and read mapping with
the variation graph toolkit. bioRxiv:10.1101/234856 .

Gurevich, A. et al. (2013). QUAST: quality assessment tool for genome assemblies. Bioinfor-
matics, 29(8), 1072–1075.

Hunt, M. et al. (2015). IVA: accurate de novo assembly of RNA virus genomes. Bioinformatics,
31(14), 2374–2376.

Knyazev, S. et al. (2018). Cliquesnv: Scalable reconstruction of intra-host viral populations
from ngs reads. bioRxiv .

Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, page
bty191.

Mäkinen, V. et al. (2015). Genome-Scale Algorithm Design: Biological Sequence Analysis in the
Era of High-Throughput Sequencing . Cambridge University Press.

12

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2018. ; https://doi.org/10.1101/287177doi: bioRxiv preprint 

https://doi.org/10.1101/287177
http://creativecommons.org/licenses/by-nd/4.0/


Malhotra, R. et al. (2016). Maximum likelihood de novo reconstruction of viral populations
using paired end sequencing data. arXiv:1502.04239.

Medvedev, P. et al. (2010). Detecting copy number variation with mated short reads. Genome
Res, 20(11), 1613–1622.

Novak, A. et al. (2017). A graph extension of the positional BurrowsWheeler transform and its
applications. Algorithm Mol Biol , 12(18).

Paten, B. et al. (2017). Genome graphs and the evolution of genome inference. Genome Res,
27(5), 665–676.

Pertea, M. et al. (2015). StringTie enables improved reconstruction of a transcriptome from
RNA-seq reads. Nat Biotechnol , 33, 290–295.

Prabhakaran, S. et al. (2014). HIV haplotype inference using a propagating dirichlet process
mixture model. IEEE Trans Comp Biol Bioinf , 11(1), 182–191.

Prosperi, M. and Salemi, M. (2012). QuRe: software for viral quasispecies reconstruction from
next-generation sequencing data. Bioinformatics, 28(1), 132–133.

Rizzi, R. et al. (2014). On the complexity of minimum path cover with subpath constraints for
multi-assembly. BMC Bioinformatics, 15(9), S5.

Rose, R. et al. (2016). Challenges in the analysis of viral metagenomes. Virus Evolution, 2(2).

Rosen, Y. et al. (2017). Modelling haplotypes with respect to reference cohort variation graphs.
Bioinformatics, 33(14), i118–i123.

Tomescu, A. I. et al. (2013). A novel min-cost flow method for estimating transcript expression
with RNA-Seq. BMC Bioinformatics, 14(5), S15.

Töpfer, A. et al. (2013). Probabilistic inference of viral quasispecies subject to recombination.
J Comput Biol , 20(2), 113–123.

Töpfer, A. et al. (2014). Viral quasispecies assembly via maximal clique enumeration. PLoS
Comput Biol , 10(3), e1003515.

Trapnell, C. et al. (2010). Transcript assembly and quantification by RNA-Seq reveals unan-
notated transcripts and isoform switching during cell differentiation. Nat Biotechnol , 28,
511–515.

Yang, X. et al. (2012). De novo assembly of highly diverse viral populations. BMC Genomics,
13(1), 475.

Zagordi, O. et al. (2011). ShoRAH: estimating the genetic diversity of a mixed sample from
next-generation sequencing data. BMC Bioinformatics, 12(1), 119.

13

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2018. ; https://doi.org/10.1101/287177doi: bioRxiv preprint 

https://doi.org/10.1101/287177
http://creativecommons.org/licenses/by-nd/4.0/

	Introduction
	Methods
	Contig variation graph construction
	From contig to genome variation graph
	Candidate path generation.
	Minimization for haplotype selection and abundance estimation 


	Results
	Data sets
	Assembly evaluation criteria
	Improvements of final haplotypes over input contigs
	Comparison with the state-of-the-art
	Haplotype abundance estimation

	Discussion

