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Abstract  

 

It has recently been proposed that a single dimension, called the p factor, can 

capture a person’s liability to mental disorder. Relevant to the p hypothesis, 

recent genetic research has found surprisingly high genetic correlations 

between pairs of psychiatric disorders. Here, for the first time we compare 

genetic correlations from different methods and examine their support for a 

genetic p factor. We tested the hypothesis of a genetic p factor by using 

principal component analysis on matrices of genetic correlations between 

major psychiatric disorders estimated by three methods – family study, 

Genome-wide Complex Trait Analysis, and Linkage-Disequilibrium Score 

Regression – and on a matrix of polygenic score correlations constructed for 

each individual in a UK-representative sample of 7,026 unrelated individuals. 

All disorders loaded on a first unrotated principal component, which 

accounted for 57%, 43%, 34% and 19% of the variance respectively for each 

method. Our results showed that all four methods provided strong support for 

a genetic p factor that represents the pinnacle of the hierarchical genetic 

architecture of psychopathology.  
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Introduction  

 

High comorbidity rates among psychiatric disorders1 have led to research 

investigating higher-order dimensions for psychopathology, including 

Internalizing (e.g., anxiety and depression), Externalizing (e.g., hyperactivity 

and conduct disorder), and Psychotic Experiences (e.g., schizophrenia and 

bipolar disorder)2. However, these higher-order dimensions also correlate with 

each other3, which suggests the possible existence of a general factor of 

psychopathology4.  

 

This general factor has been called the p factor5 because it parallels the g 

factor of general intelligence6 which sits on top of the widely accepted 

hierarchical model of cognitive abilities7. g accounts for 40% of the variance of 

diverse cognitive tests, is stable across the life course, and is one of the best 

predictors of educational, occupational and health outcomes8. Analogous to g, 

the p factor captures the shared variance across psychiatric symptoms, and 

predicts a multitude of poor outcomes and general life impairment9,10.  

 

Family studies support the hypothesis of a genetic p factor in that genetic 

influences on psychopathology appear to be general across disorders rather 

than specific to each disorder. For example, psychiatric disorders do not 

breed true – parental psychopathology predicts offspring psychiatric disorders 

but with little specificity11. Family research has found substantial genetic 

correlations between pairs of disorders, such as Major Depression and 
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Generalized Anxiety Disorder12 and Schizophrenia and Bipolar Disorder13. 

Genetic overlap between internalizing and externalizing higher-order 

constructs has also been noted14, consistent with the hypothesis of a general 

p factor. The culmination of this research is a recent study of more than three 

million full- and half-siblings using Swedish national register data that found 

evidence for a general genetic factor that pervades eight major psychiatric 

disorders as well as convictions for violent crimes15. Although genetic 

correlations were not presented, the average loading was 0.45 on a general 

genetic factor.  

 

Genomic research also supports the hypothesis of a genetic p factor. The first 

hint came from genome-wide association (GWA) findings that single-

nucleotide polymorphisms (SNPs) found to be associated with Schizophrenia 

were also associated with Bipolar Disorder16. Also in 2013, genetic 

correlations were first estimated from linear mixed model analyses (Genome-

wide Complex Trait Analysis, GCTA) of individual genotype data for five 

psychiatric disorders in the Psychiatric Genomics Consortium (PGC)17. 

Schizophrenia, Bipolar Disorder and Major Depressive Disorder yielded the 

highest genetic intercorrelations (average = 0.53); the average genetic 

correlation among the five disorders, including Autistic Spectrum Disorder and 

Attention-Deficit/Hyperactivity Disorder, was 0.22.  

 

Linkage-Disequilibrium Score Regression (LDSC)18 has made it possible to 

estimate genetic correlations from GWA summary statistics rather than 

requiring genotype data for individuals. This method is based on correlations 
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in effect sizes across disorders taking into account linkage disequilibrium and 

the SNP heritabilities of the disorders. LDSC genetic correlations derived from 

summary GWA statistics for the same five PGC disorders are remarkably 

similar to the GCTA genetic correlations described above that used individual 

genotype data19. A recent LDSC analysis of eight psychiatric disorders again 

showed considerable correlations between Schizophrenia, Bipolar Disorder 

and Major Depressive Disorder (average = 0.41), and yielded an average 

genetic correlation of 0.2120, highlighting the relevance of testing the 

hypothesis of a genetic p factor.  

 

Another approach that has not yet been systematically applied to test for a 

genetic p is to correlate genome-wide polygenic scores (GPS), although some 

GPS correlations between pairs of psychiatric disorders have been reported21. 

A GPS for a disorder is created for an individual by summing the alleles 

shown in GWA studies to be associated with the disorder, after weighting the 

alleles by the strength of their association22. The previously described PGC 

dataset was used to create polygenic scores for each of the five disorders16, 

and polygenic scores for Schizophrenia, Bipolar Disorder and Major 

Depressive Disorder predicted liability variance in the other disorders, again 

suggesting genetic overlap. However, as new GWA studies have been 

published since for Schizophrenia, Attention-Deficit/Hyperactivity Disorder and 

Autism Spectrum Disorder with considerably increased sample sizes, 

replication is needed. GPS correlations between disorders are related to 

genetic correlations, but differ from the genetic correlations estimated from 

other methods because they index both the relationship between individual-
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specific genetic effects for traits in the population and genetic effects derived 

from an independent analysis. Nonetheless, GPS correlations provide another 

opportunity to test the hypothesis of a genetic p factor. 

 

Based on the overwhelming evidence that favours a general p factor, we test 

whether a general p factor also emerges from genetic data. In the present 

study, we bring together genetic correlations for major psychiatric disorders 

derived from four genetic methods (family, GCTA, LDSC, and GPS). We 

applied principal component analysis to correlation matrices derived from 

these four methods and estimate the amount of genetic variance explained by 

a genetic p factor. For the GPS approach, we constructed GPS for eight 

psychiatric disorders for each individual in a sample of 7,026 unrelated 

individuals from the Twins Early Development Study (TEDS)23.  

 

Our hypotheses were that (i) a general genetic factor would emerge from 

factor analyses of correlations derived from each of the four genetic methods, 

and that (ii) this genetic p factor would account for a substantial portion of the 

variance of the correlation matrices.  
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Results 

 

Genetic correlations 

 

Figure 1 presents the genetic correlations from family analysis, GCTA and 

LDSC, and the correlations from GPS analysis. The average genetic 

correlations were 0.49 for family analysis, 0.24 for GCTA and 0.31 for LDSC, 

indicating general genetic overlap among psychiatric disorders. The average 

GPS correlation was lower (0.06), as expected. However, genetic correlations 

for all four genetic approaches clustered in a strikingly similar way. Most 

notably, the average genetic correlations between Schizophrenia, Bipolar and 

Depression were consistently the largest in magnitude – 0.67 for family 

analysis, 0.53 for GCTA, 0.59 for LDSC, and 0.21 for GPS. High genetic 

correlations were not driven by larger heritability estimates for these traits in 

comparison to the other disorders (see Supplementary Tables S2 and S3 for 

SNP-h2 estimates).
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Figure 1. Genetic correlations from family analysis (a), Genome-wide 

Complex Trait Analysis (b), Linkage-Disequilibrium Score Regression (c) and 

Genome-wide Polygenic Score (d) analysis. Values represent Pearson’s 

correlation coefficients. SCZ = Schizophrenia; BIP = Bipolar Disorder; MDD = 

Major Depressive Disorder; ASD = Autism Spectrum Disorder; ADHD = 

Attention-Deficit/Hyperactivity Disorder; ANX = Anxiety; OCD = Obsessive-

Compulsive Disorder; AN = Anorexia Nervosa; PTSD = Post-Traumatic Stress 
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Disorder; Drug =  Drug abuse; Alcohol = Alcohol abuse; Crime = Convictions 

of violent crimes. 

 

 

 

 

 

 

Principal Component Analysis 

 

Principal component analyses provided converging evidence for a general 

psychopathology factor. Figure 2 shows that all four correlation matrices 

yielded a first unrotated principal component that accounted for a 

considerable amount of variance. The first principal component explained 

57%, 43%, 34% and 19% in family, GCTA, LDSC and GPS data, respectively. 

(For proportion of variance explained by the other unrotated principal 

components, see Supplementary Table S4.)  
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Figure 2. Scree plot showing eigenvalues for each principal component after 

performing PCA on genetic correlation matrices for four genetically sensitive 

methods: family analysis, Genome-wide Complex Trait Analysis (GCTA), 

Linkage-Disequilibrium Score Regression (LDSC) and Genome-wide 

Polygenic Scoring (GPS). The dashed line represents the cut-off for principal 

component retention based on the Kaiser’s l > 1 criterion28. 
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Figure 3 shows first unrotated principal component loadings of all 

psychopathological traits for the four genetic methods. The loadings on the 

first unrotated principal component (PC) mirrored the genetic correlations 

(Figure 1): the average loadings were 0.75 for family data, 0.58 for GCTA, 

0.53 for LDSC and 0.38 for GPS. We were able to test the statistical 

significance of loadings in family and GPS analyses, and found that all traits 

significantly loaded onto the first unrotated PC (all p-values £ 5.92x10-24), 

even though the GPS data showed some of the lowest loadings. The variation 

in factor loadings across the four methods can be explained by the inclusion 

of different disorders, as average loadings for the disorders in common were 

highly similar (family = 0.56; GCTA = 0.54; LDSC = 0.52; GPS = 0.42). 

Schizophrenia, Bipolar, and Depression consistently had the highest loadings 

on the first unrotated principal component across all genetic approaches. In 

contrast, Autistic Spectrum Disorder and Attention-Deficit/Hyperactivity 

Disorder were among the lowest-loading traits.  
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Figure 3. Loadings of psychopathology traits on the first unrotated principal 

component for each of the four types of genetic data. GCTA = Genome-wide 

Complex Trait Analysis; LDSC = Linkage-Disequilibrium Score Regression; 

GPS = Genome-wide Polygenic Score; SCZ = Schizophrenia; BIP = Bipolar 

Disorder; MDD = Major Depressive Disorder; ASD = Autism Spectrum 

Disorder; ADHD = Attention-Deficit/Hyperactivity Disorder; ANX = Anxiety; 

OCD = Obsessive-Compulsive Disorder; AN = Anorexia Nervosa; PTSD = 

Post-Traumatic Stress Disorder; Drug =  Drug abuse; Alcohol = Alcohol 

abuse; Crime = Convictions of violent crimes. “*“ = reached statistical 

significance of p £ 5.92x10-24; it was only possible to test the statistical 

significance for the loadings relating to GPS and family data (see Methods 

section for details).  

 

 

Based on the criteria described in the Methods section, we retained two 

principal components for rotation for family, GCTA and GPS data, and three 

principal components for LDSC data (for more details, see Supplementary 

Table S4). However, to improve comparability of the rotated factor solutions 

across the four genetic methods, we kept two PCs for the LDSC data. Results 

of the rotation of three components for LDSC data can be found in 

Supplementary Table S5. 

 

Figure 4 lists the loadings for the first two rotated factors after performing 

oblique rotation. Rotated factor loadings for all methods (family, GCTA, LDSC, 
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GPS) show that Schizophrenia, Bipolar and Depression consistently load 

highly onto the same factor. This is expected from the higher genetic 

intercorrelations between these traits for all methods (Figure 1). For the 

remaining psychiatric traits, results were less consistent when comparing 

family data to genomic data (GCTA, LDSC, GPS). In part, this reflects the 

traits included – most notably, a drug abuse/crime factor emerged from the 

family data because, unlike the other datasets, Drug Abuse, Alcohol Abuse 

and Violent Crime were included and created the first rotated factor. Anxiety 

also contributed to both the rotated factors. For the three genomic methods, 

the second factor primarily included Attention-Deficit/Hyperactivity Disorder 

and Post-Traumatic Stress Disorder.   
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Figure 4. Rotated factor loadings for the four types of genetic data. RF = 

rotated factor based on oblique (Oblimin) rotation. GCTA = Genome-wide 

Complex Trait Analysis; LDSC = Linkage-Disequilibrium Score Regression; 

GPS = Genome-wide Polygenic Score; SCZ = Schizophrenia; BIP = Bipolar 

Disorder; MDD = Major Depressive Disorder; ASD = Autism Spectrum 
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Disorder; ADHD = Attention-Deficit/Hyperactivity Disorder; ANX = Anxiety; 

OCD = Obsessive-Compulsive Disorder; AN = Anorexia Nervosa; PTSD = 

Post-Traumatic Stress Disorder; Drug =  Drug abuse; Alcohol = Alcohol 

abuse; Crime = Convictions of violent crimes.  
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Discussion 

 

These results provide genetic support for p, a general factor of 

psychopathology that represents a single, continuous dimension of the 

psychiatric spectrum. The four methods used to estimate genetic correlations 

differ substantially: quantitative genetic analysis of siblings and half-siblings15, 

GCTA estimates based on SNP differences between unrelated individuals17, 

LDSC analysis based on GWA summary statistics, and GPS for individual 

data presented in this paper. Nonetheless, each of the principal component 

analyses from the four methods yielded a general factor on which all disorders 

loaded, explaining between 20% and 60% of the total variance.  

 

Schizophrenia, Bipolar and Depression are the oldest and most consistently 

diagnosed psychiatric disorders, yet they are consistently among the highest-

loading disorders on this genetic p factor. This finding is unlikely to be due to 

some artifact of genetic analysis because it was consistent across different 

genetic methods applied to different samples.  

 

In contrast, Attention-Deficit/Hyperactivity Disorder and Autistic Spectrum 

Disorder consistently show the lowest loadings on the first unrotated principal 

component. An obvious hypothesis to account for this is that these two 

disorders are diagnosed in childhood, whereas the other disorders are 

diagnosed in adulthood. There is recent interest in diagnosing adult versions 

of these disorders24,25. If GWA studies were conducted on in adults, genetic 
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correlations with other psychiatric disorders should be higher if this hypothesis 

is correct.  

 

It is difficult to draw general conclusions about the other disorders that varied 

across the four genetic methods (Obsessive Compulsive Disorder, Anorexia, 

and Post-traumatic Stress Disorder, Anxiety, Drug Abuse, Alcohol Abuse, and 

Violent Crime). However, when any of these disorders were included in a 

study, they consistently contributed to a genetic p factor in the sense that they 

loaded on the first unrotated principal component.  

 

Although the four genetic methods yielded similar patterns of correlations and 

patterns of loadings on the first unrotated principal component, they differed in 

the magnitude of their estimates of correlations and loadings, even when only 

considering the disorders in common (i.e. Schizophrenia, Bipolar, Depression, 

Autistic Spectrum Disorder). In principle, genetic correlations calculated 

through GCTA and LDSC should not differ substantially from family study 

estimates. Even though univariate SNP-h2 is generally lower than family-h2 

because the estimate doesn’t include rare variants and nonadditive effects, 

this downward bias influences both nominator and denominator to equal 

extents when calculating genetic correlations (rg = hxhy / Öhx2hy2), therefore 

cancelling out the bias26. However, if the correlation between causal SNPs is 

stronger for common variants than for rare variants, the SNP genetic 

correlation estimate would be higher than family study estimates, because 

only common SNPs are included in the analysis19. Nevertheless, for the 

disorders in common, family data produced higher average genetic 
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correlations (0.49) than LDSC (0.34) and GCTA (0.38). An alternative 

explanation may be differing approaches to sample ascertainment and 

psychiatric diagnoses. In some genomic studies, sampling strategies may 

select ‘pure’ cases and exclude cases with other co-occuring conditions, and 

such ‘pure’ cases do not represent the disordered population27. In contrast, 

family data used in this study15 were based on a non-hierarchical approach to 

classification, thus allowing for greater overlap among the disorders.  

 

GPS results yielded the lowest overall correlations, as it is arguably the most 

conceptually distinct method. A GPS is the aggregation of all genetic effects 

found in an independent GWA analysis in respect to an individual’s genotype. 

Therefore, GPS correlations index the extent to which the total variance of 

individuals’ GPS for one trait covaries with GPS for other traits. Two possible 

reasons why GPS correlations may be the lowest are that (i) in addition to true 

effects, a GPS includes the measurement error for all the SNPs tested across 

the genome in GWA analysis and (ii) a GPS is generated using genotypes 

from one cohort and effect sizes from a second, independent cohort.   

 

What causes this genetic p factor? The positive manifold of the genetic p 

factor is agnostic about its causes. There are several, equally plausible 

hypotheses for the mechanisms that cause cross-disorder correlations28. One 

possible pathway may be biological pleiotropy, where DNA variants are 

causally involved in the development of several traits related to 

psychopathology. An alternative explanation is mediated pleiotropy, in which 

comorbidity occurs because DNA variants increase risk for one disorder, and 
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then this disorder causes other disorders in turn. A third hypothesis is that 

DNA variants cause some general impairment that forms the core of various 

disorders, consequently producing genetic correlation between specific 

diagnoses. That is, the thousands of DNA variants associated with each 

symptom or disorder might affect all personality and cognitive processes that 

increase risk, thus providing many pathways to psychopathology.   

 

Although it is remarkable how much genetic variance is explained by p, it 

does not explain all, or even most, of the genetic variance. Assuming a 

hierarchical model with p at the highest level9,10, broader psychiatric 

dimensions at a middle level, and specific psychopathologies at the lowest 

level, the question is how much genetic variance is accounted for by the three 

levels. In the realm of cognitive abilities, there continues to be debates about 

the nature of the middle level29. As compared to p, there is less clarity in our 

results about the nature of the second level of the hierarchical structure, as 

represented by the rotated factor solutions. One rotated factor consistently 

includes the psychotic disorders of Schizophrenia, Bipolar and Depression. 

However, the other rotated factor is less clear. For example, although 

Attention-Deficit/Hyperactivity Disorder loads on the second factor, it clusters 

positively with Post-Traumatic Stress Disorder in the LDSC and GPS results, 

positively with anxiety, substance abuse and crime in the family results, and 

negatively with Autistic Spectrum Disorder in the GCTA and GPS results. It 

may be that the second level of the hierarchical structure will remain unclear 

until analyses of this type begin to use a transdiagnostic approach, by 

beginning with symptoms and building a hierarchical model from the ground 
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up. If these data become available in the future, we will be able test the 

genetic p factor model more formally by contrasting it to alternative models.   

 

In addition to this limitation of our analyses, the primary limitation is ‘missing 

heritability’, the gap between SNP-h2 and family study heritability estimates. 

We used the most recent publicly available GWA summary statistics, some of 

which are considerably underpowered. This limitation most affects our GPS 

analyses, which predict genetic risk at the level of individuals. The modest 

SNP-h2 and measurement error of the GWA studies from which the GPS were 

derived are partly responsible for the low correlations between the GPS. More 

powerful GWA studies are in progress, and we are optimistic that new GPS 

will have improved predictive accuracy. More generally, GWA studies focused 

on phenotypic p should be able to capture genetic p to a greater extent than 

trying to derive genetic p from GWA studies of separate disorders that are 

sometimes diagnosed as ‘pure’ cases that exclude other diagnoses. 

 

In conclusion, we report strong evidence for a genetic p factor that represents 

a continuous, underlying dimension of psychiatric risk using four distinct 

genetic methods. As GWA studies continue to increase in sample size as well 

as in the diversity of their target traits, our current results suggest that a 

genetic p factor could be useful in psychiatric research. 
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Methods 

 

Sample 

 

This study included 7,026 unrelated (i.e., one member per twin pair), genotyped 

individuals from the Twins Early Development Study (TEDS), a longitudinal birth 

cohort that recruited over 15,000 twin pairs between 1994-1996 who were born in 

England or Wales. Despite some attrition, the remaining cohort, as well as the 

genotyped subsample have been shown to represent the UK population23,30. Written 

informed consent was obtained from parents. Project approval was granted by King’s 

College London’s ethics committee for the Institute of Psychiatry, Psychology and 

Neuroscience (05.Q0706/228). 

 

Genome-wide Polygenic Scores (GPS) 

 

To obtain individual-specific genetic measures for psychiatric traits, we created eight 

GPS in our independent sample of 7,026 individuals based on publicly available 

genome-wide association (GWA) summary statistics from the Psychiatric Genomics 

Consortium (PGC): Schizophrenia, Bipolar Disorder, Major Depressive Disorder, 

Autism Spectrum Disorder, Attention-Deficit/Hyperactivity Disorder, Obsessive-

Compulsive Disorder, Anorexia Nervosa, Post-Traumatic Stress Disorder 

(Supplementary Table S1). Following quality control and imputation (see 

Supplementary Methods S1 for details), genotypic data included 515,100 genotyped 

or imputed SNPs (info=1). To calculate polygenic scores, we used a Bayesian 
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approach, LDpred31, which modifies the summary statistic coefficients based on 

information on Linkage Disequilibrium (LD) and a prior on the effect size of each 

SNP. The final GPS is obtained as the sum of the trait-increasing alleles (each 

variant coded as 0,1, or 2), weighted by the posterior effect size estimates (for more 

information, see Supplementary Methods S2). All polygenic scores were adjusted for 

the first ten principal components of the genotype data, chip, batch and plate effects 

using the regression method. The resulting standardized residuals were used for 

subsequent analyses.  

 

Based on polygenic scores for the eight psychopathology traits created in TEDS, we 

generated a correlation matrix for further use in the main analyses.  

 

Genetic correlations based on Linkage-Disequilibrium Score Regression (LDSC) 

 

LDSC is a method used to estimate SNP-heritability (SNP-h2) based on GWA 

summary statistics only, and relies on the principle that the presence of LD in the 

study sample is correlated with the upward bias of GWA test statistics18. Cross-trait 

LDSC19 is an extension of this method and makes it possible to estimate the genetic 

relationship between two traits. For each SNP, this method establishes the 

covariance of the test statistics for trait x and trait y, and regresses this value on the 

LD score of that SNP (i.e. the sum of the squared correlations of the SNP with its 

surrounding SNPs), whereby the slope represents the genetic covariance. The 

genetic correlation is obtained by standardizing the covariance by the SNP-h2 for 

both traits (rg = covxy / Öhx2hy2). 
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We applied cross-trait LDSC analysis on the same eight PGC summary statistics 

used for polygenic score creation to generate a genetic correlation matrix for further 

analysis. (For univariate SNP-h2 results using LDSC, see Supplementary Table S2.)  

 

Genetic correlations based on Genome-wide Complex Trait Analysis (GCTA) 

 

In addition to GPS and LDSC analysis, we also obtained genetic correlation matrices 

based on bivariate Genome-wide Complex Trait Analysis (GCTA)32. Unlike LDSC, 

which uses GWA summary statistics, GCTA requires individual-level genotype data 

and estimates genetic correlations from linear mixed model analysis by relating a 

pairwise genomic similarity matrix to a phenotypic covariance matrix between traits x 

and y. We used published GCTA genetic correlations17, which included five 

psychiatric disorders: Schizophrenia, Bipolar Disorder, Major Depressive Disorder, 

Autism Spectrum Disorder, and Attention-Deficit/Hyperactivity Disorder. (For 

univariate SNP-h2 estimates, see Supplementary Table S3.) 

 

Genetic correlations based on family data 

 

Finally, we used genetic correlations based on quantitative genetic analysis 

comparing 3,475,122 Swedish full-siblings and half-siblings, who are genetically 

similar 50% and 25%, respectively, for additive genetic effects. The genetic 

correlations were not included in the original publication15 but were kindly prepared 

and shared by the lead author, Erik Pettersson of the Karolinska Institute. The 

analysis included seven psychopathology traits (Schizophrenia, Bipolar Disorder, 

Attention-Deficity/Hyperactivity Disoder, Major Depressive Disorder, Anxiety, Alcohol 
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Use Disorder and Drug Abuse), as well as measured violent crimes convictions. 

Schizoaffective Disorder was redundant with Schizophrenia and thus omitted here 

(Supplementary Figure S1).  

Statistical Analyses 

 

Principal Component Analysis  

 

To test the hypothesis that a general genetic p factor emerges from the genetic 

relationships among psychopathology traits, we performed eigenvalue 

decomposition through Principal Component Analysis 

(PCA), which aims to maximize variation of the first principal component (PC)33. We 

applied PCA to genetic correlation matrices derived from family analysis (8´8 

matrix), GCTA (5´5 matrix), LDSC (8´8 matrix), and GPS analysis (8´8 matrix) to 

test whether a first principal component explains a substantial amount of the 

variance, and whether all psychiatric traits load onto this component.  

 

We also tested the statistical significance of the factor loadings, which represent 

correlations between the original standardized variables and the factors. By 

calculating the t-statistic of the correlation coefficients, we were able to derive 

empirical p-values based on the t-statistic distribution with n-2 degrees of freedom34. 

Significance testing was applied to family and GPS loadings only because we were 

unable to obtain degrees of freedom for GCTA and LDSC data, which is required for 

the calculation of t.  
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The decision of how many components to retain for rotation was based on three 

criteria: (i) the Kaiser criterion35 of eigenvalue l > 1; (ii) parallel analysis36, and (iii) 

scree plot inspection37 (for a more detailed description, see Supplementary Methods 

S3).To improve interpretability of the extracted components, we performed oblique 

rotation using the Oblimin method. We chose this approach, which permits factors to 

be correlated, because previous work using phenotypic data showed considerable 

associations between latent psychopathology dimensions3,5.  

 

Analyses were performed in R38, using the hornpa39 package to perform parallel 

analysis, the psych40 package to conduct PCA (using the principal function), and the 

GPArotation41 package to apply oblique rotation.  
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