Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Performance Metrics for an Application-driven Selection and Optimization of Psychophysical Sampling Procedures

View ORCID ProfileMike D. Rinderknecht, View ORCID ProfileOlivier Lambercy, View ORCID ProfileRoger Gassert
doi: https://doi.org/10.1101/287904
Mike D. Rinderknecht
1ETH Zurich, Zurich, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Mike D. Rinderknecht
  • For correspondence: mike.rinderknecht@hest.ethz.ch
Olivier Lambercy
1ETH Zurich, Zurich, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Olivier Lambercy
Roger Gassert
1ETH Zurich, Zurich, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Roger Gassert
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

When estimating psychometric functions with sampling procedures, psychophysical assessments should be precise and accurate while being as efficient as possible to reduce assessment duration. The estimation performance of sampling procedures is commonly evaluated in computer simulations for single psychometric functions and reported using metrics as a function of number of trials. However, the estimation performance of a sampling procedure may vary for different psychometric functions. Therefore, the results of these type of evaluations may not be generalizable to a heterogeneous population of interest. In addition, the maximum number of trials is often imposed by time restrictions, especially in clinical applications, making trial-based metrics suboptimal. Hence, the benefit of these simulations to select and tune an ideal sampling procedure for a specific application is limited. We suggest to evaluate the estimation performance of sampling procedures in simulations covering the entire range of psychometric functions found in a population of interest, and propose a comprehensive set of performance metrics for a detailed analysis. To illustrate the information gained from these metrics in an application example, six sampling procedures were evaluated in a computer simulation based on prior knowledge on the population distribution and requirements from proprioceptive assessments. The metrics revealed limitations of the sampling procedures, such as inhomogeneous or systematically decreasing performance depending on the psychometric functions, which can inform the tuning process of a sampling procedure. More advanced metrics allowed directly comparing overall performances of different sampling procedures and select the best-suited sampling procedure for the example application. The proposed analysis metrics can be used for any sampling procedure and the estimation of any parameter of a psychometric function, independent of the shape of the psychometric function and of how such a parameter was estimated. This framework should help to accelerate the development process of psychophysical assessments.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted March 25, 2018.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Performance Metrics for an Application-driven Selection and Optimization of Psychophysical Sampling Procedures
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Performance Metrics for an Application-driven Selection and Optimization of Psychophysical Sampling Procedures
Mike D. Rinderknecht, Olivier Lambercy, Roger Gassert
bioRxiv 287904; doi: https://doi.org/10.1101/287904
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Performance Metrics for an Application-driven Selection and Optimization of Psychophysical Sampling Procedures
Mike D. Rinderknecht, Olivier Lambercy, Roger Gassert
bioRxiv 287904; doi: https://doi.org/10.1101/287904

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Neuroscience
Subject Areas
All Articles
  • Animal Behavior and Cognition (3602)
  • Biochemistry (7569)
  • Bioengineering (5524)
  • Bioinformatics (20792)
  • Biophysics (10328)
  • Cancer Biology (7981)
  • Cell Biology (11638)
  • Clinical Trials (138)
  • Developmental Biology (6603)
  • Ecology (10202)
  • Epidemiology (2065)
  • Evolutionary Biology (13617)
  • Genetics (9541)
  • Genomics (12847)
  • Immunology (7921)
  • Microbiology (19541)
  • Molecular Biology (7658)
  • Neuroscience (42096)
  • Paleontology (308)
  • Pathology (1258)
  • Pharmacology and Toxicology (2202)
  • Physiology (3267)
  • Plant Biology (7041)
  • Scientific Communication and Education (1294)
  • Synthetic Biology (1951)
  • Systems Biology (5426)
  • Zoology (1117)