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Abstract 

In original Weighted Gene Co-expression Network Analysis (WGCNA), the 

signed network considers the sign of correlation and only positive correlations 

make sense in the network. The unsigned network regard both highly positive 

and negative correlations as connected. This design results in loss of negative 

correlation in the signed network and moderate negative correlations in the 

unsigned network. To avoid these limitations, we provided a modified method 

of WGCNA named Combination of Signed and Unsigned WGCNA 

(csuWGCNA). We created networks for signed, unsigned and csuWGCNA on 

two gene expression datasets of the human brain from Stanley Medical 

Research Institute (SMRI) and BrainGVEX. The results obtained from our 

investigation indicate that our method is better than signed and unsigned 

WGCNA in capturing negatively correlated gene pairs. Especially for the 

relationship between miRNA, lncRNA and their target genes. 

 

Introduction 

 

Gene co-expression analysis is a tool for identifying important gene 

relationships1. WGCNA is the common method used in co-expression analysis2. 
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The original WGCNA utilize the correlation between genes. Considering a gene 

expression matrix Gmxn, where m is the number of genes and n is the number 

of samples. The original WGCNA procedure generates a correlation matrix S 

between genes in G with two methods: Pearson and bicor at first. A parameter 

β is chosen to enable the network show a Scale-Free Topology (SFT) property. 

After that, the adjacency matrix A is constructed from S depending on whether 

the adjacency is signed or unsigned. In signed adjacency matrix correlations in 

the [−1, 1] interval is scaled into the [ 0, 1] interval and negative correlations are 

made positive in the unsigned adjacency matrix. The adjacency is defined as 

following for signed, unsigned and signed hybrid respectively. The adjacency aij 

for gene i and j is:  

𝑠𝑖𝑔𝑛𝑒𝑑 𝑎𝑖𝑗 = |(1 + cor(𝑥𝑖, 𝑥𝑗))/2|𝛽 

𝑢𝑛𝑠𝑖𝑔𝑛𝑒𝑑 𝑎𝑖𝑗 = |cor(𝑥𝑖, 𝑥𝑗)|𝛽 

𝑠𝑖𝑔𝑛𝑒𝑑 ℎ𝑦𝑏𝑟𝑖𝑑 𝑎𝑖𝑗 = {
|cor(𝑥𝑖, 𝑥𝑗)|𝛽     cor(𝑥𝑖, 𝑥𝑗) > 0

0                           cor(𝑥𝑖 , 𝑥𝑗) > 0
 

From the adjacency matrix, a new matrix with the same dimension is created. 

The Topological Overlap Matrix (TOM) is created in to make networks less 

sensitive to spurious connections or to connections missing due to random 

noise. Once TOM is built, the hierarchical clustering is performed on the matrix 

1-TOM. A dynamic tree-cut function is applied to the dendrogram to get the 

module of highly co-expressed genes. Module eigengene is the first principal 

component of the gene expression of genes clustered into this module which 

summarizes the whole module. By looking the correlation between module 

eigengene with traits, we can get modules linked to biological meaning such as 

disease, age3, sex4, cell type5,6 and disease state7 etc. 

 

The signed and unsigned network created by original WGCNA has distinct 

features. Unsigned networks just consider the correlation of two genes and the 

sign of the correlation doesn’t matter. This treats the positive and negative 

correlations fairly. In reverse, the strongly negative correlation is considered as 

no connection. The creator of the WGCNA recommends signed network for 

following two reasons. First, more often than not, direction does matter. Second, 

negatively correlated nodes often belong to different categories. Moreover, a 

study8 of embryonic stem (ES) cell recommended signed network because the 

analysis shows that signed WGCNA identifies modules with more specific 

expression patterns than unsigned WGCNA. However, the signed network just 

ignores negative correlation directly. For the study focusing on negative gene 

correlation, using signed network will result in loss of information. Therefore, 

there is a need to create a method combining signed and unsigned WGCNA. 

  

miRNA and lncRNA are two types of non-coding RNA which were reported a to 
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be negatively correlated with target genes9. miRNAs can regulate the gene 

transcription and inhibit the translation of mRNA10-12. Brain-specific miRNA miR-

13413 was reported to inhibit Limk1 translation and in this way may contribute 

to synaptic development. The function of lncRNA has been implicating in post-

transcriptional regulation, splicing regulation, regulate protein localization. 

BDNF-AS is the natural antisense transcript to BDNF14, itself a key contributor 

to synaptic function. By dynamically repressing BDNF expression in response 

to neuronal depolarization, BDNF-AS modulates synaptic function. Apparently, 

miRNA and lncRNA played important roles in gene repression program. 

 

In this study, we point out the disadvantages of signed and unsigned WGCNA 

and create a new method combining their advantages. We used two gene 

expression profiles from the human brain to prove our method csuWGCNA can 

capture more negative miRNA-target and lncRNA-gene pairs. Also, the results 

indicate that csuWGCNA can found more validated negative gene pairs and 

more significant gene/pathway enrichment.  

Results 

Signed WGCNA captured more specific module but the 

negative correlations were lost  

We first compared the similarity definition of signed and unsigned network. In 

the unsigned network, the similarity between two genes was defined as the 

absolute value of Pearson correlation between expression of genes. However, 

the definition of signed network reflected the sign of the correlation (Figure 2). 

The signed network was recommended for the reason that using the absolute 

value of the correlation may obfuscate biologically relevant information since 

no distinction was made between gene repression and activation. However, the 

distinction in the signed network was based on positive correlation taking 

precedence over the negative correlation. The strong repression between two 

genes was regarded as no similarity.  

To confirm this point, we reanalyzed the data from embryonic stem (ES) cell15 

which used in explaining signed network is better than unsigned network before. 

As the original study reported8, signed network identified the pluripotency-

related module (Figure 1A). This small module was hidden in a large module in 

the unsigned network. We reanalyzed the data and we do observe the module 

relationship reported in the original study. A core group of ES-related 

transcription factors (TFs) is enriched signed brown module (Figure 1B). In an 

unsigned network, this TFs are scattered in the blue module that larger than the 

signed brown module. However, we found that the negative correlation in the 

unsigned blue module was lost in the two-separate signed module (Figure 1C). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 24, 2018. ; https://doi.org/10.1101/288225doi: bioRxiv preprint 

https://doi.org/10.1101/288225
http://creativecommons.org/licenses/by-nc-nd/4.0/


The unsigned blue module found 139129 negative pairs and signed brown 

module and turquoise module only found 22 pairs in total. The result indicates 

that signed WGCNA identifies modules with more specific expression patterns 

than unsigned WGCNA but it lost a lot of negative correlations. 

 

 

Figure 1 Signed and unsigned ES-related module identified Ivanova et al. A. heat map 

for visualizing standardized gene expressions (rows) across samples (columns) for genes 

in the blue module in the unsigned network, brown and turquoise module in the signed 

network. B. plot of module membership, kME, (x-axis) plotted against gene significance, GS, 

(y-axis) for the brown in the signed network with known ES-related TF labeled. C. The 

distribution of gene correlation in the unsigned blue module and signed brown turquoise 

module. 

 

 

Combination of signed and unsigned WGCNA 

To combined the features of signed and unsigned network, we proposed a new 

method termed csuWGCNA. The core modification of csuWGCNA is the 
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definition of adjacency network, which integrates the advantages of signed 

network and unsigned network (Figure 2). The adjacency of csuWGCNA is 

calculated as follows: 

csu aij=|(1+|cor(xi,xj )|/2|β 

With this calculation of adjacency, the strong and weak negative correlations 

are taken into account. Meanwhile, the positive correlation remains the same 

as they in signed network. We modified two functions for picking soft 

thresholding power and calculating network adjacency. The whole process of 

csuWGCNA includes adjacency calculation based on similarity matrix, the 

topological overlap Matrix (TOM) construction, hierarchical clustering, dynamic 

tree cutting and module merging.  

 

 

Figure 2 Network adjacency versus gene expression correlation. Network adjacency (y-

axis) versus correlation (x-axis) for weighted networks in the signed network, unsigned network, 

and csuWGCNA network. The color of the line denotes the power used. Note that correlation=-

1 leads to adjacency = 0 in the signed network and adjacency =1 in the unsigned and 

csuWGCNA network.  

 

The csuWGCNA can detect modules containing genes with negative 

correlations, which may be more useful when lncRNAs and miRNAs are 

included in the network. We applied the csuWGCNA on the one miRNA 

datasets from SMRI and another lncRNA data sets from BrainGVEX to compare 

it with signed and unsigned WGCNA (Table 1).  

 

miRNA-mRNA 

We performed signed WGCNA, unsigned WGCNA and csuWGCNA on the 

mRNA and miRNA expression in parietal cortex tissues from the SMRI samples 

of patients with schizophrenia (SCZ), bipolar disorder (BD) and healthy controls. 

Signed WGCNA detected 13 modules, unsigned WGCNA detected 20 modules 

and csuWGCNA detected 15 modules.  

Firstly, csuWGCNA identified more informative gene pairs. The Pearson 

correlation between genes detected in this data set is calculated (Figure 3A). 
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We classed the gene pairs into negative pairs(cor<-0.3) and positive pairs 

(cor>0.3) by the correlation. To compare three networks, we defined informative 

gene pairs as they are located in the same module (SM). If gene pairs are in 

different modules(DM), their correlation or relationship makes no sense. The 

pairs contain genes in the grey module are removed. For the negative pairs, 

csuWGCNA captured 33% SM pairs which are better than unsigned WGCNA  

(Figure 3B). However, the signed network failed to detect the SM negative pairs. 

For the positive pairs, the signed WGCNA performed best which captured 64% 

SM pairs. csuWGCNA in the second place and unsigned WGCNA is the worst. 

Overall, csuWGCNA can capture more informative gene pairs (84%) compare 

to signed and unsigned WGCNA.  

 

 

Figure 3 Correlation of gene expression of SMRI data. A. The distribution of gene 

expression in SMRI data. B. The proportion positive and negative gene pairs located in the 

same module in csuWGCNA, signed and unsigned network.  

Secondly, more miRNA and target gene are captured by csuWGCNA. To 

examined the capability of WGCNA for capturing miRNA-target interaction 

(MTI), we downloaded the MTIs for human from miRTarBase16. In total, 101493 

MTIs were involved in the analysis. We divided the MTI into two classes 

according to the sign of correlation: positive MTI and negative MTI. Firstly, the 

distribution of correlation of MTIs is symmetric and most of the correlation are 

weak (Figure 4A). To compare three networks, we counted the SM MTIs for 

both positive and negative correlation. The result showed that no matter 

negative or positive, csuWGCNA captured the most SM MTIs (Figure 4B). The 

overlap of negative MTIs between three networks showed that even 

csuWGCNA detected the most MTIs, the number of MTIs both unsigned 

WGCNA and csuWGCNA found in common is less than either of their own 

(Figure 4C). So, we suppose whether the csuWGCNA and unsigned WGCNA 
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captured different types of negative MTIs. We then classified the negative MTIs 

into three classes: common, csuWGCNA_specific, unsigned_specific. The 

highly negative MTIs (cor<-0.5) are captured by both unsigned and csuWGCNA. 

Meanwhile, the csuWGCNA captured a great deal of weakly negative MTIs 

while unsigned WGCNA tends to capture moderate negative MTIs (Figure 

Figure 4D).  

Thirdly, csuWGCNA finds more known repression relationship from KEGG 

database17. We derived 10198 gene pairs from KEGG which is repression or 

inhibition relationship. We counted the pairs in SM for three networks. Figure 

4E showed that the csuWGCNA captured 20% repression/inhibition gene pairs 

while signed and unsigned WGCNA only captured ~13% pairs.  

 

Figure 4 Summary of MTIs in the co-expression of SMRI data. A. the distribution of 

correlation of MTIs from miRTarBase. B. The number of positive and negative MTIs located in 

the same module in csuWGCNA, signed and unsigned network. C. The positive and negative 

MTIs captured by three networks. D. The correlation of negative MTIs captured by unsigned 

and csuWGCNA. According to the overlaps in C, the MTIs were divided into three classes: 
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common MTI, csuWGCNA specific MTI and unsigned WGCNA specific. E. The proportion of 

repression or inhibition gene pairs from KEGG located in the same module or different module 

in three types of network. F. The disease-related module identified in three networks. The left 

panel is the cluster of disease-related modules according to the module eigengenes. The right 

panel is the correlation value and p-value of disease module eigengene with the disease state. 

 

Fourthly, disease-related miRNAs were identified by both unsigned and 

csuWGCNA. Due to this dataset included BD and SCZ, we found the disease 

modules (Pearson correlation p<0.05). miRNA-320 which was reported to 

involve in putative regulation in psychiatric disorder in our previous work. We 

found that miRMA-320b, miRNA-320c, miRMA-320d, and miRMA-320e were 

captured by disease module in the unsigned WGCNA (ME8) and csuWGCNA 

(ME8). But signed network failed to capture these important miRNAs (Figure 

4F).  

Finally, the signed WGCNA and csuWGCNA enriched more significant GO term 

and pathway than unsigned. We annotated all non-grey modules in three 

networks with Gene Ontology database and KEGG database. We then 

aggregate the p-value of all significant terms (FDR<0.05) for a network in a 

single measurement of significance as follows. For each network, n is the 

number of significant terms, p is p-value for the term.  

Snetwork = (∑ (−𝑙𝑜𝑔10(𝑝)))/𝑛
1 𝑛 

The significance of signed network is 2.55, and the significant of csuWGCNA 

and unsigned WGCNA is 2.34 and 2.24 separately.  

 

In summary, our analysis on miRNA and mRNA indicates that csuWGCNA is 

better than both signed and unsigned WGCNA in capturing MTIs and validated 

repression gene pairs. In the aspect of module enrichment, csuWGCNA is 

slightly worse than signed WGCNA but better than unsigned WGCNA. 

 

lncRNA-mRNA 

LncRNA is another type of non-coding RNA which reported involved in gene 

repression. We performed three types WGCNA on data including lncRNA from 

BrainGVEX. The data contain both healthy control and psychiatry patients (SCZ 

and BD). Signed WGCNA detected 20 modules, unsigned WGCNA detected 

25 modules and csuWGCNA detected 16 modules.  

 

In total, 1132 lncRNAs in this dataset including four types: lincRNA, antisense, 

sense_intronic and sense_overlapping. We correlated the expression of 
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lncRNA with the expression of other genes and picked up the lncRNA-gene 

pairs which Pearson correlation value lower than -0.3. In total, 273360 lncRNA-

gene pairs matched the condition. The number of pairs in the same non-grey 

module for csuWGCNA and unsigned WGCNA is 7657 and 7391 (Figure 5A). 

None of the pairs located in the same nodule in signed WGCNA. Now that 

csuWGCNA found more SM lncRNA-gene pairs, is csuWGCNA capable of 

finding pairs with stronger correlation? The figure 5B is the boxplot of 

correlations of negative SM pairs in csuWGCNA and unsigned WCGNA. The 

plot showed that the csuWGCNA captured lncRNA-genes pairs that more 

negative (p-value <2.2e-16, t-test). 

 

Figure 5 The negatively correlated lncRNA-gene pairs in BraiGVEX data. A. The number 

of negative lncRNA-gene pairs located in the same module and the different module in 

csuWGCNA signed and unsigned WGCNA. B. The correlation of negative lncRNA-gene pairs 

in the same module in the unsigned and csuWGCNA.  

 

The csuWGCNA enriched more significant GO term and pathway than signed 

and unsigned WGCNA in lncRNA dataset. We annotated all non-grey modules 

in three networks with Gene Ontology database and KEGG database. We then 

calculated the significance described in the last section for three networks. The 

significance of csuWGCNA network is higher than both signed and unsigned 

WGCNA. (csuWGCNA=2.38, signed=2.25, unsigned=2.19) 

Methods 

data collection 

Table 1 Summary of dataset used 

dataset sample size brain region platform 

ES cell 

dataset 

70 - Affymetrix microarrays 

SMRI 75 parietal Affymetrix Human 
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cortex Gene 1.0 ST Array, 

Illumina sequencing 

BrainGVEX 413 frontal cortex Illumina sequencing 

 

samples and quality control 

SMRI data: Parietal cortex tissue specimens from the Stanley Medical 

Research Institute (SMRI) Neuropathology Consortium and Array collections 

included SCZ, BD and control samples. The non-Europeans, replicates, and 

samples missing any of the mRNA, miRNA and genotyping results were 

removed. After filtering, we retained 75 samples, yielding data for 19,984 

mRNAs and 470 miRNAs.  

BrainGVEX data: Frontal cortex samples were collected from the 

PsychENCODE18 project. The sample including 260 health control, 76 BD 

samples and 94 SCZ samples.  

gene profiling and data pre-processing 

ES cell: The raw data were downloaded from Ivanova et al DataSet. MAS5 was 

used to process raw data and then the data were log2 transformed. We 

removed duplicated genes according to variance. Finally, 13627 genes and 70 

samples are kept.  

 

SMRI: Total RNA was extracted from PC tissue using the RNeasy Mini kit 

(Qiagen, Hilden, Germany). The concentration and A260/A280 ratio were 

measured on the NanoDrop spectrophotometer (Thermo Fisher Scientific, 

Waltham, MA). The 28S:18S rRNA ratio and RNA Integrity Number (RIN) were 

measured using an RNA LabChip kit on the Agilent 2100 Bioanalyzer (Agilent 

Technologies, Santa Clara, CA). Only RNA samples with a RIN > 6 were used 

for expression profiling. Total RNA was extracted from tissues using the 

mirVana miRNA Isolation Kit (Ambion, Austin, TX) according to the 

manufacturer's instructions. RNA quality and the presence of small RNAs were 

inspected on a 2100 Bioanalyzer (Agilent Technologies). After strict RNA quality 

assurance, 15 µg of total RNA was used for small RNA library creation using 

Illumina's DGE small RNA sample prep kit per the manufacturer's instructions. 

Purified cDNA was quantified with the Quant-iT PicoGreen dsDNA Kit (Thermo 

Fisher Scientific) and diluted to 3 pM for sequencing on the Illumina 1G 

Genome Analyzer (University of Houston). Each library was sequenced in a 

single lane.  

 

Affymetrix Human Gene 1.0 ST Array (Affymetrix, Santa Clara, CA) was used 

for whole-genome transcriptome profiling at the NIH Neuroscience Microarray 
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Consortium facility at Yale University. Single nucleotide polymorphisms (SNPs) 

in probe regions can affect probe hybridization efficiency. For the Robust 

Multichip Average (RMA) preprocessing steps19: background correction, 

quantile normalization, and gene level summarization6. Afterward, for the 

convenience of comparison, only genes with Entrez IDs were kept. 

 

Sequence reads with 36-nt read length were picked for miRNA mapping. Reads 

that did not pass the Illumina chastity and no-calls filter were removed. FastQC 

(v0.11.2) was used to check for homopolymers, adapters, and distribution of 

base quality. After trimming for adapters, sequences that read length < 10nt, 

copy number < 4, or more than 10 consecutive, repetitive nucleotides were 

discarded. The miRBase database release was used to identify miRNAs, and 

Bowtie 2 was used for mapping. Average valid sequence reads were 15M in 

each sample, and the total count was used for sample-wise normalization. 

ComBat, a batch effect adjustment program was used to remove batch effects 

from both miRNA and mRNA data sets. 

 

BrainGVEX:  

Total RNA was isolated at the University of Illinois at Chicago and the University 

of Chicago with the Qiagen miRNeasy mini kit. Approximately 50mg fresh-

frozen brain tissue was homogenized by the FastPrep-24 system in QIAzol 

Lysis Reagent with Lysing Matrix D, then mixed well with chloroform. The 

separated aqueous layer was recovered, mixed with ethanol and applied to a 

miRNeasy mini column. Columns were treated with Qiagen RNase-free DNase 

digestion set, then washed with the appropriate miRNeasy mini kit buffers. Total 

RNA was eluted with RNase-free water. Total RNA was quantified by either 

Qubit 2.0 RNA BR assay kit or Xpose spectroscopy; the quality of total RNA 

was assayed by Agilent RNA 6000 Nano Kit on the Agilent Bioanalyzer. Total 

RNA samples that pass QC to library generation have a concentration of >= 

100ng/uL assayed by Qubit 2.0 RNA BR Assay or Xpose, and RIN score >= 5.5 

assayed by Agilent Bioanalyzer RNA 6000 Nano assay kit. 

All total RNA from BSHRI collections were processed into rRNA-depleted 

stranded libraries for sequencing on the Illumina HiSeq2000 using the TruSeq 

Stranded Total RNA sample prep kit with Ribo Zero Gold HMR. For some 

libraries, 2ul of 1:100 ERCC RNA ExFold Spike-In Mix 1 was added to total 

RNA starting material before ribo-depletion step as an internal way of tracking 

library prep and sequencing quality. Libraries are PCR amplified for 12 cycles 

and cleaned with 0.60X Ampure XP beads. 

Libraries Quality Control were processed at the University of Chicago HGAC by 

quantification with the Qubit 2.0 dsDNA HS assay kit and quantification and 

quality check with the Agilent Bioanalyzer DNA HS assay kit. Libraries were 

sequenced on Illumina’s HiSeq2000 on a high output flow cell for 100bp PE 

sequencing. Libraries are 3-plexed per lane to reach 40M paired-end reads per 

library.  
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Fastq files go through adapter removal using cutadapt, then the resulting 

adapter-trimmed fastq files are checked for quality using FastQC. A subset of 

10,000 reads is used to estimate insert mean size and standard deviation for 

use with Tophat. Tophat is used to aligned trimmed reads to the GENCODE19 

reference. Expression level is then calculated using HTSeq and Cufflinks with 

custom scripts used to summarize proportion of reads assigned to each RNA 

type. The genes that FPKM lower than 1 in more than 60% samples were 

dropped. We did co-expression on the samples and sample that z-score 

normalized connectivity with other samples lower than -2 were removed. Finally, 

413 sample and 14865 genes were kept. Then, FPKM was log2 transformed. 

The linear regression was used to remove the effect of covariates including age, 

sex, RIN, PMI, brain bank, batches, principal components of sequencing 

(seqPC) except group. The seqPCs were top 10 principal components of PCA 

on sequencing statistics. The interaction between covariates was calculated.   

 

network construction 

ES cell: The normalized data were used to construct signed and unsigned 

network. The corType is Pearson correlation. The soft power for signed and 

unsigned is 12 and 7. Other parameters are as follows: TOMtype is signed, 

deepSplit is 2, minimum module size is 30 and mergeCutHeight is 0.15.  

 

SMRI: We performed signed, unsigned and csuWGCNA on the miRNA-mRNA 

data. We applied bicor function to calculate the correlation between genes. The 

soft power picked up for signed, unsigned, and csuWGCNA is 12, 5 and 12 

separately. The parameters are as follows: TOMtype is signed, deepSplit is 2, 

minimum module size is 30 and mergeCutHeight is 0.15, pamStage is true.  

 

 

BrainGVEX: We performed signed, unsigned and csuWGCNA on the lncRNA-

mRNA data. We applied bicor function to calculate the correlation between 

genes. The soft power picked up for signed, unsigned, and csuWGCNA is 12, 

4 and 10 separately. The parameters are as follows: TOMtype is signed, 

deepSplit is 4, minimum module size is 40 and mergeCutHeight is 0.2, 

pamStage is false. cutreeHybrid function was used to cut the gene tree.  

 

repression/inhibition gene relationships from KEGG 

The KGML files for human species were downloaded from KEGG website. The 

R package KEGGgraph20 was used to operate the KGML file and extract the 

gene relationship. We chose the gene pairs which subtype of relationship is 
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'inhibition' or 'repression'.  

 

GO and KEGG annotation  

The annotation of modules was achieved with goProfileR21. The terms used for 

annotation from both GO and KEGG database. The parameter setting as 

follows: max_set_size=500, correction_function=’fdr’, hier_filtering=’strong’. 
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