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Abstract

Viruses populate their hosts as a viral quasispecies: a collection of genetically related mutant
strains. Viral quasispecies assembly is the reconstruction of strain-specific haplotypes from read
data, and predicting their relative abundances within the mix of strains is an important step for
various treatment-related reasons. Reference-genome-independent (“de novo”) approaches have
yielded benefits over reference-guided approaches, because reference-induced biases can become
overwhelming when dealing with divergent strains. While being very accurate, extant de novo
methods only yield rather short contigs. The remaining challenge is to reconstruct full-length
haplotypes together with their abundances from such contigs. We present Virus-VG as a de novo
approach to viral haplotype reconstruction from pre-assembled contigs. Our method constructs
a variation graph from the short input contigs without making use of a reference genome. Then,
to obtain paths through the variation graph that reflect the original haplotypes, we solve a
minimization problem that yields a selection of maximal-length paths that is optimal in terms
of being compatible with the read coverages computed for the nodes of the variation graph.
We output the resulting selection of maximal length paths as the haplotypes, together with
their abundances. Benchmarking experiments on challenging simulated and real data sets show
significant improvements in assembly contiguity compared to the input contigs, while preserving
low error rates compared to the state-of-the-art viral quasispecies assemblers. Virus-VG is freely
available at https://bitbucket.org/jbaaijens/virus-vg.

1 Introduction

The ensemble of genetically related, but different mutant viral strains that populate infected
people are commonly referred to as viral quasispecies (Domingo et al., 2012). Each of these
strains comes with its own genomic sequence (henceforth referred to as haplotype). The final
goal of primary viral quasispecies analysis is the reconstruction of the individual haplotypes—
optimally at full length—and also to provide estimates of their abundances. The unknown
number of different, strain-specific haplotypes and their variance in abundance establish the
theoretical issues that characterize viral quasispecies assembly. They explain why this form
of assembly is difficult, despite the shortness of virus genomes. These issues are further ac-
centuated by the fact that neither next-generation nor third-generation sequencing reads, by
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their combinations of error rates and length, allow for immediate reconstruction and abundance
estimation of haplotypes (Beerenwinkel et al., 2012; Rose et al., 2016).

State-of-the-art approaches currently allow for two options: (i) full-length reconstruction of
haplotypes based on statistical, usually reference genome dependent measures, or (ii) de novo
reconstruction of (optimally haplotype-specific) contigs.

Approaches of type (i) assume that the sequencing reads are aligned to a reference genome
and make use of model-based clustering algorithms (Zagordi et al., 2011; Barik et al., 2017; Ahn
and Vikalo, 2018), Dirichlet process mixture models (Prabhakaran et al., 2014), hidden Markov
models (Töpfer et al., 2013), sampling schemes (Prosperi and Salemi, 2012), or combinatorial
methods (Knyazev et al., 2018), respectively. However, as was demonstrated in Baaijens et al.
(2017); Töpfer et al. (2014), resorting to external auxiliary means (such as reference genomes)
can bias the reconstruction procedure significantly.

Approaches of type (ii) comprise generic (meta)genome assemblers as well as specialized
viral quasispecies assemblers, both of which are not helped by external measures (“de novo”)
hence are not affected by external biases. Metagenome assemblers are designed to reconstruct
multiple genomes simultaneously, but in viral quasispecies tend to collapse strains (Rose et al.,
2016). It was further shown by Baaijens et al. (2017) that among generic de novo assemblers
SPAdes (Bankevich et al., 2012) was the only approach to identify strain-specific sequences,
however only in case of sufficiently abundant strains. De novo viral quasispecies assemblers
(e.g. Hunt et al. (2015); Yang et al. (2012)) generally aim at constructing suitable consensus
reference genomes, which may serve as a template for more finegrained studies (for example if
curated reference genomes have become too divergent, which is a frequent scenario). To only
methods that truly aim at de novo genome assembly at strain resolution are SAVAGE (Baaijens
et al., 2017), MLEHaplo (Malhotra et al., 2016) and PEHaplo (Chen et al., 2018). However, the
contigs produced by these methods, while strain-specific, in general do not represent full-length
haplotypes.

We present Virus-VG, an algorithm that turns strain-specific contigs into full-length, strain-
specific haplotypes, thus completing the de novo viral quasispecies assembly task. For that, we
construct a variation graph from the contigs, without the help of a (curated) reference genome,
where we use the contigs produced by SAVAGE (Baaijens et al., 2017). We obtain full-length
haplotypes as a selection of maximal-length paths in the variation graph, each of which reflects
a concatenation of subpaths associated with the input contigs. The selected paths are optimal
in terms of differences between their estimated abundances and the read coverages computed for
the nodes they traverse. Although our approach to quasispecies assembly using candidate path
enumeration followed by abundance estimation is similar to Astrovskaya et al. (2011); Skums
et al. (2013), these methods make use of read graphs rather than variation graphs and define
optimality for path abundance estimation in a very different way.

Variation graphs are mathematical objects that have recently become very popular as ref-
erence systems for (evolutionarily coherent) collections of genomes (Paten et al., 2017). Using
such genome structures instead of standard linear reference genomes has been shown to reduce
reference bias (Dilthey et al., 2015; Paten et al., 2017) and to allow for efficient subhaplotype
match queries (Novak et al., 2017) and haplotype modelling (Rosen et al., 2017). Methods pre-
sented so far for constructing variation graphs, however, have been focused on a linear reference
genome as a point of departure. Here, we point out how to construct variation graphs de novo,
by first sorting the contigs in an appropriate way and then making use of progressive multiple
alignment techniques (vg msga, part of the vg toolkit by Garrison et al. (2017)). In this,
we present an approach for full-length, high-quality reconstruction of the haplotypes of a viral
quasispecies that is entirely de novo.

Our method depends on the enumeration of maximal-length paths in a variation graph, whose
number is in the worst case exponential in the number of nodes of the graph. However, since
all these paths enumerated are to respect the subpaths associated with the input contigs, their
number will decrease on increasing contig length. Thanks to advances in sequencing technology,
input contig length will inevitably increase, which points out that our method, as per its design,
will be able to deal with future technological developments smoothly.
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Benchmarking experiments demonstrate that Virus-VG yields substantial improvements over
the input contigs assembled with SAVAGE in terms of spanning the full length of the haplotypes.
Thereby, the increase in length comes at negligible or even no losses in terms of sequential
accuracy compared to the input contigs. Further, we find our strain abundance estimates
to be highly accurate. Finally, we find our method to (substantially) outperform alternative
approaches, all of which are reference based—we recall that there are no alternative de novo
approaches so far—both when working with bootstrap (i.e. assembled from the data itself) and
curated reference genomes.

Note on Related Work: RNA Transcript Assembly. Many RNA transcript assemblers work
in a similar way to Virus-VG: first enumerating all possible transcripts, then selecting an ‘op-
timal’ set of transcripts using various optimization methods (Feng et al., 2010; Li et al., 2011;
Mezlini et al., 2013). This has led to variations of minimum path cover optimization problems
that are—regarding a few relevant aspects—similar in spirit to the optimization problem we
formulate (Bernard et al., 2014; Pertea et al., 2015; Rizzi et al., 2014; Tomescu et al., 2013;
Trapnell et al., 2010). Most importantly, Rizzi et al. (2014) introduce node and edge abun-
dance errors and Tomescu et al. (2013) show a minimum path cover with subpath constraints
to be polynomially solvable. However, to the best of our knowledge, no method simultaneously
employs both subpath constraints and abundance error minimization in its problem formula-
tion. Moreover, applying these RNA transcript assemblers to the viral quasispecies problem is
not so straightforward: a collection of reference genomes representing all possible haplotypes is
required as input, while in our setting such information is not available.

2 Methods

Notation. A variation graph (V,E, P ) is a directed graph that is constructed from a set of
input sequences, which represent members of a (evolutionarily coherent) population of sequences.
Each node v ∈ V is assigned to a subsequence seq(v). An edge (u, v) ∈ E indicates that the
concatenation seq(u)seq(v) is part of one of the input sequences. P is a set of paths (a sequence
of nodes linked by edges) that represent genome-specific sequences; thereby, P can, but need
not, represent the input sequences themselves. A node v ∈ V with no incoming edges is called
source. A node v ∈ V with no outgoing edges is called sink.

Workflow. Our method consists of two basic steps:
(1) The computation of a contig variation graph V G′ = (V ′, E′, P ′) where each path p ∈ P ′

represents an input contig. We refer to the path representing contig c as p(c). Together
with V G′, we compute a function a′ : V ′ → R where a′(v′) for v′ ∈ V ′ represents the
abundance of an individual node, measured by the amount of original reads (from which
the contigs were computed) that align to seq(v′).

(2) The transformation of V G′ into a genome variation graph V G = (V,E, P ) where each
path p ∈ P reflects a full-length haplotype. We also compute a function a : P → R where
a(p) for p ∈ P reflects the abundance of the haplotype represented by p. The set of paths
P together with their abundances a(p) establish the final output of our method.

The input for determining V G′ in (1) are the contigs. For computation of a′, we make use of the
original reads from which the input contigs were computed; one can determine the abundance
a′(v′) of single node v′ ∈ V ′ as the (length normalized) count of reads whose alignments touch
upon v′.

The input for computation of V G and a in (2) are V G′ and a′. Since V ⊆ V ′ and E ⊆ E′,
as will become clear later, we can apply a′ also to nodes in V G. The computation of V G is
established as the solution of an optimization problem that aims to determine full-length paths
(paths formed by a concatenation of contigs of maximal length) such that the difference of path
abundances a(p) and node abundances a′(v) for paths p of which v makes part is minimal. We
emphasize here that the numbers a′(v) can be directly computed from the input, whereas the
a(p)’s correspond to decision variables in an optimization problem.
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Figure 1: Virus-VG workflow. (A) Ground truth haplotypes from which the se-
quencing reads originate; (B) Input contigs, obtained by de novo assembly; (C) Ini-
tial contig variation graph created from input contigs using multiple sequence align-
ment; (D) Contig variation graph obtained by collapsing non-branching paths (com-
pactification); (E) Candidate paths representing possible haplotypes; (F) Genome
variation graph representing the haplotypes selected through path abundance opti-
mization, capturing the viral quasispecies.

We will describe the construction of the contig variation graph (1) in full detail in Section 2.1.
The transformation into the (final) genome variation graph (2) is divided into two steps: (a)
the enumeration of candidate paths, which is described in Section 2.2.1, and (b) the solution
of an optimization problem that aims at selecting a subset of candidate paths through their
path abundance values which are optimal in terms of being compatible with node abundances
in Section 2.2.2. The complete workflow is illustrated in Figure 1.

2.1 Contig variation graph construction

Input. The input is a data set of next-generation sequencing reads and a set of contigs
assembled from them, for which we use the specialized de novo viral quasispecies tool SAVAGE
(Baaijens et al., 2017). We assume that there are no contigs which are an exact subsequence
of another contig, which applies for SAVAGE (and commonly applies for the output of many
assembly programs); any such contigs are removed. The contig variation graph with its node
abundances is constructed in three steps.

Step 1: Multiple Sequence Alignment (MSA). We construct the initial contig
variation graph by building an MSA of the contigs using vg msga (Garrison et al., 2017), which
progressively combines long sequences into a variation graph. For this construction to work on
a collection of contigs that do not all cover the same region, the order in which the contigs are
aligned and added to the graph is important: we need to add contigs such that they overlap the
existing graph as much as possible, to avoid creating more disjoint components than necessary.
Here, we sort the contigs by starting with the longest contig, then iteratively selecting the contig
with longest possible overlap with any of the previously selected contigs, until all contigs have
been selected. For finding all pairwise overlaps between contigs we use minimap2 (Li, 2018).
Determining the best sorting heuristic in terms of speed and quality is subject to future work.
After sorting the contigs, we apply vg msga; the resulting MSA is represented as a variation
graph and for every contig the corresponding path through the graph is stored.
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Step 2: Compactification and contig-path construction. We compactify the ini-
tial contig variation graph in a similar fashion as in the construction of a compacted de Bruijn
graph (Mäkinen et al., 2015). The absence of branches on a path ensures that every source-
sink path has to traverse it at full length. Therefore, each non-branching path (vi1 , . . . , vik)
can be merged (contracted) into a single node v′i, with in-neighbors N−(v′i) = N−(vi1) and
out-neighbors N+(v′i) = N+(vik). Also the contributing contig sets of vi1 , . . . , vik are taken to-
gether and stored in the new node v′i. Note that after this step, a node can represent a sequence
instead of a single nucleotide.

In addition, we determine for each contig c the sub-path p(c) in this (compacted) graph
that represents c. Let p(c) = (vi1 , . . . , vik) be this sub-path. Note that due to the compression
step, the sequence seq(c) represented by a contig c might only be a subsequence of its path
sequence seq(vi1)...seq(vik). However, this does not bear any consequence on the definition of
any haplotype the contigs make part of.

The resulting compacted graph, together with the contig paths P ′ is our contig variation
graph V G′ = (V ′, E′, P ′), illustrated in Figure 1, panel D.

Step 3: Node abundance. We finally compute a′ : V ′ → R, which assigns node abun-
dances a′(v′) to nodes v′ ∈ V ′ of the contig variation graph. These node abundances a′(v′)
reflect the average base coverage of the piece of sequence seq(v′). For computation of a′(v′) we
make further use of the vg-toolkit (Garrison et al., 2017), which allows to align the original
sequencing reads to our contig variation graph. The abundance a′(v′) is calculated as the sum
of all bases in all reads that align with seq(v′), divided by the length of seq(v′).

2.2 From contig to genome variation graph

The input for the following procedure is the contig variation graph V G′ = (V ′, E′, P ′) together
with a′ : V ′ → R that we have just described. The procedure for constructing the genome
variation graph V G = (V,E, P ) from V G′ and a′ consists of three steps. First, we compute a
set of candidate paths, which are all maximal length paths in (V ′, E′) that are “concatenations”
of paths from P ′. Second, we select a subset of candidate paths that are optimal with respect
to a minimization problem, which provides us with the final, maximal-length paths P and path
abundances a : P → R. Third, we remove nodes and edges from (V ′, E′) that are not traversed
by paths from P , which yields the final graph (V,E). Since only paths in P are supposed to reflect
true haplotypes, any node not being included in a haplotype is most likely a sequencing artifact
or an assembly error (or it belongs to a missing strain). The third step is a straightforward
procedure. We will describe the first two steps in more detail in the following.

2.2.1 Candidate path generation.

The goal is to compute the set of all paths through (V ′, E′) that are maximal-length concate-
nations of paths from P ′, where we understand a concatenation of two paths as the merging of
them along a common substring. Thereby, this common substring is a suffix of the first path
and a prefix of the second path. We will refer to these paths as candidate paths Pcand in the
following (see also Figure 1, Panel E). Generating candidate paths happens in five steps outlined
below.

Step 1: Trimming paths p ∈ P ′. Due to common issues in contig computation, uncor-
rected sequencing errors are often located on the extremities of the contig. We therefore shorten
all paths p ∈ P ′ by their extremities and remove the tails if these contain nodes v′ for which
a′(v′) is below a given threshold. By default, we allow to trim paths p ∈ P ′ by a removal of
nodes that together amount to no more than τ = 10bp on either end.

Step 2: Enumerating pairwise concatenations. We allow concatenating pairs of
paths with matching suffix-prefix pairs. In more detail, let p1, p2 ∈ P ′, represented by series
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of nodes (u1, ..., um) and (v1, ..., vn) from V ′. Then p1 can be concatenated with p2, written
p1 →c p2, if for some l we have um−l+1 = v1, um−l+2 = v2, ..., um = vl, that is, the suffix of
length l of p1 matches the prefix of length l of p2.

In order to enable correction of persisting sequencing errors, we further consider to concate-
nate pairs of paths p1, p2 which do have one or more non-matching nodes, but only under the
following condition. Let u∗ := um−l+i 6= vi =: v∗ be the respective non-matching nodes in
p1, p2 respectively, then only if min{a′(u∗), a′(v∗)} < α, where α is a user-defined threshold, we
concatenate p1 and p2. This threshold reflects the minimal node abundance a′(v) for which we
trust node v; for more details, see Appendix A.

Step 3: Removing concatenations lacking physical evidence. Subsequently, we
remove concatenations p1 →c p2 if there are q1, q2 such that q1 →c q2, q1 →c p2, q2 →c p2,
but there is no q3 for which p1 →c q3 and q3 →c p2 and there is q4 such that p1 →c q4.
The situation reflects that the concatenation of paths q1 →c p2 enjoys corroborating physical
evidence, provided by q2, while there is no such corroborating evidence for the concatenation
p1 →c p2. At the same time, p1 concatenates well with q4 such that the removal of p1 →c p2
does not turn p1 into a dead end.

Step 4: Enumerating maximal length paths Pcand. In this step, the pairwise con-
catenations from step 2 that remain after step 3 are combined to paths of maximal length. This
is achieved through a breadth-first search type procedure. We maintain a set of active paths
Pact, which is the set of paths to be extended in the current iteration. We also maintain a set
of maximal paths Pmax that reflects the set of maximal length paths collected.

1. Initialization: We determine all p ∈ P ′ for which there are no q →c p and put them both
into Pact and Pmax.

2. Iteration: We replace each p ∈ Pact with all q ∈ P ′, for which p →c q without q∗ such
that p→c q

∗ →c q. Simultaneously, we extend each p̂ ∈ Pmax that ends in p, by appending
q (while respecting the overlap). In case q is already part of p̂, we do not append q to
p̂ but instead add q as a new path to Pmax, thereby breaking any possible loops due to
repetitive elements.

3. Output: If for all p ∈ Pact there are no q with p→c q, we output Pmax as our candidate
path set Pcand.

The enumeration algorithm lists all candidate paths in time linear in the output size. This can
be (in the worst case) exponential in the number of paths p ∈ P ′, depending on the structure
of the contig variation graph.

Step 5: Correcting paths for errors. After enumerating all candidate paths, we apply
a final correction step to every such path. Since we allow concatenating paths from P ′ where
suffix-prefix pairs do not match in all nodes (see Step 2), we may have positions in candidate
paths where contig paths p ∈ P ′ do not agree on the underlying sequence. All such ambiguous
positions refer (by construction) to low abundance nodes v′ (i.e., a′(v′) < α). We resolve the
ambiguity by selecting the node v∗ from all contributing paths p ∈ P ′ with maximal abundance
a′(v∗).

2.2.2 Minimization for haplotype selection and abundance estimation

Input. For this final part of the method, the input is the set of candidate haplotype paths
Pcand and the node abundances a′(v). In general this set of paths is much larger than the
actual number of haplotypes, so Pcand will contain many false haplotypes. Here we filter them
out by estimating the abundance a(p) for each path (haplotype) p ∈ Pcand through solving a
minimization problem. In a subsequent step, haplotype paths with an abundance below a user
defined threshold will be removed as being most likely false haplotypes. This leaves the set of
haplotypes to be output.
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Determining path abundances a(p). We determine path abundance values a(p) for
every p ∈ Pcand, such as to minimize the sum of or, equivalently, the average of node abundance
errors. Let f(x, y) be an error function to be chosen later. Then for node v the node abundance
error is defined as the value of f(x, y) with x the node abundance a′(v) and y the sum of the
abundances of the haplotype paths going through the node v, which is

∑
p3v a(p). Recall that

the node abundance values a′(v) are obtained from read alignments to the contig variation graph
(Section 2.1, Step 3). The objective then becomes minimizing the sum of the node abundance
errors over all nodes v ∈ V ′:

min
∑
v∈V ′

f

(
a′(v),

∑
p3v

a(p)

)
.

We need to add non-negativity constraints a(p) ≥ 0 on the path abundances. Since we have
already taken all subpath constraints into account when enumerating the candidate haplotype
paths, the minimization problem does not need any further constraints.

Note that the effectiveness of this objective function depends heavily on the error function
used as well as the correctness of node abundances a′(v). These abundance values are not
exact measurements, but based on read alignments to the graph as described above; coverage
fluctuations can thus lead to under- or overestimated node abundance values. In this case, a
simple linear objective function is preferred over a quadratic error function, because the former
allows big errors in certain nodes to be compensated by small errors in other nodes. We also
observed that normalizing the errors w.r.t. the true node abundance does not improve results,
because this means that errors in nodes with low abundance values are penalized very strongly.
For this reason, we use the error function f(x, y) = |x−y| in our objective and the optimization
problem becomes

min
∑
v∈V ′

∣∣∣a′(v)−
∑
p3v

a(p)
∣∣∣ s.t. 0 ≤ a(p) ∀ p ∈ Pcand. (1)

This is a convex programming formulation, which can, by a standard transformation, easily be
linearized and solved using an LP solver.

Output: haplotype selection and final abundances. The outcome of the min-
imization problem (1), yields for each p ∈ Pcand an optimal abundance value a∗(p). We now
select the set of haplotype paths as output of the procedure, by removing any haplotypes with
an estimated abundance below a user defined threshold γ. In other words, as output we give
the set P = {p ∈ Pcand | a∗(p) ≥ γ} (Figure 1, panel F). After this haplotype selection step, we
redo the optimization step on the selected haplotype paths (prefixing a(p) to 0 for every path p
with a∗(p) < γ), thus ensuring that our final abundance estimates are as accurate as possible.

Note on related work. The minimization problem we are treating here can be considered
as a combination of problems presented in Rizzi et al. (2014) and Tomescu et al. (2013). The
combination of these problems would require an unambiguous way to have subpath abundances
contribute to cumulative abundances on the nodes. It is not immediately evident how to do
so. In our setting it is straightforward how path abundances a(p) contribute to the estimated
abundances of the nodes on the paths. Exploring these relationships is interesting future work.

3 Results

We present results for Virus-VG on four challenging simulated data sets and one real benchmark.
We compare our method with the viral quasispecies assemblers ShoRAH (Zagordi et al., 2011)
and PredictHaplo (Prabhakaran et al., 2014), which are widely approved and state-of-the-art
in terms of full-length reconstruction of viral haplotypes. On a shorter region (HIV pol gene)
we also compare our method to aBayesQR (Ahn and Vikalo, 2018) and PEHaplo (Chen et al.,
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# contigs∗ target (%) N50 NGA50 ER(%)

SAVAGE 26 99.4 8964 8964 0.001
Virus-VG 10 99.3 9281 9203 0.001
PredictHaplo 9 73.8 7636 7608 0.059
ShoRAH 639 56.9 7570 7570 4.294

(a) 10-strain HCV mixture (simulated Illumina MiSeq)

# contigs∗ target (%) N50 NGA50 ER(%)

SAVAGE 100 98.8 2954 3801 0.023
Virus-VG 20 92.8 10202 10210 0.115
PredictHaplo 8 53.3 10270 10267 0.126
ShoRAH 493 26.3 10117 10117 4.392

(b) 15-strain ZIKV mixture (simulated Illumina MiSeq)

# contigs∗ target (%) N50 NGA50 ER(%)

SAVAGE 59 83.7 1089 1643 0.019
Virus-VG 14 80.7 7316 7428 0.064
PredictHaplo 3 16.6 7461 - 1.825

(c) 6-strain Poliovirus mixture (simulated Illumina MiSeq)

# contigs∗ target (%) N50 NGA50 ER(%)

SAVAGE 68 97.9 1026 1450 0.066
Virus-VG 23 90.6 2130 4642 0.324
PredictHaplo 6 100.0 8825 8825 1.066
ShoRAH 250 100.0 8775 8775 3.910

(d) Labmix: real 5-strain HIV mixture (Illumina MiSeq)

Table 1: Assembly results per dataset. ER = Error Rate, computed as the sum of
the fraction of ’N’s (ambiguous bases) and the mismatch- and indel rates. ShoRAH
could not process the Poliovirus data. ∗If contigs are full-length, this number reflects
the estimated number of strains in the quasispecies.

2018). Although a comparison to the RNA transcript assemblers from Rizzi et al. (2014) and
Tomescu et al. (2013) would be interesting, this is not so straightforward: these methods require
as input a collection of reference genomes representing all possible transcripts (or in our case,
viral haplotypes). Since we do not have such information, we could not apply these methods to
our data.

For shell commands, parameters to be set, their default choices, and further reasoning, see
the Supplementary Material.

3.1 Data sets

For evaluating correctness of our algorithm and benchmarking experiments on full-length viral
genomes, we selected the two most challenging simulated data sets (HCV, ZIKV) presented
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by Baaijens et al. (2017) and generated one additional data set (Poliovirus). These data sets
represent typical viral quasispecies ultra-deep sequencing data and consist of 2x250bp Illumina
MiSeq reads which were simulated using SimSeq1. In addition, we simulated mixtures of HIV
strains, considering only the 3kb pol region, at various sequencing depths. Finally, we also
consider a real Illumina MiSeq data set commonly used for benchmarking, referred to as the
labmix. More details about all data sets are presented in the Supplementary Material.

10-strain HCV mixture. This is a mixture of 10 strains of Hepatitis C Virus (HCV), subtype
1a, with a total sequencing depth of approximately 20,000x (i.e. 400,000 reads). The haplotypes
were obtained from true HCV genomes in the NCBI nucleotide database and have a pairwise
divergence varying from 6% to 9%. Paired-end reads were simulated at relative frequencies
between 5% and 13% per haplotype, i.e., a sequencing depth of 1000x to 4600x per haplotype.

15-strain ZIKV mixture. This is a mixture of 15 strains of Zika Virus (ZIKV), consisting of
3 master strains extracted from the NCBI nucleotide database and 4 mutants per master strain.
The pairwise divergence varies between 1% and 12% and the reads were simulated at relative
frequencies varying from 2% to 13.3%. The total sequencing depth for this data set is again
20,000x.

6-strain Poliovirus mixture. This is a mixture of 6 strains of Poliovirus (type 2), with a total
sequencing depth of approximately 20,000x. The haplotypes were obtained from true Poliovirus
genomes from the NCBI database. Paired-end reads were simulated at exponentially increasing
relative frequencies of 1.6% to 50.8%.

7-strain HIV mixture (pol gene). This is a mixture of 7 HIV-1 pol gene sequences with a
pairwise divergence of 1%, obtained by introducing random mutations into sequence D86068.1
from the NCBI database. Paired-end reads (2x250bp) were simulated for each of the 7 strains
at relative frequencies between 0.5% and 61.5%. We created 3 data sets with sequencing depths
of 500x, 1000x, and 5000x, respectively.

Labmix. This is a real Illumina MiSeq (2x250 bp) data set with an average coverage of
20,000x, sequenced from a mixture of five known HIV-1 strains (HXB2, NL4-3, 89.6, YU2,
JRCSF) with relative strain frequencies between 10% and 30%. This data set was presented as
a benchmark by Di Giallonardo et al. (2014) and is publicly available2. Currently, predictions
of all methods, including our own, are hampered by highly repetitive regions such as the long
terminal repeats on the HIV genome; see also Baaijens et al. (2017). Hence, we decided to follow
Di Giallonardo et al. (2014) in removing these a priori by excluding any reads that map to these
known repeat sequences.

3.2 Assembly evaluation criteria

We use QUAST (Gurevich et al., 2013) for evaluating our experiments and report the number
of contigs, the fraction of the target genomes that was reconstructed, the N50 and NGA50
measures, and observed error rates. Here, the target genome consists of all true haplotypes
known to be present in a sample; a base is considered reconstructed if there is at least one contig
with an alignment to this base. The N50 measure, defined as the length for which the collection
of all contigs of that length or longer covers at least half the assembly, gives an indication of
assembly contiguity. The NGA50 measure is computed in a similar fashion, but only aligned
blocks are considered (obtained by breaking contigs at misassembly events and removing all
unaligned bases). This measure reports the length for which the total size of all aligned blocks
of this length or longer equals at least 50% of the total length of the true haplotypes; the NGA50
value is undefined if a target coverage of 50% cannot be reached. Finally, the error rates we
present are computed as the sum of the N-rate (i.e. ambiguous bases) and mismatch- and indel
rates (compared to the ground truth), normalized by the number of assembled bases. Further
details are presented in the Supplementary Material.

1https://github.com/jstjohn/SimSeq
2https://github.com/cbg-ethz/5-virus-mix
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Figure 2: Relative errors for haplotype abundance estimation versus true strain
frequencies. Results were evaluated per method, per data set, and binned by true
frequency into bins of size 0.05. Plots show the average relative error per bin. True
frequencies were normalized per assembly, taking only the assembled sequences into
account for a fair comparison. Only assemblies containing at least 2 strains were
evaluated. Plots for the simulated HIV data at 500x and 1000x are similar to HIV-
5000x and presented in the Supplementary Material.

3.3 Improvements of final haplotypes over input contigs

The first two rows of Table 1a, SAVAGE and Virus-VG, display the statistics for the input
contigs and the final, maximal-length haplotypes computed here, respectively, for the HCV
data set. While SAVAGE presents 26 fragmented contigs, Virus-VG presents 10 full-length
haplotypes, each of which represents one of the original haplotypes, thereby encompassing the
10 original haplotypes that established the basis for simulating reads. Further, Virus-VG covers
99.3% of the target genomes, similar to the original 99.4% provided by the input contigs, and
these full-length haplotypes come at a negligible error rate of 0.001%. In summary, our approach
yields near-perfect results on this (supposed to be challenging) data set.

For the 15-strain ZIKV data set (Table 1b) we again achieve substantial improvements in
terms of haplotype assembly contiguity. We obtain 20 full-length haplotypes covering 14 out
of 15 strains, while the original input contigs consisted of 89 highly fragmented, and relatively
short sequences. As a result, we observe an NGA50 value of 10210 for Virus-VG, reflecting
full-length haplotypes, compared to an N50 of 3801 for SAVAGE. For the 6-strain Poliovirus
mixture we obtain similar results, yielding a major improvement of NGA50 values (1643 for
SAVAGE compared to 7428 for Virus-VG) at the cost of a minor decrease in target haplotypes
reconstructed (83.7% for SAVAGE compared to 80.7% for Virus-VG).

On both the ZIKV and Poliovirus data, we observe a slight increase in error rate after
applying our method; however, Virus-VG leaves with an error rate of 0.115% (ZIKV) and 0.064%
(Poliovirus), which is still extremely low. A thorough analysis turns up that this increase is due
to errors in the input contigs that become more expressed only after having assembled the full-
length haplotypes, so these errors are not primarily due to the method presented here. Moreover,
the full-length contiguity of the haplotypes clearly offsets the minute shift in accuracy.

Finally, we analyze performance on a real benchmark, the labmix, and observe the same be-
haviour for Virus-VG: a significant improvement in NGA50 values (1450 for SAVAGE compared
to 4642 for Virus-VG) but also an increase in error rate (0.066 for SAVAGE compared to 0.324
for Virus-VG). However, it is important to realize that the true sequences considered here may
not fully represent the sample, because extremely high mutation rates allow the virus to mutate
and recombine in vitro before sequencing.

3.4 Comparison with the state-of-the-art

Rows 3 and 4 in Tables 1a-1d display results for state-of-the-art methods PredictHaplo (Prab-
hakaran et al., 2014) and ShoRAH (Zagordi et al., 2011), run with default parameter settings.
Both of these methods are reference-guided, hence cannot immediately be compared with Virus-
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VG, which operates entirely de novo. To simulate a de novo type scenario for these reference-
guided approaches, we provided them with a bootstrap reference genome computed by running
(Yang et al., 2012, VICUNA), a state-of-the-art tool for generating consensus virus genomes,
on the input reads. We also ran (Ahn and Vikalo, 2018, aBayesQR) and (Chen et al., 2018,
PEHaplo), but found them unsuitable for reconstructing full-length genomes at ultra deep cov-
erage: they could not finish the job within 500 hours. Hence, we only present results for these
methods on the HIV pol region data sets (both simulated and real) in Section 3.5.

We first evaluated both PredictHaplo and ShoRAH on our simulated data and, in all cases,
we found our method to have (quite significant) advantages, in terms of accuracy, number
of strains, and strain-specific genomes covered. As was already observed earlier Baaijens et al.
(2017), reference-guided methods greatly depend on the quality of the reference genome provided
and have to deal with biases towards the reference genome. This results in error rates which are
1.1–59 times higher than Virus-VG for PredictHaplo, and more than 12 times higher than Virus-
VG for ShoRAH. At the same time, these methods miss a big fraction of the target haplotypes
on all data sets except the labmix.

PredictHaplo and ShoRAH both had difficulty processing the Poliovirus data. A possible
explanation is the high divergence between the virus strains and the reference genome used,
leading to gaps in coverage when considering alignments to the reference genome, which tends
to confuse reference-guided methods. In particular, two of the six strains have a big deletion
(more than 1000bp) compared to both the reference genome and the other four strains; this
may also explain the failure to run ShoRAH even using a bootstrap reference genome, as well
as the extremely low target reconstructed for PredictHaplo. These results again highlight the
advantage of a fully de novo approach compared to reference-guided methods.

3.5 Gene sequence reconstruction

Although our main goal is to reconstruct full length genomes, some studies also require sequence
reconstruction from data corresponding to shorter regions of the genome. Therefore, we explored
the ability of Virus-VG to reconstruct the HIV pol gene sequence, a 3kb region coding for DNA
polymerase. This also allowed us to compare our assemblies against aBayesQR(Ahn and Vikalo,
2018) and PEHaplo (Chen et al., 2018), as these methods were unable to process full-length
genomes at deep coverage.

Table 2 presents results for all methods on simulated data, the 7-strain HIV pol mixture, at
sequencing depths of 500x, 1000x, and 5000x. This data set is very challenging, with pairwise
divergence of only 1% and relative abundances ranging from 0.5% and 61.5%. Therefore, it is not
surprising to see relatively low target reconstructed for all methods; the only method that is able
to find the strain of 0.5% abundance is PEHaplo at 5000x coverage (see Supplementary Material).
For all methods except ShoRAH, reconstructed target values improve upon increasing coverage.
Virus-VG shows similar behaviour as on full-length genomes: it gives a major improvement
in N50 and NGA50 values compared to SAVAGE, and while error rates are higher than for
SAVAGE they remain much lower than for other methods.

In addition, we selected reads from the pol region of the labmix (real data) and subsampled
this selection to 100x and 1000x coverage, respectively. Again, Virus-VG achieves low error
rates in combination with high N50/NGA50 values and improves as sequencing depth increases.
To ensure robustness, simulations and subsampling were performed 10 times, methods were run
on these 10 samples and results were averaged.

3.6 Haplotype abundance estimation

We also evaluated the accuracy of the abundance estimates obtained for each haplotype of the
simulated data sets, since we know the exact true frequencies for each of the strains. The
reconstructed sequences were aligned to the ground truth sequences and assigned to the closest
matching strain. For each ground truth strain, we summed the abundance estimates of the
sequences assigned to it, thus obtaining a total estimate for this strain. Then we compared
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# contigs∗ target (%) N50 NGA50 ER(%)

500x

SAVAGE 7 51.0 2291 930 0.005
Virus-VG 4 52.7 2974 2330 0.057
aBayesQR 6 55.7 3069 3069 0.249
PEHaplo 64 55.7 3048 3062 0.459
PredictHaplo 1 14.3 3068 - 0.392
ShoRAH 27 61.0 2680 2680 1.322

1000x

SAVAGE 12 57.2 1416 986 0.012
Virus-VG 6 61.3 2977 2907 0.116
aBayesQR 6 62.8 3070 3070 0.258
PEHaplo 59 61.7 3045 3063 0.449
PredictHaplo 2 21.4 3070 - 0.514
ShoRAH 27 59.8 2680 2680 1.304

5000x

SAVAGE 17 66.4 1612 1596 0.005
Virus-VG 7 64.7 2853 2864 0.089
aBayesQR 7 61.4 3074 3074 0.283
PEHaplo 469 97.0 3045 3072 0.519
PredictHaplo 2 28.5 3070 - 0.587
ShoRAH 32 51.4 2766 2766 1.404

Table 2: Assembly results for the simulated HIV pol region (∼3kb) at coverage 500x,
1000x and 5000x. ER = Error Rate, computed as the sum of the fraction of ’N’s
(ambiguous bases) and the mismatch- and indel rates. ∗If contigs are full-length,
this number reflects the estimated number of strains in the quasispecies.

this estimate to the true strain abundance and computed the absolute frequency estimation
errors. In case of any missing strains, the true frequencies were normalized first, taking only the
assembled sequences into account for a fair comparison. SAVAGE and PEHaplo assemblies are
not evaluated as these methods do not provide abundance estimates.

Our method predicts highly accurate abundances for the reconstructed strains, with an
average absolute estimation error of 0.1% on the HCV data, 0.3% on the ZIKV data, and 0.6%
on the Poliovirus data. In comparison, PredictHaplo achieves an average absolute estimation
error of 0.9% (HCV), 4.9% (ZIKV), and 10.6% (Polio), while ShoRAH is even further off with
8.5% (HCV) and 39% (ZIKV). On the HIV pol data, we observe higher estimation errors for all
methods, with an absolute error of 2.6–5.8% for Virus-VG, 3.9–4.9% for aBayesQR, 8.2–22.1%
for ShoRAH, and 6.4% for PredictHaplo (only evaluated at 5000x). Relative estimation errors
show a similar pattern. A likely explanation for increased error rates on the HIV pol data is
the complexity of the data set, with very low frequency strains in combination with a low total
coverage (500x–5000x). A more detailed analysis can be found in the Supplementary Material.

Figure 2 shows the true haplotype frequencies versus the relative error3 per method. Results
are clustered by true abundance into bins of size 0.05 and average errors are plotted for each
bin. On the Poliovirus data there are no results for ShoRAH or PredictHaplo, because the first

3| x− x∗ | /(0.5(x+ x∗))
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could not process this data set while the latter found less than a single strain. aBayesQR could
only process the HIV pol data; on this data set, Virus-VG, PredictHaplo, and aBayesQR have a
similar error pattern, with values well below the errors made by ShoRAH. On HCV and ZIKV
data, however, we observe that Virus-VG outperforms the other methods in terms of frequency
estimation, with estimates that are closest to the true values. An immediate interpretation of
these findings is that accuracy in estimating abundance is inevitably linked with accuracy in
haplotype reconstruction, which may explain our overall advantages.

3.7 Runtime evaluation

By their worst-case runtime complexity, both candidate path generation and minimizing for
selecting optimal sets of haplotypes reflect exponential procedures in Virus-VG. In practice,
however, this is not an issue: on our benchmarks Virus-VG is 2.5–87 times faster than SAVAGE,
which together form our de novo assembly pipeline. Combined, this pipeline takes 43–286 CPU
hours on full-length data sets of 20,000x coverage. This is slower than PredictHaplo (2.0–7.4
CPU hours) but faster than ShoRAH (351–814 CPU hours), both of which are reference-guided.
However, SAVAGE and Virus-VG can use multiple cores while PredictHaplo does not, leading
to comparable wall clock times when multithreading. We present a more detailed runtime and
memory analysis in the Supplementary Material.

3.8 Summary

We have benchmarked three de novo assembly tools (SAVAGE, Virus-VG, and PEHaplo) and
three reference-guided methods (aBayesQR, PredictHaplo, and ShoRAH). The only methods
that are stable with respect to all data sets considered, both full-length genomes and shorter
regions, are SAVAGE and Virus-VG. Although SAVAGE achieves lowest error rates, Virus-
VG is able to build full-length haplotypes with error rates slightly higher than SAVAGE, but
still much lower than other methods. PredictHaplo performs well on the labmix at 20.000x,
full-length genome and pol region, but it misses many haplotypes on all other data sets, with
only 14–64% of the target genomes reconstructed. Virus-VG yields most accurate frequency
estimates on full-length genomes, and performs similar to aBayesQR on the HIV pol region. In
terms of CPU time, the combination of SAVAGE and Virus-VG is on a par with or faster than
all other methods except PredictHaplo, which is consistently faster; in terms of wall clock time,
however, both SAVAGE and Virus-VG achieve a major speedup by using multithreading, while
PredictHaplo does not.

4 Discussion

We have presented an algorithm that turns viral strain-specific contigs, such as available from
a de novo assembler like SAVAGE (Baaijens et al., 2017), into full-length, viral strain-specific
haplotypes, without the use of a reference genome at any point. We first construct a contig
variation graph, which arranges haplotype-specific contigs sampled from a viral quasispecies in
a convenient and favorable manner. We then enumerate all maximal length paths through this
graph that maximally concatenate the contig subpaths. Last, we solve a minimization problem
that assigns abundance estimates to maximal length paths that are optimal in terms of being
compatible with abundances computed for the nodes in the graph. We finally output the optimal
such set of paths together with their abundances, by which we have completed the de novo viral
quasispecies assembly task.

In benchmarking experiments, we have demonstrated that our method yields major improve-
ments over the input contigs in terms of assembly length, while preserving high accuracy in terms
of error rates. Compared to state-of-the-art viral quasispecies assemblers—all of which operate
in a reference genome dependent manner—our method produces haplotype-resolved assemblies
that are both more complete, in terms of haplotypes covered, and more accurate, in terms of
error rates. We believe that (a) this reflects the strength of a fully de novo approach, because we
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avoid to deal with reference-induced biases. We also believe that (b) this is a result of directly
integrating haplotype abundance estimation into reconstruction of haplotypes.

Still, improvements are possible. Our current optimization problem employs the absolute
difference to determine the abundance estimation error. As future work, we consider the ex-
ploration of probabilistic error models, e.g., by modeling path abundance as being Poisson
distributed (Medvedev et al., 2010) and calculating the likelihood of the observed node abun-
dances.

Further, we had already alluded to that the number of candidate paths is exponential in the
number of input contigs, which could theoretically be overwhelming when dealing with highly
fragmented assembly output. Our runtime benchmarks show that this is not an issue with
standard data sets. Nevertheless, we will consider more efficient alternative solutions in future
work, based on a flow formulation of the problem that we recently found, yielding a yet to be
implemented polynomial time algorithm.
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