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Abstract  
 

Cancer cell migration is essential for the early steps of metastasis, during which cancer 
cells move through the primary tumor and reach the blood vessels. In vivo, cancer cells are 
exposed to directional guidance cues, either soluble, such as gradients of growth factors, or 
insoluble, such as collagen fiber alignment. Depending on the number and strength of such 
cues, cells will migrate in a random or directed manner. Interestingly, similar cues also 
stimulate cell proliferation. In this regard, it is not clear whether cell cycle progression affects 
migration of cancer cells and whether this effect is different in random versus directed 
migration. In this study, we tested the effect of cell cycle progression on random and directed 
migration, both in 2D and 3D environments, in the breast carcinoma cell line, FUCCI-MDA-
MB-231, using computational image analysis by LEVER. Directed migration in 2D was 
modeled as chemotaxis along a gradient of soluble EGF inside 10 µm-wide microchannels. In 
3D, directed migration was modeled as contact guidance (alignotaxis) along aligned collagen 
fibers. Time-lapse recordings of cells in 2D and 3D revealed that directed, but not random 
migration, is cell cycle-dependent. In both 2D and 3D directed migration, cells in the G1 phase 
of the cell cycle outperformed cells in the G2 phase in terms of migration persistence and 
instantaneous velocity. These data suggest that in the presence of guidance cues in vivo, breast 
carcinoma cells in the G1 phase of the cell cycle may be more efficient in reaching vasculature. 
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Introduction 
 
Cancer is one of the leading causes of deaths globally. Cancer mortality is tightly linked 

to invasion and metastasis, for which no treatment exists at the moment.1 During metastasis, 
tumor cells invade and migrate through the stromal tissue, disseminate via the lymphatic or 
vascular systems and colonize distant organs.2 While migrating through the tissue, tumor cells 
are exposed to guidance cues, resulting in directed migration that facilitates persistent 
navigation through the tissue and efficient arrival to the lymphatic or blood vessels.3 Directed 
migration is guided by biochemical and biophysical cues. The best studied soluble cues are 
gradients of growth factors and cytokines which induce chemotaxis.4 Recent studies of 
extracellular matrix (ECM) properties have identified a number of biophysical cues, one 
example of which is alignment of collagen fibers, shown to stimulate contact guidance i.e. 
alignotaxis.5,6  

In the case of mesenchymal cancer cells, both random and directed migration are 
composed of four interdependent molecular steps that make the cell motility cycle.7 The first 
step involves formation of adhesive protrusions at the leading edge, whose direction is 
determined by cell polarization.3 The next steps include formation of new adhesions at the cell 
front, elevation of actomyosin contractility in the cell body, and retraction of the adhesions at 
the cell rear. Cues that induce directed migration, such as growth factor gradients or aligned 
collagen fibers, cause local activation of certain Rho family GTPases that are part of the 
polarity signaling machinery of the cells.6 Hence, cells are persistently polarized in the 
direction of the guiding cues, and therefore, new adhesive protrusions are formed in the same 
direction resulting in a guided migration.8,9 A forthright consequence of directional migration 
is an increase in persistence, which is also manifested in higher average speed of directionally 
migrating cells. 

Based on the established hallmarks of cancer,10 it can be expected that motile cancer 
cells are actively cycling and proliferating. However, it is unlikely that cells actively engaged 
in actin reorganization during migration can proceed through cell cycle and division due to 
both structural and energy constraints. In support of this thinking, a number of studies has 
reported that tumors which invade and metastasize more efficiently, grow slower and vice 
versa.11–13. In melanoma cancers, this phenomenon was described as the phenotypic switch11. 
To explain how the switch between proliferation and invasion may occur at a single cell level, 
the Go-or-Grow hypothesis was proposed, suggesting a temporal exclusivity in division and 
motility.14 However, testing of this hypothesis was mainly done as ensemble measurements 
and so far, resulted in contradicting reports.15–17 For example, in glioma and cervical cancer 
cell lines, cells in G1 and S phase demonstrate higher speed of 2D random migration.18 Next, 
melanoma cells in 3D spheroids show little migration and invasion in G1 phase compared to 
S/G2, while colon cancer cells in vivo were shown to migrate faster when in S/G2/M phase 
compared to G1.19 While the current literature suggests that the cell cycle phase may influence 
cell speed and extent of cell invasion, a systematic study of random and directed cell migration 
in 2D and 3D in breast carcinoma cells was not done. 

Although cancer cell migration in vivo is mostly directional and guided by soluble and 
physical cues, the effect of cell cycle on directed migration was not previously tested. In this 
study, we tested the cell cycle-dependency of persistence and velocity in random and directed 
migration, in 2D and 3D models. To monitor the cell cycle status real-time, we utilized the 
nuclear labeling by FUCCI fluorescent set,20 which allows us to distinguish the G1 from the 
S/G2 phase of the cell cycle. Using LEVER for computational image analysis, we were able to 
automate segmentation, tracking and analysis of migrating cells. Our results indicate that in 
both 2D and 3D conditions, only directed migration is affected by the cell cycle phase. While 
no cell cycle dependency was observed for either persistence or velocity in randomly migrating 
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cells, directionally migrating cells in the G1 phase of the cell cycle were faster (in 2D and 3D) 
and more persistent (3D) than cells in the S/G2 phase of the cell cycle. Taken together, our 
results suggest that cells in the G1 phase of the cell cycle excel at directed migration.  

 

Results 
 

Establishment and characterization of a 2D model for directed cell migration  
To model directed cell migration in 2D, we designed a microchip with microchannels 

with a gradient of EGF as chemoattractant (Figure 1A).21,22 Briefly, two reservoirs were 
created by a biopsy punch on each side of a 20-microchannel array (W 10 µm x H 20 µm x L 
850µm). The left reservoir was loaded with cells (Figure 1A) and the right reservoir acted as 
the chemoattractant source. To facilitate cell entry into the channels, the left end of the 
microchannels was tapered (W 35 µm x L 150µm). The 10 µm-wide microchannels guide 
migration of MDA-MB-231 cells along x-axis, without cell constriction.23 

To test the microchip ability to provide a stable gradient across its full length, formation 
and dynamics of the gradient was first mathematically simulated by solving the unsteady-state 
diffusion equation using a finite element approach. Movie S1 and Figure 1B show the results 
of the mathematical modeling and formation of the gradient across the microchannels. As 
indicated in Figure 1B, the gradient steepness is predicted to be stable from 12 to 18 h post-
gradient formation.  

We next experimentally validated the mathematical model by monitoring diffusion of 
fluorescently labeled dextran over time. AlexaFluor 405-labeled 10 kDa dextran has a 
molecular weight and diffusivity similar to those of EGF (MW = 6 kDa and D = 0.5e-4 µm2/s). 
Mass transfer was limited to molecular diffusion by capping reservoirs with PDMS pieces, 
equilibrating the pressure across the system and reducing convection. Figure 1C shows 
quantification of gradient profiles at different time points. While there is a reduction in the 
gradient steepness over time, as mathematically shown, average gradient steepness in the 
system is stable from 12 to 18 h post-gradient formation (< 10% difference). Since the 
chemotaxis of MDA-MB-231 cells is affected by the steepness and concentration of the EGF,24 
quantification of the cell migration parameters (instantaneous velocity and migration 
persistence) was only conducted on data acquired from 12 to 18 h post-gradient formation.  

 
Directed, but not random, migration of cancer cells in 2D is cell cycle -dependent 

We first tested the cell cycle-dependency of cancer cell migration in 2D by acquiring 
time-lapse recordings of FUCCI-MDA-MB-231 cells (Movie S2). To model 2D random 
migration, cells were plated on gelatin-coated dishes. In the directed cell migration model, cells 
moved following the chemoattractant onto the gelatin-coated microchannels and allowed to 
migrate along the chemoattractant gradient (Movie S3).  

Cell trajectories and the corresponding cell cycle phase information were extracted 
from time-lapse movies via LEVER (see Materials and methods) (Movie S4) and used to 
calculate cell persistence and instantaneous velocity. 

Figure 2A and 2B depict representative trajectories of cells randomly migrating in 2D 
and the corresponding cell cycle phases (G1, red and S/G2, green). Cells in the early S phase 
of the cell cycle express both red and green fluorophores, generating yellow labeling. In our 
system, these cells amounted to <10% of the total number of cells and were excluded from the 
quantification. As expected, without guiding cues, cells freely change their polarization 
direction, resulting in a very low migration persistence, independently from the cell cycle phase 
(Figure 2C).3 Consequently, instantaneous velocity of cells in the G1 phase of the cell cycle 
shows no significant difference compared to that of cells in the S/G2 phase of the cell cycle 
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(Figure 2D).  Taken together, these findings demonstrate that random migration of cancer 
cells in 2D is not cell cycle-dependent.  

Next, we assessed cells subjected to directional migration in 2D (Figure 2E-H). 
Microchannels guide the cell migration along x-axis without applying spatial constriction,23 
while the non-linear gradient of EGF stimulates chemotaxis in MDA-MB-231 cells,24 ensuring 
unidirectional movement. Simultaneous exposure to physical confinement and gradient of 
chemoattractant results in highly persistent cell migration, similar in both the G1 and the S/G2 
phase of the cell cycle (Figure 2G). However, instantaneous velocity of cells in G1 is 
significantly higher (approximately 20%) than the velocity of cells in S/G2 phase of the cell 
cycle (Figure 2H). Collectively, our data suggest that directed migration of cancer cells in 2D 
is cell cycle-dependent. While migration persistence of cells in the G1 and S/G2 phases is 
comparable, cells in the G1 phase exhibit significantly higher velocity.   

 
Directed, but not random, migration of cancer cells in 3D is cell cycle-dependent  

A number of studies demonstrated that cell migration in 2D may not reflect cell 
behaviors in more physiological relevant 3D models, where cells can be exposed to tissue-like 
confinement25–27 and reciprocal cell-matrix interactions28 One such model is the acid-soluble 
collagen gel, which provides fibrillar structure resembling the topography of tissue ECM, and 
therefore, is superior to the homogeneous 3D gels.29 In 3D collagen gels with pore size equal 
to or larger than the diameter of cell nucleus, breast cancer cells utilize MMP-independent 
migration. In contrast, MMP-dependent invasion is present in environments with smaller 
pores.30 Additionally, directed cell migration along aligned and bundled collagen fibers 
(contact guidance) was shown to significantly increase persistence,5 without affecting the 
instantaneous velocity of cells.31  

To test the cell cycle-dependency of random and directed cell migration in 3D, we 
generated collagen gels with either randomly oriented (Figure 3A-C) or aligned fibers (Figure 
3D-F). The aligned fiber architecture was achieved by flowing magnetic beads through the 
collagen gel.32 We confirmed the orientation of the fibers by confocal reflection imaging 
(Figure 3B, 3E) and measured the distribution of fiber angles in each condition. The randomly 
oriented fibers show a uniform distribution of fiber angles (Figure 3C), indicating that there is 
no enrichment of fibers in any particular angle. The aligned fibers show a Gaussian distribution 
of angles, indicating that the majority of fibers are positioned at the same angle (Figure 3F).      

Using these 3D models, we compared the migration of FUCCI-MDA-MB-231 cells in 
randomly oriented (Movie S5) or aligned (Movie S6) fibrillar collagen. Time-lapse images 
were segmented and tracked using LEVER. Consistent with the random migration pattern in 
2D, cell cycle status did not affect neither persistence nor velocity of cells in randomly oriented 
fibers in 3D (Figure 4A-D).  

In aligned collagen, the trajectories show higher persistence compared to cells in 
randomly oriented collagen (Figure 4E and 4F). Quantification of the migration parameters 
shows that cells in the G1 phase of the cell cycle are both significantly faster and more 
persistent compared to the cells in S/G2 of the cell cycle (Figure 4G and H). In conclusion, 
our data demonstrate that cells in the G1 phase of the cell cycle exhibit faster migration in 
response to guidance cues, i.e. directed migration. During random migration, persistence and 
velocity of cells in the G1 and S/G2 phases of the cell cycle are similar. 
 
Discussion 

In this study, we sought to determine the migration parameters of cancer cells relative 
to their cell cycle status. To this purpose, we established models of 2D and 3D directed 
migration and utilized MDA-MB-231 breast carcinoma cells expressing the FUCCI cell cycle 
reporter. Using time-lapse live imaging, we demonstrate that only the directed motility of 
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cancer cells changes throughout the cell cycle progression. We showed that under directed 
guidance cues cells in G1 outperform those in S/G2 by exhibiting higher persistence and 
velocity both in 2D and 3D environments.  

The persistence and the velocity of cells can be regulated by extrinsic (ECM properties, 
chemoattractant gradient, interstitial flow) 24,33–35 as well as intrinsic cues (expression levels of 
receptor tyrosine kinases, integrins, metabolism). In the current study, we keep the external 
environment stable, which allows us to isolate the relationship between the intrinsic cell cycle 
signaling and migration.  

The cross-talk between cell cycle and motility pathways was suggested by a number of 
mechanistic reports. For example, integrins and receptor tyrosine kinases were shown to 
regulate both RhoGTPases, master regulators of cell contractility and actin polymerization,36 
as well as G1-related cyclin-dependent kinases.37 

Our models and method provide a platform for further interrogating the relationship 
between the cell cycle progression and other extrinsic cues and the effects of the interplay not 
only on cell migration, but also on cell invasion. For instance, ECM stiffening in mammary 
epithelial cells activates cell cycle progression via a FAK-Rac-Cyclin D1 pathway,38 while 
applying sheer stress to tumor cells can induce a G2/M arrest through αvß3 and ß1-mediated 
pathways.39 Furthermore, similar to cell migration, invasion and ECM degradation can be 
modulated by external factors, such as soluble cues and ECM parameters.40–43 In addition, 
intrinsic cellular activities, such as cell cycle, can also affect the ECM degradation. Recent 
study has shown that the cytoplasmic pool of cyclin-dependent kinase inhibitor p27 is involved 
in regulation of ECM degradation.44 On a similar note, anchor cell invasion into vulval 
epithelium, occurring during development in C. elegans, is only performed by cells that are in 
G0/G1 phase of the cell cycle.45  

Tumor cell arrest during the G1/S transition, by inhibitors of Cdk4/6, is one of the new 
avenues for breast carcinoma treatment.46 While such treatment successfully reduces tumor 
size, it may also accumulate reactive oxygen species and increase Cyclin D1 expression,47 
which have been linked to increased migration and invasion.48,49 Hence, understanding of the 
coordination between cell cycle and cell migration, as well as the other hallmarks of metastasis 
is increasingly important. 
 

Methods 
 

Cell culture and generation of FUCCI-MDA-MB-231 
Human breast cancer cell line MDA-MB-231 (ATCC, Manassas, VA) was cultured in 

DMEM supplemented with 10% FBS (Atlanta Biologicals, Flowery Branch, GA) and 1% 
Penicillin/Streptomycin mixture (Gibco, Thermofisher Scientific, Waltham, MA).  

Cell line FUCCI-MDA-MB-23120 was generated using a self-inactivating lentiviral 
expression vector system (Miyoshi j virol 1998).50 Viral particles were produced by co-
transfecting mKO2-hCdt1 (red) or mAG-hGem (green) with the packaging plasmids (pCAG-
HIVgp), G protein of vesicular stomatitis virus (VSV-G) and Rev-expressing plasmid (pRSV-
rev) into HEK-293T cells. Supernatant was collected and concentrated using the Lenti-X 
concentrator (Clontech Laboratories, Inc). High-titer viral solutions were used to co-transduce 
MDA-MB-231 cells and top 5% expressors were selected by FACS. 

 
2D migration assay 

60,000 FUCCI-MDA-MB-231 cells were cultured on gelatin-coated plates described 
previously.51 Briefly, acid-washed 35-mm glass bottom dishes (MatTek Corporation, Ashlan, 
MA) were incubated with 50 µg/ml Poly-L-Lysin (Gibco, Thermofisher Scientific, Wlatham, 
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MA) for 20 min and then, coated with 0.2% gelatin solution for 10 min. Plates were then 
washed with PBS (Gibco, Thermofisher Scientific, Waltham, MA) and cross-linked by 0.2% 
glutaraldehyde (GTA, Sigma, St. Louis, MO) on ice for 15 min. Next, plates were extensively 
rinsed with PBS, quenched with 5 mg/ml sodium borohydride (Sigma-Aldrich, St. Louis, MO) 
and sterilized with 70% ethanol (Decon Laboratories, King of Prussia, PA). Image acquisition 
was initiated 2 h after cell plating.  

 
Microchannels fabrication 

The microchips containing microchannels were fabricated using soft lithography 
techniques. First, the microchip design was created in Autocad (Autodesk, San Rafael, CA) 
and printed on a glass plate to serve as a photomask. Next, a silicon master was fabricated via 
spin-coating a 4” silicon wafer (University Wafers, South Boston, MA) with SU-8 photoresist 
(MicroChem Corporation, Newton, MA) followed by baking at 70 °C for 20 min, exposing to 
UV light passing through the photomask transparencies and removing the uncross-linked 
photoresist by a developer. The silicon master served as a mold for making microchannels, 
onto which a 10:1 mixture of PDMS:curing agent (Dow Corning, Midland, MI) was poured, 
degassed under vacuum to remove air bubbles, and cured at 70 °C for 1 h. Next, cured PDMS 
was carefully peeled from the wafer and cut into single-chip size pieces. Cell- and 
chemoattractant-side reservoirs were made on each device using a 5-mm biopsy punch. Next, 
acid-washed 35-mm glass bottom dishes (MatTek Corporation, Ashland, MA) and PDMS 
devices were activated via oxygen plasma treatment for 30 seconds at 300 mTorr. Microchips 
were then assembled by bonding each PDMS device with a MatTek dish. Assembled devices 
were then sterilized with 70% ethanol followed by repeatedly rinsing the devices with sterile 
PBS.  

 
Mathematical modeling of gradient formation within the channels. 

Dynamics of EGF gradient formation within the microchannels were modeled in 
MATLAB (Mathworks, Natick, MA) using the partial differential equation toolbox (PDEtool). 
The geometry of the model included xy cross-section of a microchannel, and physics of the 
model involved a two-dimensional unsteady-state diffusion equation, 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= −𝐷𝐷(𝜕𝜕

2𝜕𝜕
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑦𝑦2

), 
with a constant-concentration boundary condition at the source edge and a no-flux boundary 
condition applied to the sink edge of the channel as well as the edges in contact with PDMS. 
Initial concentration of the EGF in the whole system was set to zero. The EGF-water diffusion 
coefficient, D, was set to 0.5e-4 cm2/s.  

 
Experimental validation of gradient formation in the microchannels. 

Prior to the experiment, sink and source reservoirs of the devices were rinsed and filled 
with PBS. The PBS in the source reservoir was supplemented with Alexa Fluor 405-labeled 10 
KDa dextran (MW of EGF is 6 kDa), and microchannels were then imaged on a widefield 
Olympus (Olympus, Tokyo, Japan) microscope for 30 hours with 10 min intervals. 

Resulting movies of the dynamics of Alexa Fluor 405-dextran diffusion within the 
microchannels across the two reservoirs were analyzed in Fiji.52 briefly, a “plot profile” was 
applied to a line drawn through the length of the channels and fluorescence intensities were 
recorded at every frame. Relative fluorescence intensities were then calculated via applying 
the following equation to the raw data: 

 
Relative fluorescence =  I (x,T)−  Imin

Imax− Imin
        (1) 
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I(x,T) represents the raw fluorescence intensity recorded at length x of the 
microchannel and time T of the experiment. Imin and Imax are minimal and maximal fluorescence 
intensities recorded in the microchannel.  

 
2D directed migration assay using microchannels 

Prior to cell plating, sink and source reservoirs of the microchips were rinsed with PBS 
and then filled with culture media. 25,000 cells were plated in the cell (sink) reservoir and the 
devices were placed in incubator for 2 h for cell adhesion. Next, the media in the source 
reservoir was supplemented with 20 µM EGF (Thermofisher Scientific, Waltham, MA) and 
microchips were imaged with a widefield Olympus (Olympus, Tokyo, Japan) microscope for 
30 hours with 10 min intervals. 

 
Collagen alignment 

Collagen fibers were aligned by incorporating paramagnetic polystyrene beads (PM-
20-10; Spherotech, Lake Forest, IL) into a 1.5 mg/ml collagen mixture at 4% (v/v) and 
exposing the mixture to the magnetic field of a neodymium magnet (BZX0Y0X0-N52; K&J 
Magnetic, Pipersville, PA) during collagen polymerization.5,32 This step was performed at 
room temperature for 30 min. As schematically shown in Figure 3D, magnetic-field induced 
flow of magnetic beads within the collagen matrix aligns collagen fibers. Collagen alignment 
was assessed by confocal reflection microscopy followed by image processing by ct-FIRE53 to 
extract fiber angles.  
 
3D migration assays 

40,000 FUCCI-MDA-MB-231 cells were suspended in 50 µl of a collagen mixture 
containing: 1.5 mg/ml rat tail collagen I (Corning, Tewksbury, MA), 5 µl 10X PBS, 10% FBS 
(Atlanta Biologicals, Flowery Branch, GA), 1% Penicillin/Streptomycin, DMEM (Gibco, 
Thermofisher Scientific, Waltham, MA), 4% paramagnetic polystyrene beads (PM-20-10; 
Spherotech, Lake Forest, IL) and 1 N NaOH. The mixture was vortexed at 4 °C for 5 min and 
pipetted in a 35-mm glass bottom plate (MatTek Corporation, Ashland, MA). Collagen mixture 
was polymerized at room temperature for 30 minutes. For collagen alignment, this step was 
conducted by positioning the plate adjacent to a neodymium magnet (BZX0Y0X0-N52; K&J 
Magnetic, Pipersville, PA). Next, 1ml DMEM containing 10% FBS and 1% antibiotics was 
pipetted into the plate. The plate was then imaged via a widefield Olympus IX81 (Olympus, 
Tokyo, Japan) microscope for 30 hours with 10 min intervals.  
 
Live cell imaging 

Live cell imaging was performed via a widefield Olympus (Olympus, Tokyo, Japan) 
microscope equipped with LED lamp, Hamamatsu Orca 16-bit CCD (Hamamatsu, Hamamatsu 
city, Japan), automated z-drift compensation IX3-ZDC (Olympus, Tokyo, Japan), automated 
Prior stage (Prior Scientific, Rockland, MA) and an environmental chamber. For live cell 
imaging, regular culture media was supplemented with 1:100 Oxyfluor (Oxyrase, Mansfield, 
OH) and 10 mM sodium lactate (Sigma-Aldrich, St. Louis, MO) to reduce phototoxicity. Time 
lapse imaging was conducted at a single focal plane using an Olympus 20x 0.7 NA objective 
and images were acquired at FITC, TRITC, and bright field channels. Images were collected 
every 10 minutes for 30 hours.  
 
Computational image analysis 

Each image is first segmented, and then tracked using the approach previously 
described for the LEVER (lineage editing and validation) software tools54–57. The segmentation 
processed the two FUCCI channels using a denoising algorithm58 that models imaging noise 
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as a combination of slow-varying low frequency background noise and high frequency shot 
noise. The denoising algorithm uses a Gaussian low-pass filter, with kernel size equal to 10% 
of the image size, combined with a median filter with support of 3x3 pixels. The segmentation 
treats the fluorescence and phase channels separately. The fluorescence images start with an 
adaptive Otsu thresholding, followed by a connected component analysis. The phase 
segmentation identifies bright and dark foreground pixels as those falling greater than one 
standard deviation from the mid-level background pixels. These bright and dark pixels are 
combined with an Otsu thresholded gradient image to produce the final foreground. The 
intersection of the phase and fluorescence channel segmentations is used as the final 
segmentation.  

Following segmentation, the images are tracked to establish temporal correspondences 
among the segmentation results. The multitemporal association tracking (MAT)59,60 algorithm 
has been widely applied in a number of applications and is used here. MAT uses a minimum 
spanning tree optimization to solve the data association problem across multiple image frames 
(here set to three) in polynomial time. The first tracking step is to compute a cost function 
between segmentations based on differences in spatial location, shape and size, and 
fluorescence intensity signals. For each cell, the fluorescent intensity is taken as the mean 
fluorescent signal within the segmentation boundaries. Cells that are separated by more than 
twice the maximum radius of either cell, or with a size difference of more than 90% between 
frames are gated or considered to have an infinite tracking cost. The gate is adaptive, with the 
constraint adjusted upwards until at least five possible tracking matches are obtained. MAT 
then uses the cost function to compute optimal tracking associations between segmentations. 
The LEVER program then allows the results to be visualized, and optionally for any errors to 
be corrected manually. 

Cell tracks were manually analyzed to correct for mis-segmented cells and assess 
instantaneous velocity (displacement between two frames divided by time) and cell persistence 
(net cell displacement over the course of experiment divided by the total displacement).  
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Figures 
 
 

 
 
Figure 1. Development and characterization of a 2D model for directed cancer cell 
migration using a chemoattractant gradient in microchannels. A. Simplified microchip 
design. To facilitate cell entry into 10 µm-wide microchannels, left end of microchannels was 
tapered (35 µm width). B. Mathematical modeling of the non-linear chemoattractant gradient 
across the microchannels. Example time points ranging from 6-30h are shown. C. Gradient of 
AlexaFluor 405 dextran across the microchannel length, measured at different times 6-30h. 
Colors correspond to acquisition times indicated in (B).  
 
 
 
 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 26, 2018. ; https://doi.org/10.1101/288183doi: bioRxiv preprint 

https://doi.org/10.1101/288183


 15 

 
Figure 2. 2D directed, but not random, migration is cell cycle-dependent. A & B. 
Representative trajectories of cells in the G1 (red) and the S/G2 (green) phase of the cell cycle, 
randomly migrating on gelatin-coated plates. C & D. Persistence and instantaneous velocity of 
cells randomly migrating in 2D. E & F. Representative trajectories of cells in the G1 (red) and 
the S/G2 (green) phases of the cell cycle directionally migrating inside the gelatin-coated 
microchannels. G & H. Persistence and instantaneous velocity of cells directionally migrating 
inside microchannels. 
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Figure 3. Development of a 3D model for directed cell migration using collagen fiber 
alignment. A. Randomly oriented 3D fibrillar collagen was used in the 3D random migration 
assay. B. Representative image of the random architecture of collagen fibers imaged by 
confocal reflection microscopy. C. Quantification of collagen fiber angles in (B) demonstrating 
a random distribution of the collagen fiber orientation. D. Collagen mixed with magnetic beads 
and exposed to magnetic-induced flow results in 3D collagen with aligned fibers. E. Aligned 
architecture of collagen fibers imaged by confocal reflection microscopy. F. Distribution of 
collagen fiber angles in (E) shows a Gaussian distribution in collagen fibers direction, centered 
at 90° relative to the magnet orientation. Scale bar 100 µm.   
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Figure 4. 3D directed, but not random, migration is cell cycle-dependent. A & B. 
Representative trajectories of cells in the G1 (red) and the S/G2 (green) phase of the cell cycle 
migrating in 3D collagen with randomly oriented fibers. C & D. Persistence and instantaneous 
velocity of cells migrating in 3D collagen with randomly oriented fibers. E & F. Representative 
trajectories of cells in the G1 (red) and the S/G2 (green) phase of the cell cycle migrating in 
aligned 3D collagen fibers. G & H. Persistence and instantaneous velocity of cells directionally 
migrating in aligned 3D collagen fibers. 
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